A REPRINT FROM

PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Published by the American Mathematical Society Providence, Rhode Island

A NOTE ON VECTOR-VALUED HARDY AND PALEY INEQUALITIES

OSCAR BLASCO

A19

(Communicated by William J. Davis)

ABSTRACT. The values of p and q for $L_p(L_q)$ that satisfy the extension of Paley and Hardy inequalities for vector-valued H^1 functions are characterized. In particular, it is shown that $L_2(L_1)$ is a Paley space that fails Hardy inequality.

Introduction

In [BP] the vector-valued analogue of two classical inequalities in the theory of Hardy spaces were investigated. A complex Banach space X is said to be a Paley space if

(P)
$$\left(\sum_{k=0}^{\infty} \|\hat{f}(2^k)\|^2\right)^{1/2} \le C\|f\|_1 \quad \text{ for all } f \in H^1(X).$$

A complex Banach space X is said to verify vector-valued Hardy inequality (for short X is a (HI)-space) if

(H)
$$\sum_{n=0}^{\infty} \frac{\|\hat{f}(n)\|}{n+1} \le C\|f\|_1 \quad \text{ for all } f \in H^1(X),$$

where $H^1(X) = \{ f \in L^1(\mathbb{T}, X) : \hat{f}(n) = 0 \text{ for } n < 0 \}.$

Both inequalities can be regarded in the framework of vector-valued extensions of multipliers from H^1 to l^1 . Recall that a sequence (m_n) is a (H^1-l^1) -multiplier, to be denoted by $m_n \in (H^1-l^1)$, if $T_{m_n}(f) = (\hat{f}(n)m_n)$ defines a bounded operator from H^1 into l^1 .

The $(H^{\hat{1}}-l^1)$ -multipliers were characterized by C. Fefferman in the following way (see [SW] for a proof):

$$(*) (H^1 - I^1) = \left\{ m_n : \sup_{s \ge 1} \left(\sum_{k \ge 1} \left(\sum_{j=ks+1}^{(k+1)s} |m_j| \right)^2 \right)^{1/2} < \infty \right\}.$$

Received by the editors December 26, 1990.

1991 Mathematics Subject Classification. Primary 42A45, 46E40, Secondary 42B30, 46B20. Key words and phrases. Vector-valued Hardy spaces, Hardy inequality, Paley inequality. The author was partially supported by the Grant C.A.I.C.Y.T. PS89-0106.

©1992 American Mathematical Society 0002-9939/92 \$1.00 + \$.25 per page

A complex Banach space is said to have $(H^1 - l^1)$ -Fourier type if

(F)
$$\sum_{n=0}^{\infty} \|\hat{f}(n)\| |m_n| \le C \|f\|_1$$
 for all $f \in H^1(X)$ and for all $m_n \in (H^1 - l^1)$.

The reader is referred to [BP] for examples of spaces having and failing these properties and for their connection with the notions of Rademacher type and Fourier type.

Using (*) it is easy to see that any space of $(H^1 - l^1)$ -Fourier type must be a Paley and a (HI)-space. Unfortunately the only examples of spaces without $(H^1 - l^1)$ -Fourier type that we had at our disposal also behave badly with respect to the other two properties. The problem of finding a Paley space failing Hardy inequality or without $(H^1 - l^1)$ -Fourier type was left open (see [BP, Remark 4.1]).

Surprisingly it is enough to deal with Lebesgue spaces of mixed norm, namely, $L_p\left(L_q\right)$, to produce a simple example of Paley space failing Hardy inequality. In fact we shall see that $L_2(L_1)$ is such an example.

Given $1 \le p \le \infty$, (Ω, Σ, μ) a σ -finite measure space, and a Banach space Y we denote by $L_p(\mu, Y)$ the space of Y-valued strongly measurable functions such that $||f|| \in L_p(\mu)$.

Throughout the paper $1 \le p$, $q \le \infty$ and we shall use the notation $L_p(L_q) = L_p(\mathbb{T}, L_q(\mathbb{T}))$.

PALEY SPACES

For self-containedness of the paper, we provide here simple direct proofs of special cases of Corollary 3.2 and Theorem 3.2 of [BP] that show how the Paley property behaves with respect to the vector-valued extension.

Lemma 1. Let $1 \le p \le 2$, (Ω, Σ, μ) be a σ -finite measure space and Y a Paley space. Then $L_p(\mu, Y)$ is a Paley space.

Proof. The case p=2 is a simple consequence of Fubini's theorem. Let us assume $1 \le p < 2$ and q=(2/p)'=2/(2-p). Let us take $f(t)=\sum_{n\ge 0}x_ne\int$ where $x_n\in L_p(\mu,Y)$.

$$\left(\sum_{k\geq 0} \|x_{2^k}\|_{L_{\rho(\mu,Y)}}^2\right)^{1/2} = \left(\sum_{k\geq 0} \left(\int_{\Omega} \|x_{2^k}(w)\|_{Y}^{p} d\mu(w)\right)^{2/p}\right)^{1/2}$$

$$= \sup_{\sum \alpha_k^q = 1} \left(\sum_{k\geq 0} \int_{\Omega} \|x_{2^k}(w)\|_{Y}^{p} \alpha_k d\mu(w)\right)^{1/p}$$

$$\leq \left(\int_{\Omega} \left(\sum_{k\geq 0} \|x_{2^k}(w)\|_{Y}^{2}\right)^{p/2} d\mu(w)\right)^{1/p}$$

$$\leq C \left(\int_{\Omega} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \|\sum_{n\geq 0} x_n(w)e^{int}|_{Y} dt\right)^{p} d\mu(w)\right)^{1/p}$$

Now since Φ is uniformly bounded then $\sup_{0 \le r < 1} M_1(\|\Phi\|, r) < \infty$. Using the fact that for $1 \le p < \infty$ the Banach space $l_p(H^1)$ is a separable dual by a routine argument, we show that the radial limit F(z) exists almost everywhere and that $F \in H^1(l_p(H^1))$ for 1 .

On the other hand

$$||x_n||_{l_p(H^1)} = a_n \left(\sum_{k=1}^{\infty} 2^{kp(1-p)} (1 - \frac{1}{2^k})^{np} \right)^{1/p} \ge a_n \left(\sum_{k \ge \log_2}^{\infty} 2^{kp(1-p)} (1 - \frac{1}{n})^{np} \right)^{1/p}$$

Since $(1-1/n)^{np}$ converges to e^{-p} , for n big enough we have

$$||x_n||_{l_p(H^1)} \ge C_p a_n \left(\sum_{k \ge \log_2 n}^{\infty} 2^{kp(1-p)}\right)^{1/p} \ge C_p a_n n^{1-p}.$$

Now using estimate (1) we get $\sum_{n=1}^{\infty} ||x_n||_{l_p(H^1)}/(n+1) = \infty$. \square

Remark. If $1 then <math>l_p(H_1)$ is a Paley space but is not a (HI)-space. (Hence it does not have $(H^1 - l^q)$ -Fourier type.)

Theorem 3. $L_p(L_q)$ is a (HI)-space if and only if either 1 < p, $q < \infty$ or p = 1 and $1 \le q < \infty$.

Proof. Let us first show that under such assumptions on p, q we get (HI)-spaces. It is an application of Fubini's theorem that if Y is a (HI)-space then $L_1(\mu, Y)$ is a (HI)-space. Combining this with the result that every B-convex space (Rademacher type bigger than 1) is a (HI)-space (see [BP, Bo]) we get this implication.

For the other implication observe that the cases $p=\infty$ or $q=\infty$ must be excluded because then $L_p(L_q)$ would contain c_0 . The case q=1 follows from Theorem 1, since l_p embbeds into $L_p(\mathbb{T})$ and H^1 into $L_1(\mathbb{T})$. \square

ACKNOWLEDGMENT

I am very grateful to A. Pelczynski for helpful conversations on the subject and to B. Koremblum for his comments on related problems that inspired me the proof of Theorem 2. I would like also to thank the referee for his suggestions.

REFERENCES

- [BP] O. Blasco, and A. Pelczynski, Theorems of Hardy and Paley for vector-valued analytic functions and related classes of Banach spaces, Trans. Amer. Math. Soc. 323 (1991), 335-367.
- [Bo] J. Bourgain, Vector-valued Hausdorff-Young inequality and applications, Geometric Aspects in Functional Analysis, Israel Seminar (GAFA) 1986-87, Lecture notes in Math, vol. 1317, Springer-Verlag, pp. 239-249 Berlin, 1988.
- [D] P. Duren, Theory of H_p-spaces, Academic Press, New York, 1970.
- [L] J. E. Littlewood, Lectures on the theory of functions, Oxford Univ. Press, London, 1944.
- [SW] S. J. Szarek, and T. Wolniewicz, A proof of Fefferman's theorem on multipliers, Inst. Math. Polish Acad. Sci., preprint 209, Warzawa, 1980.

Departamento de Matemáticas, Universidad de Zaragoza, Zaragoza-50009 SPAIN