

POSITIVE p-SUMMING OPERATORS ON L_p -SPACES

OSCAR BLASCO

ABSTRACT. It is shown that for any Banach space B every positive p-summing operator from $L^{p'}(\mu)$ in B, 1/p+1/p'=1, is also cone absolutely summing. We also prove here that a necessary and sufficient condition that B has the Radon-Nikodým property is that every positive p-summing operator $T\colon L^{p'}(\mu)\to B$ is representable by a function f in $L^p(\mu,B)$.

1. Introduction. In this paper we shall be concerned with a weaker concept than a p-absolutely summing operator [5] and stronger than a p-concave one [4]. This concept makes sense when we are dealing with operators T in L(X, B), with X a Banach lattice. An operator which maps positive sequences $\{x_n\}$ with $\sup_{\|\xi\|_{X^*} \le 1} \sum |\langle \xi, x_n \rangle|^p < \infty$ in sequences $\{Tx_x\}$ such that $\sum \|Tx_n\|^p < \infty$ will be called a positive p-summing operator.

In case p=1, such operators are called order summing [2] or cone absolutely summing operators [7] and for 1 they have already been considered by the author in [1]. Here we shall investigate the space of positive <math>p-summing operators for spaces $C(\Omega)$ and $L^r(\mu)$ $(1 \le r < \infty)$. We shall find that for any Banach space B the positive p-summing operators from $L^{p'}(\mu)$ in B denoted by $\Lambda_p(L^{p'}(\mu), B)$, with 1/p + 1/p' = 1, are also cone absolutely summing ones.

We shall obtain a necessary and sufficient condition such that B has the Radon-Nikodým property in terms of these operators. This condition can be written as follows:

$$\Lambda_p(L^{p'}(\mu), B) = L^p(\mu, B)$$
 for some $p, 1 .$

2. Definitions and preliminary results. Throughout this paper X will denote a Banach lattice, B a Banach space, and L(X,B) the space of bounded operators from X into B. We shall write p' for the number such that 1/p + 1/p' = 1.

DEFINITION 1. Let $1 \le p < \infty$. An operator $T: X \to B$ is said to be positive p-summing if there exists a constant C > 0 such that for every x_1, x_2, \ldots, x_n , positive elements in X, we have

(1)
$$\left(\sum_{i=1}^{n} \|Tx_i\|^p \right)^{1/p} \le C \sup_{\|\xi\|_{X^*} \le 1} \left(\sum_{i=1}^{n} |\langle \xi, x_i \rangle|^p \right)^{1/p}.$$

We shall denote by $\Lambda_p(X, B)$ the space of positive *p*-summing operators. This space becomes a Banach space with the norm $\| \cdot \|_{\Lambda_p}$ given by the infimum of the constants verifying (1).

Received by the editors March 14, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 47B10, 46B22.

Key words and phrases. p-summing operator, cone absolutely summing. Radon-Nikodvin property.

©1987 American Mathematical Society 0002-9939/87 \$1.00 + \$.25 per page For $p = \infty$ we consider $\Lambda_{\infty}(X, B) = L(X, B)$ and $||T||_{\Lambda_{\infty}} = ||T||$.

We shall also denote by $\Pi_p(X, B)$ and $\mathcal{C}_p(X, B)$ the spaces of *p*-absolutely summing and *p*-concave operators respectively (see [5, 4]).

A simple use of the duality $(l^p)^* = l^{p'}$ leads us to the following useful equality:

(2)
$$\sup_{\|\xi\|_{X^* \le 1}} \left(\sum_{i=1}^n |\langle \xi, x_i \rangle|^p \right)^{1/p} = \sup_{\alpha \in U_{n'}^+} \left\| \sum_{i=1}^n \alpha_i x_i \right\|_X,$$

where

$$U_{p'}^+ = \left\{ \alpha = (\alpha_i)_{i=1}^n : \sum_{i=1}^n |\alpha_i|^{p'} \le 1, \ \alpha_i \ge 0 \right\}.$$

The first fact we shall notice is the relationship between these three types of operators.

Proposition 1.

$$\Pi_p(X,B) \subseteq \Lambda_p(X,B) \subseteq C_p(X,B) \qquad (1 \le p \le \infty).$$

PROOF. The first inclusion is completely obvious. To see the second one, let us take T in $\Lambda_p(X, B)$ and x_1, x_2, \ldots, x_n in X,

$$\left(\sum_{i=1}^{n} \|Tx_{i}\|_{B}^{p}\right)^{1/p} \leq \left(\sum_{i=1}^{n} \|Tx_{i}^{+}\|_{B}^{p}\right)^{1/p} + \left(\sum_{i=1}^{n} \|Tx_{i}^{-}\|_{B}^{p}\right)^{1/p} \\
\leq \|T\|_{\Lambda_{p}} \left(\sup_{\alpha \in U_{p'}^{+}} \left\|\sum_{i=1}^{n} \alpha_{i}x_{i}^{+}\right\|_{X} + \sup_{\alpha \in U_{p'}^{+}} \left\|\sum_{i=1}^{n} \alpha_{i}x_{i}^{-}\right\|_{X}\right) \\
\leq 2\|T\|_{\Lambda_{p}} \sup_{\alpha \in U_{p'}^{+}} \left\|\sum_{i=1}^{n} \alpha_{i}|x_{i}|\right\|_{X} .$$

By using the homogeneous functional calculus in a lattice given by Krivine we have that

$$\sum_{i=1}^{n} \alpha_i |x_i| \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} \quad \text{for all } \alpha \in U_{p'}^+,$$

and then

$$\left(\sum_{i=1}^{n}\left\|Tx_{i}\right\|_{B}^{p}\right)^{1/p}\leq2\left\|T\right\|_{\Lambda_{p}}\left\|\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1/p}\right\|_{X}.$$

So $T \in \mathcal{C}_p(X, B)$. \square

REMARKS. Let us give two examples to realize that these inclusions may be strict.

In Proposition 3 below we shall prove that $\Lambda_p(L^1(\mu), B) = L(L^1(\mu), B)$ for all $p, 1 \leq p \leq \infty$. On the other hand if we consider B a Banach space without the Radon-Nikodým property then there will exist an operator $T: L^1(\mu) \to B$ which is not representable by a function (see [2]). Therefore this operator T cannot belong to $\Pi_p(L^1(\mu), B)$ since every p-absolutely summing operator is weakly compact and these last ones are always representables (see [2, p. 75]).

An example of a p-concave operator and a nonpositive p-summing one may simply be the identity $I: l^p \to l^p$ for $1 . This fact can be shown by taking <math>\{e_n\}$ as the usual basis in l^p and by noticing that

$$\left(\sum_{i=1}^n \|e_i\|^p\right)^{1/p} = n^{1/p}$$

and

$$\sup_{\|\xi\|_{p'} \le 1} \left(\sum_{i=1}^{n} \left| \langle \xi, e_i \rangle \right|^p \right)^{1/p} = \sup_{\|\xi\|_{p'} \le 1} \|\xi\|_p \le \sup_{\|\xi\|_{p'} = 1} \|\xi\|_{p'} \le 1.$$

We state here two facts which we shall use later. Part (3) is immediate and part (4) can be proved by standard arguments.

PROPOSITION 2.

(3) If
$$X_1 \subseteq X_2$$
, $\overline{X}_1 = X_2$, and $1 \le p \le \infty$, then $\Lambda_p(X_2, B) \subseteq \Lambda_p(X_1, B)$,

(4)
$$\Lambda_p(X,B) \subseteq \Lambda_q(X,B) \quad \text{if } 1 \le p \le q \le \infty.$$

3. The main results. In this section we shall denote by Ω a compact space and by $(\Omega, \mathcal{A}, \mu)$ a finite measure space. We shall write $L^p(\mu, B)$ for the space of measurable functions on Ω with

$$||f||_p = \left(\int_{\Omega} ||f(t)||^p d\mu\right)^{1/p} < \infty.$$

The p-absolutely summing operators for L^r -spaces have been considered by several authors, for instance in [4, 6]. Here we shall study the positive p-summing ones, obtaining some analogous results.

PROPOSITION 3. Let $1 \le p \le \infty$.

(5)
$$\Pi_p(C(\Omega), B) = \Lambda_p(C(\Omega), B) = \mathcal{C}_p(C(\Omega), B),$$

(6)
$$\Lambda_{p}(L^{1}(\mu), B) = L(L^{1}(\mu), B).$$

PROOF We can obtain (5) as an easy consequence of the following fact. For $\psi_1, \psi_2, \ldots, \psi_n$ belonging to $C(\Omega)$, by using (2) we have

$$\left\| \left(\sum_{i=1}^{n} |\psi_i|^p \right)^{1/p} \right\|_{C(\Omega)} = \sup_{t \in \Omega} \left(\sum_{i=1}^{n} |\psi_i(t)|^p \right)^{1/p}$$

$$= \sup_{t \in \Omega} \sup_{\alpha \in U_p^+} \left| \sum_{i=1}^{n} \psi_i(t) \alpha_i \right|$$

$$= \sup_{\alpha \in U_p^+} \left\| \sum_{i=1}^{n} \alpha_i \psi_i \right\|_{C(\Omega)}.$$

From (3) it suffices to show that $\Lambda_1(L^1(\mu), B) = L(L^1(\mu), B)$ to see (6). Now given $\psi_1, \psi_2, \dots, \psi_n \geq 0$ in $L^1(\mu)$ and T an operator in $L(L^1(\mu), B)$ we have

$$\begin{split} \sum_{i=1}^{n} \|T(\psi_{1})\|_{B} &\leq \|T\| \sum_{i=1}^{n} \|\psi_{i}\|_{1} = \|T\| \cdot \left\| \sum_{i=1}^{n} \psi_{i} \right\|_{1} \\ &= \|T\| \sup_{\substack{\varphi \in L^{\infty}(\mu) \\ \|\varphi\|_{\infty} \leq 1}} \sum_{i=1}^{n} |\langle \varphi, \psi_{i} \rangle|. \end{split}$$

Therefore T belongs to $\Lambda_1(L^1(\mu), B)$. \square

Theorem 1.

(7)
$$\Lambda_p(L^{p'}(\mu), B) = \Lambda_1(L^{p'}(\mu), B) \quad \text{for } 1 \le p \le \infty.$$

PROOF. Cases p=1 and $p=\infty$ are already proved. Let us suppose 1 and let us take <math>T in $\Lambda_p(L^{p'}(\mu), B)$. We are going to see that T belongs to $\Lambda_1(L^{p'}(\mu), B)$.

Let us consider the finitely additive measure $G: \mathcal{A} \to B$ defined by $G(E) = T(\chi_E)$ for all measurable sets E. It is easy to verify that G is countably additive. Now given E in \mathcal{A} and denoting by π_E the finite partitions of E, by Hölder's inequality and from (2) we have the following:

$$|G|(E) = \sup_{\pi_E} \sum_{i=1}^n ||G(A_i)||$$

$$= \sup_{\pi_E} \sum_{i=1}^n ||T(\mu(A_i)^{-1/p'} \cdot \chi_{A_i})||\mu(A_i)^{1/p'}$$

$$= \sup_{\pi_E} \left(\sum_{i=1}^n ||T(\mu(A_i)^{-1/p'} \chi_{A_i})||^p \right)^{1/p} \cdot \mu(E)^{1/p'}$$

$$\leq \mu(E)^{1/p'} \cdot ||T||_{\Lambda_p} \sup_{\alpha \in U_{p'}^+} \left\| \sum_{i=1}^n \alpha_i \mu(A_i)^{-1/p'} \cdot \chi_{A_i} \right\|_{p'}$$

$$= ||T||_{\Lambda_p} \cdot \mu(E)^{1/p'}.$$

From this it follows that |G| is a finite positive measure which is absolutely continuous with respect to μ . Therefore the Radon-Nikodým theorem implies that there exists a function $g \geq 0$ in $L^1(\mu)$ with $|G|(E) = \int_E g(t) d\mu$ for all E in \mathcal{A} . Let us prove that g belongs to $L^p(\mu)$. Indeed, since

$$\|g\|_p = \sup \left\{ \left| \int_{\Omega} g(t) s(t) \, d\mu \right| : s = \sum_{i=1}^n \alpha_i \chi_{E_i}, \ \|s\|_{p'} \le 1 \right\},$$

then it is clear that

$$||g||_p \le \sup \left\{ \sum_{i=1}^n |G|(E_i) \cdot \alpha_i : \sum_{i=1}^n \alpha_i^{p'} \mu(E_i) \le 1, \ \alpha_i \ge 0 \right\}.$$

By checking this sum we have

$$\sum_{i=1}^{n} |G|(E_i)\alpha_i = \sum_{i=1}^{n} \left(\sup_{\pi_{E_i}} \sum_{i=1}^{j_i} \|G(E_{i,j})\| \right) \alpha_i$$

$$\leq \sup_{\pi_{\Omega}} \left\{ \sum_{i=1}^{n} \sum_{j=1}^{j_i} \|G(E_{i,j})\| \alpha_{i,j}, \sum_{i,j} \alpha_{i,j}^{p'} \mu(E_{i,j}) \leq 1 \right\}.$$

So we obtain that

$$||g||_{p} \leq \sup \left\{ \sum_{k=1}^{m} ||G(A_{k})|| \cdot \beta_{k} : \sum_{k=1}^{m} \beta_{k}^{p'} \mu(A_{k}) \leq 1, \ m \in \mathbb{N}, \beta_{k} \geq 0 \right\}$$

$$= \sup \left\{ \sum_{i=1}^{m} ||T(\mu(A_{k})^{-1/p'} \chi_{A_{k}})|| \cdot \gamma_{k}, \sum_{k=1}^{m} \gamma_{k}^{p'} \leq 1, \ m \in \mathbb{N}, \gamma_{k} \geq 0 \right\}$$

$$\leq \sup_{m \in \mathbb{N}} \left(\sum_{i=1}^{m} ||T(\mu(A_{k})^{-1/p'} \cdot \chi_{A_{k}}||^{p} \right)^{1/p} \leq ||T||_{\Lambda_{p}}.$$

From this $||g||_p = ||T||_{\Lambda_p}$.

Now since $||T(\chi_E)|| \leq \int_{\Omega} \chi_E \cdot g(t) d\mu$ we can obtain

(8)
$$||T(\psi)|| \leq \int_{\Omega} |\psi(t)|g(t) d\mu \quad \text{ for all } \psi \in L^{p'}(\mu).$$

From (8) it is easy to verify that T belongs to $\Lambda_1(L^{p'}(\mu), B)$. Indeed, given $\psi_1, \psi_2, \ldots, \psi_n \geq 0$ in $L^{p'}(\mu)$ we have

$$\begin{split} \sum_{i=1}^{n} \|T(\psi_i)\| &\leq \sum_{i=1}^{n} \int_{\Omega} \psi_i(t) g(t) \, d\mu \\ &= \int_{\Omega} g(t) \left(\sum_{i=1}^{n} \psi_i(t) \right) \, d\mu \leq \|g\|_p \cdot \left\| \sum_{i=1}^{n} \psi_i \right\|_{L^{p'}(\mu)}. \end{split}$$

Therefore $||T||_{\Lambda_p} = ||T||_{\Lambda_1}$, and this finished the proof. \square

Let us remark that Rosenthal's result [6] together with the fact, proved by Lindenstrauss and Pelczyński in [3], that $\Pi_2(C(\Omega), L^p(\mu)) = L(C(\Omega), L^p(\mu))$ for $1 \le p \le 2$ allow us to state that for any Banach space B

(9)
$$\Pi_2(L^p(\mu), B) = \Pi_1(L^p(\mu), B) \text{ for } 1 \le p \le 2.$$

This result has an analogue in our context.

COROLLARY 1. If $1 \le p \le 2$, then

$$\Lambda_2(L^p(\mu), B) = \Lambda_1(L^p(\mu), B).$$

Let us recall that B has the Radon-Nikodým property if and only if every operator T in $L(L^1(\mu), B)$ is representable by a function f in $L^{\infty}(\mu, B)$; in our terminology,

(10)
$$\Lambda_{\infty}(L^{1}(\mu), B) = L^{\infty}(\mu, B).$$

This result can be extended for every value of p.

First of all, every function f in $L^p(\mu, B)$ determines an operator $L \colon L^{p'}(\mu) \to B$ given by

$$T(\psi) = \int_{\Omega} f(t)\psi(t) \, d\mu.$$

It is simple computation to verify that T belongs to $\Lambda_1(L^{p'}(\mu), B)$ and therefore to $\Lambda_p(L^{p'}(\mu), B)$. This means that $L^p(\mu, B) \subseteq \Lambda_p(L^{p'}(\mu), B)$. In addition we have the following

THEOREM 2. Let 1 . The following are equivalent:

- (a) B has the Radon-Nikodým property.
- (b) $\Lambda_p(L^{p'}(\mu), B) = L^p(\mu, B)$.

PROOF. Let us suppose B has the Radon-Nikodým property and let us take T in $\Lambda_p(L^{p'}(\mu), B)$.

By considering $G(E)=T(\chi_E)$ we proved in Theorem 1 that G is a measure absolutely continuous with respect to μ and with bounded variation. The Radon-Nikodým property of B implies the existence of a function f in $L^1(\mu,B)$ such that $G(E)=\int_E f(t)\,d\mu$.

Therefore $|G|(E) = \int_E ||f(t)|| d\mu$ and as in the demonstration of Theorem 1 it can be shown that f belongs to $L^p(\mu, B)$ and, besides, T is representable by f.

To see the converse let us suppose $\Lambda_p(L^{p'}(\mu), B) = L^p(\mu, B)$ and let us take an operator T in $L(L^1(\mu), B)$. From (6) and (3) we have T in $\Lambda_p(L^{p'}(\mu), B)$ and therefore T is representable by a function in $L^p(\mu, B)$, this is $T(\psi) = \int_{\Omega} \psi(t) f(t) d\mu$ for every simple function ψ .

Finally a standard argument shows that f actually belongs to $L^{\infty}(\mu, B)$ and $T(\psi) = \int_{\Omega} f(t)\psi(t) d\mu$ for all ψ in $L^{1}(\mu)$. \square

REFERENCES

- O. Blasco, Boundary values of vector valued harmonic functions considered as operators, Studia Math. (to appear).
- J. Diestel and J. J. Uhl, Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R. I., 1977.
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in L_p-spaces and their applications, Studia Math. 29 (1968), 241–252.
- J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, vol. II, Springer-Verlag, Berlin and New York, 1979.
- A. Pietsch, Absolut p-summierende Abbildungen in normirten Raumen, Studia Math. 28 (1967), 333–353.
- H. P. Rosenthal, On subspaces of L^p, Ann of Math. (2) 97 (1973), 344-373.
- H. H Schaeffer, Banach lattices and positive operators, Springer-Verlang, Berlin and New York, 1974.

DEPARTAMENTO DE TEORÍA DE FUNCIONES, FACULTAD DE CIENCIAS, 50009-ZARA-GOZA, SPAIN

Current address: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801