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S

ABsTRACT, The values of p and g for L,(Lg) that satisfy the extension of
Palcy and Hardy inequalities for vector-valued H { functions are character-
jzed. In particular, it 1s shown thai L(Z,) is a Paley space that fails Hardy
inequality.

INTRODUCTION

In [BP] the vector-valued analogue of two classicai inequalities in the theory
of Hardy spaces were investigated. A complex Banach space X issaid tobz a
Paley space if

1/2

(P) SOISENIF] < I forall f e X,
k=0

A complex Banach space X is said to verify vecior-valued Hardy inequality
{for short X is a (HI)-space) il

(H) 5 ﬁ%-_’%” <Clfl forall feH'(X),
=0

where H'(X) = {f € LY(T, X): f(n) =0 for n <0},

Both inequalities can be regarded in the framework of vector-valued exten-
sions of multipliers from ' to /!. Recall that a sequence () isa (H'—1')-
multiplier, to be denoted by m, € (H' — 1), if T, {f) = (f(n)my) defines a
bounded operator from H' into {*.

The (H!-]")-multipiiers were characterized by C. Fefferman in the {ollowing
way {see [SW] for a proof):
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{k+1)s 2
(%) (H‘-_i’):{mn: sup | > > Imyl <oo}.
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A complex Banach space is said 1o have (H! ~ /1)-Fourier type if
(F) DI toMmal < Cllfy forall £ e H'(X) and for all 1, e (H' - .
#=0

The reader is referred to [BP] for examples of spaces having and failing these
properties and for their connection with the notions of Rademacher type and
Fourier type.

Using (+) it is easy 10 see that any space of (H' —/ -Fourier type must be
a Paley and a (HI)-space. Unfortunately the only examples of spaces without
(H'—I")-Fourier type that we had at our disposal also behave Badly with respect
to the other two properties. The probiem of finding a Paley space failing Hardy
inequality or without (H! — IY-Fourier type was left open {see [BP, Remark
4.17).

Surprisingly it is enough to deal with Lebesgue spaces of mixed norm, namely,
Ly (L4}, to produce a simple example of Paley space failing Hardy inequality.
In fact we shall see that 7, (Ly) is such an example.

Given 1 <p <o, (8,3, #) a g-finite measure space, and a Banach space
Y we denote by L,(u, Y) the space of Y-valued strongly measurable functions
such that ||/]j € L,{n).

Throughout the paper 1 < p, g < oo and we shall use the notaiion LyLly=
L,(T, Ly(T)).

PALEY SPACES

For self-containedness of the paper, we provide here simnple direct proofs of
special cases of Corollary 3.2 and Theorem 3.7 of {BP] that show how the Paley
property behaves with respect to the vector-valued extension.

Lemma 1. Let 1 < p <2, (0,2, u) be a o-finite measure space and YV a
Paley space. Then Ly(u, Y) is a Palev space.

Proaf. The case p = 2 is a simple consequence of Fubini’s theorem. Let us
assume 1 <p <2 and ¢ =(2/p) =2/(2~p). Let us take f(1) = Ponzn Xne [
where x, € Ly{u, ¥).

1/2 Z/p
2 ___ . 3
(2 zixzklrf,{,(,u,yg = (é ( j; iwr.zk(w}iiydﬁ(w)> )
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Yip
= sup ZL[}xzk(w)Jif,&kdy(w))

2oet=1 5o

! /2
< / (anwm%) dpifw)
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) y r ljip
SC(J{; (5%/” Hzxn(w)e“”sydt) d#(%ﬂ))
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Now since @ is uniformly bounded then supoe,.c; M (| @), ) < oc. Using
the fact that for 1 < p < oo the Banach space I,{H") is a separable dual by a
routine argument, we show that the radiaf limit F(z) exists almost everywhere
and that ¥ &€ HU/L{HY) for 1 <p <oo.

On the other hand

oo ijp o0
I, 1
HXH”IF(H‘) = (Z 2kp(l- 1))(1 _ —fk_) rp) > ay, Z szﬁ(l P)(l — )

- 7
b1 k>logyn.

i/

Since {1 ~1/n}" converges io e, for » big enough we have
ljp
[

i kp{l— 4 e
1%l ary 2 Coatn Z 2kp(1-p) > Cpttyn' P,
k>logy

Now using estimate (1) we get 300 || Xaully o)/ (n -+ 1) =00, D

Remark, If 1| < p < o0 then Ip(Hy) is a Paley space but is not a (HI)-space.
(Hence it does not have (H' — /9)-Fourier type.)

Yheorem 3. L,(L;) isa (HI)-space if and only if either 1 <p, g <occ or p=1
and 1 < g <oo.
Proof. Let us first show that under such assumptions on 7, g we get (HD)-
spaces. It is an application of Fubini’s theorem that if ¥ isa {HI}-space then
Ly(u, Y) is a (HI)-space. Combining this with the result that every B-convex
space {Rademacher type bigger than 1) is a (H1)-space (see [BP, Bo}) we get this
implication.

For the other implication observe thai the cases p = oo or ¢ = oo must be
excluded because then I,(L,) would contain ¢;. The case ¢ = 1 follows from
Theorem I, since /, embbeds into L,(T) and H' into L (T). [
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