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THEOREMS OF HARDY AND PALEY
FOR VECTOR-VALUED ANALYTIC FUNCTIONS
AND RELATED CLASSES OF BANACH SPACES

e

O. BLASCO AND A, PELCZ‘{NSKF,,

AsSTRACT. We investigate the classes of Banach spaces where analdgues of the
classical Hardy inequality and the Paley gap theorem hold for vecfor-valued
functions. We show that the vector-valued Paley theorem is valid for a large
class of Banach spaces (necessarily of cotype 2) which includes all Banach lat-
tices of colype 2, all Banach spaces whose dual is of type 2 and also the pre-
duals.of.. C"-algebras. For the trace class S, and the dual of the algebra of
all bounded operators on a Hilbert space a stronger result holds; namely, the
vector-valued analogue of the Fefferman theorem on multipliers from H' into
Min particular for the latter spaces the vector-valued Hardy inequality holds.
This inequality is also true for every Banach space of type > 1 (Bourgain).

(. INTRODUCTION

If /= Zpo a je” " is an analytic trigonometric polynomial, then

Slal+ )7 < c] e,
iz -
12

Sla’] <, / Fi0)de.

k>0 T

where C, and €, are numerical constants independent of f (cf. [Du]). The
first fact is called the Hardy inequality; the second is g particular case of a the-
orem of Paley where (2k) is replaced by any sequence (n,) of positive integers
with inf, n,_,/n, > 1. Both inequalities are false if analytic trigonometric
polynomials are replaced by arbitrary trigonometric polynomials; their proofs
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336 Q. BLASCO AND A, PELCZYNSKI

depend o'ﬁ”s.'pé'cia! properties of the Hardy space H ' like ‘ihe. féccibr'iziaz.i.oﬁ.the-

orem and atomic decomposition.

in the present paper we are interested i -finding under what additional con=

ditions on a Banach space X the inequalities remain true if the Fourier coeffi-
cients a ;s are clements of X and absolute values are everywhere replaced by
norms. In that setting for arbitrary Banach spaces the inequalities are false A

standard counterexample is the space ¢, ; a more sophlsucated one L' /H (see
Proposition 1.1 for details). [t appears that the validity of Y-valued Hardy and
Paley inequalities depends on geometric properties of X like the (Rademacher)
type and cotype or the Fourier type introduced by Peetre [Pee] (i.e. a vector-
valued version of the Hausdorf-Young inequality). Sometimes it depends on
special analytic structure of X like being a dual of a C"-algebra. Obviously
the validity of any of these inequalities or related ones is an invariant of the so-
called * local theory of Banach spaces”; in particular, the validity for X implies
the validity for every Banach space finitely representable in X .

The paper consists of four sections. The first has a preliminary character. We
recall the definittons of vector-valued Hardy spaces Hf{, and the vector-valued
atomic Space H;ﬁm . The important discovery of Bourgain and Garcia-Cuerva

{cf. Theorem 1.1} links Hj('at with H;( . Next we set up a framework for the
vector-valued analogues of the Hardy and Paley inequalities; we rephrase them
in terms of boundedness of operators induced by some scalar multipliers (for
instance the sequence {(j + 1)7!) corresponds to the Hardy inequality). We
atso recall some basic facts from the local theory of Banach spaces.

§2 is devoted to the study of operators induced by bounded multipliers from
H#' into 1 {the symbols H' and I' without subscripts denote the usual scalar-
valued spaces). Obviously every scalar sequence which is a bounded multiplier
from H ;, o !i. for some Banach space X is automatically a bounded mul-
tiplier from H' into /1. We introduce the class of Banach spaces X (called
spaces of (HI - J-Fourier type, such that every bounded multiplier from H
into /' induces a bounded muitipliers from H;, nto !/i. . This class is a proper
subctass of the Banach spaces of Cotype 2, We show that if 1 < p < 2 then
L?(y) and the Schatten-ven Neumann trace class S, are spaces of (H —1 +)
Fourier type (cf. Corollary 2.2 and Theorem 2.2). The case of 35, heavﬂy
depends on a noncomunutative factorization theorem (cf. [S]}. The case of S,
viclds that the dual space of the space of all linear operators on 3 Hilber! space is
a space of (H - )-Fourier type. Next we introduce the one-parameter family
EM for 1'<C g <2 of sequence spaces which “connect” the class FM, - ]!

of trmai muitipliers with the class of alt bounded multipliers from H' into
/', The Hardy multiplier ({(j +1)" ) belongs to the intersection [ M

g1
We show that if for a Banach space X the vector-valued Hausdorfl-Young i m—
equality holds with an exponent p & {1, 2] then every multiplier from I«Mp

t

induces a bounded operator from Hiﬁ“ into /’i. (Theorem 2.4). As an appli-
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cation of this result we get that if p > 2 and f,p denotes either LY or Sp' then
the class of scalar sequences inducing bounded operators from H; into !2

coincides with F M (Corollary 2.6}. We aiso present a proof of 4 cesult-due to
I. Bourgain (Theorem 2.5} thatif X has type > { then the X-valued Hardy
inequality holds.

In §3 we study “Paley spaces”, Le. Banach spaces for which the vector-valued
Paley theorem holds. This property is equivalent 10 the. formally stronger one
that every bounded multiphier from H' into ' induces a bounded operator
for corresponding vector-valued spaces. The class of Paley spaces contains the
ciass of (H ey )-Fourier type spaces and 1s contained as a proper subclass in
the class of Banach spaces of cotype 2. However, for Banach lattices {Theorem
3.2} as well as for Banach spaces of type > 1 (Proposition 3.5) the class of
Paley spaces coincides with the class of Banach spaces of cotype 2. Actually the
vector-valued Paley theorem for H;Jm characterizes Banach spaces of cotype 2
and type > | (Proposition 3.5). Finally we show that the dual of a C"-algebra
is a Paley space {Theorem 3.3).

§4 contains a few open problems and some additional results. In particu-
lar we discuss some characterizations of Banach spaces of type > 1 and the
relationship between Paley spaces and 2-uniformly PL convexifiable spaces.
Acknowledgment. We would like to express our gratitude to D. J. H, Garling
for valuable discussions in the early stage of this research concerning the cases
of Banach lattices and C“-aigebras; we are particularly indebted to J. Bourgain
for this permission to include Theorem 2.5 and to . Pisier for several com-
ments and remarks which improved the preliminary version of the paper. We
would like also to thank the University of Illinois at Urbana Champaign, the
University of Cambridge and St. John’s College Cambridge for their hospitality
and support.

1. PRELIMINARIES

1.1 Vector-valued Hardy spaces Hf;,. Uniess otherwise indicated all Banach
spaces are considered to be taken over the complex number field €. Given
a2 Banach space X and p € [l : oco) (respectively p = oo ) we denote by
Li, the space of all X-valued 2m-periodic functions on the real line B which
are Bochner absolutely integrable in the pth power (respectively essentially
bounded) under the norm

: ¢ IR . Up
i1, = @™ [T asord] " fori<p <o
- .
(respectively {If1l., = esssup,cq /()
Given f € Lf,( and an integer j, the jth Fourier coefficient of S 1s defined
by

e

fn=eo™ | e (.
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Iffor- some nbnnegative integer 1, f(j) =0 for |j| > n, then / is called an .
“valued trigonometric polynomial of degree < #; if moreover f(j) = 0 for

j < 0, then [ is called an X-valued analytic trigonometric polynomial,

= Given-p € [1 s oc} the Hardy space HY s defined 1o be the closure of all Y-

valued analytic trigonometric polynomials under the norm Il-11; equivalently,

Hf,:{feLf;.:f(j):Of?g<G}.

1.2. The spaces H;.’m and BMO, . Given az'iBanach space X, an X-atom
supported on an interval J C R (with the Lebesgue measure ] £ 2m) is any
X-valued 2m-periodic function g ¢ L:f such that

n

alt)=0 fort¢2kn+1 fork=0,41, 42, .. .
lall, < 2nfi] " /a(t)dz:().

I
Also every constant X-valued function a{t) = x for 1 € R with [xF <1 is

called an X-atom. Clearly, lafl, <1 forevery X-atom a. If 2 is an X-atom
sapported on [ then

(L) la( <47 i for j=0, £1, 42, ...
Indeed, if ¢, is the centre of 7, then

2nlja(/ii =

/.a(z)(e""m - e_’”‘})dt“ < fae o) / e g di
I JI .
< 2mj7)! j: il = tolde < 22 j| 1117 (11127 = 2a)j) 11147

An fe Lj,( is said to have an atomic representation {{a,)-{4,)) provided
{@,) is a sequence of X-atoms, {44} 1s a sequence of nonnegative integers,

- Zj'kak

! k=1

=,

E Ay <00 Iim
= n
k

We pui

Il 1, . .
HX'aE ={/ € L,: fhas an atomic representation’},

i fi 3 P [, at
ISl o =1inf> "4, for feH,
where the infimum is taken over all atomic representations of . It is well

known and easy to verify (cf. e.g. [GC-Ru] for the scalar case) that 4 )'(‘m under

. : . . i,
the porm |-, , is a Banach space; moreover, the natural inclusion & v ey Lj(
is a contraction: i.e.,

: . . . I, at
i!fil;f:i%f%!;,at fOE”fEHX .

; - |
In general the norm |j - Iy 5 is stronger than || - I, . However, on H, both
norms are equivalent. Precisely we have
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Theorem 1.1 {Bourgain, Garcia-Cuerva). There is an absolute constant C such
that for every Banach space X

Il S CIA, for fe HL.

| i at . . | l,at .
Consequenily every [ € H. belongs 1o H ™ the inclusion He - H™ s an
isomorphic embedding of Banach spaces.

For the proof see [B1, Theorem 6].
Next we shall recall the definition BMO, . For fe Li. we put

Voo =max (111, vttty [ - 1)

where [, = T [, J{tydr and the supremum is taken over all intervals J e R
with |/ < 2m.

We define

BMO, = {f € Lt ||fllpo < +00}.
Clearly BMO, under the norm || . ligmo 18 @ Banach space.

Part of the Fefferman-Stein duality between '™ and BMO goes over the
vector-valued case. To formulate the result it is convenient to introduce the
following notation. Let f e L;. and /" e le* where X7 is the dual of X .
Write

I

U S =2 / OV S~ de

~T7

whenever the scalar-valued function ¢ — OIS -0 is integrable on [-x, n.

Theorem 1.2. For every Banach space X the space BMG . s isomorphic to a
subspace of the dual of H /i,‘ai via the map f* — ¢ . where for f* € BMO -
the functional ¢ . & (H )I(’at}* is uniquely defined by irs action on X-atoms, by

¢_[*(a) - (61'_, f*) -

The proof is essentially the same as in the scaiar case; 1t uses the fact that for
every Banach space X there is a natural 1somorphic embedding of L;* nto
(L.

1.3, Some facts from geometry of Banach spaces, The classes of Banach spaces
we will study have the property that if a space X belongs to one of the classes,
then every space finitely representable in X also belongs to the same class.
Recall that a Banach space V is crudely finitely representable in a Banach space
X if there is K > 1 such that for every finite-dimensional subspace £ of
¥ there is a linear operator u: £ X such that el < llufe)j < Kleji for
e € £'. As an example consider for | < p < oo the space H;(D} of all X-
valued analytic functions on the unit disc £ - {z € C: |z] < I} such that for
cach O < r <1 the function F, € H. and || F = sup{iF il 0 < r< 1} <
+oo where F (1) = F(re''). Clearly H§ isometrically embeds into H/’?(D).
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Conversely il is not hard to verify that H;(D} is crudely finitely representable We
in HE. L

Next recall {cf. {M-Pi]} that a Banach space -X-has-type..p (respectively ! -
cotvpe q ) if there is a constant T < oo {respectively € < o0 such that for ’
every positive integer 7 and every X, Xy, oo Xy e X

[

n.
by

n s e
de< T (Z nmﬁ) L
fixk"k(’)\\ di

I m

Zxkrk(t}
k=1

™ l/a i
resp. (Z kall“’) < C j;
[

k=1
where (r,} is the sequence of Rademacher functions. Type is & number in the
ipterval “[1, 2], while the range of cotype is the interval {2, +col. A space
is said to have nontrivial type {respectively nontrivial cotype) provided it has
type > 1 {respectively cotype < oo ). Spaces with type > 1 are also called
B-convex.

Note that the concepis of 1ype and cotype do not change if in the definition
the L'-norm is replaced by any 1P-{quasi) norm for 0 < p < oo (the Kahane
inequality {Kh, L-T}}, and the Rademacher functions are replaced by an arbi-
{rary sequence of distinct characters of a compact abelian group helonging 10
some Sidon set {Pisier [Pil], cf. also [P}).

Following Peetre {Pee] we say that a Banach space X has Fourier type I,
where 1< p < 2,1 there is a constant X = K(X) such that

+oc , UPI
(Z nﬂnm"’) < K|fl, for /€ Ly

where p' = plp — 1y ofor p> 1 and g =oo for p=1.A Banach space 1s
qaid to have nontrivial Fourier type if it has Fourier type p for some p > 1.

1.4, (HP — (*)-multipliers and induced operators for vector-valued functions. Let
m o= (’”;}jzn he a complex sequence and let X bea Banach space. Define
the operator m, from X-valued analytic trigonometric polynomials mto the
eventually zero X-valued sequences by myglf) = {m; [ R We call m the
operator induced by the multiplier m. The operator 1, 18 said to be (P, 4)-
hounded provided there exists a constant K = K, X3 such that for cvery
X-valued analytic trigonometric polynomial [

g

ST SN} < KA,
j=0

i my, is (7, g)-bounded, then it uniquely extends to an gperator (also dencted
by m, ) from HY into the Banach space 1% where

= o e X bl = (i) <0}
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.-We calr i an (H = Iyemuttiplier if for-X =C-my is-(p, ¢)-bounded.
Clearly, if m € it = i,é , then for every Banach space X the induced operator

| el
iy s (1, 1)-bounded. We shall show that for X = ¢, and for X = .Ll.,fHU i
‘ —1 .

"y is (1, 1)-b9und€d, then m ¢ fl . Here L!/HO denotes the guotient of Ll

- b}i the subspace i

I{D B {fE Ll: f(j) : 0 forj 2 0}_

In fact our result is slightly stronger.

m?rapusition 1.1. Let X beeither ¢, or L]/"ﬁ(]). Assume that for some m = (m,)
the operator m, is (oo, L}-bounded. Then m € . '

Proaf. 1°. X:cq. P};t f, = ijzoeméj for n=1,2,..., where (4,)., is
the unit vector basis of ¢,. Clearly, for all #, ||/ |l =1 and

S ol L =3 iml < K < oo
i=0 j=0

2°. X =L'/H,. Let F denote the nth Fejér kernel. Consider the L'-
valued trigonometric polynomial ¢ — FI[”) where F(s) = F"(s +¢). Pul
L= q(ﬁ“f”)) where ¢: L' — LI/FE} 15 the quotient map. If j =0, +1,
42, ... then

" ] 4 ) o—d) Ay,
=0 [ et di-g (@ [ e ar) = £ ate),
-1

-1

where ¢ (s) = e for seR. Thus f isan Li/ﬁalwaiued analytic trigono-

metric polynomial because g(e;) =0 for j < 0. Clearly

. : ) :
Lo < g 17, =1 fortek,

because ||[F"]|,) = |F, =1 and |lg|] = 1. Next note that [g{e; )] = | for
J 2 0. Indeed, [lg(e;)]l < lle;li,r < 1. On the other hand,

-

latepli = inf {2 [ lej5) - eto)lds: g € Ty

IV

mf{(z;rr)"i !/:;{1 —e_j(s)gs)ds| g Eﬁé} > 1,

<zl

because ffﬂ e_j(s)g(s)ds =0 for j > 0 and for g € H,. Thus, for n =
1,2,...,

ol f ol = o lm [ IF )] < K
j=0 =0

Hence, 3777 1m | < K < oo, because lim, FUGy =1, forall j.

Remark. Proposition 1.1 remains valid for every Banach space £ in which
either C, Or L /ﬁé is crudely finitely representable. In particular one can take
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£ as any infinite-dimensional .

7 _=space or . “-algebra as well as the reflexive
space (/,° x 1.° X,

2. BANACH sPACES CHARACTERIZED BY (' f1)~MULTIPLIERS

Definition 2.1. A Banach space X is of (Hi - f’)-Fourier type provided for
every (H' _ z’i)-muiti;)!ier m the induced multiplier m.is (I, D-bounded.
Recall the elegant description (H' — li)-multii)iiers.

Theorem 2.1 (Ch. Fefferman). 4 scalar sequence m = (mj,)

w0 isan (H'— Y.
multiplier if
Yoy 172
, s o {k+1)s -
(2.1 plm) = fmgl” + [, "+ ?E? Z Z imji <00,
= k=1 A ks

For the proof see [Sz-W).
In the sequel FAs stands for the Banach space
fying (2.1) equipped with the norm p(.),

We begin with a dual description of (H' — 1

of all scalar sequences satis-

Fourter type spaces,
Preposition 2.1, For every Banach space X the

() X isan (H' - !i)uﬁ‘ow'z}fr Lype space
(1i) there is C > O such tha forevesy me FM and fedH ,i

Z@ I, £ < Coptanlj Y,
S

Jollowing are equivaient

(1it) there is C > O such that for every eventually

elements of X* there isan ¥*

o7, uence (i) f
' . ze oseg mc* (Aj 50 @
-valuwed irigonometric polynomial g% such that

(2.2) gUi=x forj>o0, 187N < Cotdlix} 1)1

Proaf. (1) = (ii). Put Pylm) = sup{ZEO Hn’:jf'(j)ij: FR= Hé; WAL = 1},

The standard Baire calegory argument yields that 2x{) is a bounded norm on
£M . This yields (ii).
(1) = (i), Let xj’.‘ =0 for j > N. Define on H{.i,

the linear functional
gy by ¢2(f) = zj‘;ﬂ I (FG) for f e HY . Tt foltows from (i) that flg}] <

Cp((jix;”)jzg). Let ¢ be a norm-preserving extension of ¢y onto Li Let
V' bethe Nih de ta Vallé Poussin kernel, i.c., P(j)=1for |j|< N, Vijy=0
for |j] > 2N and 17(j) iinear for —24 < JEX—N andfor ¥ SI2IN . Ttis
well known that [¥]l, <2. Define for j — U, 1, +£2, ..., y; € X" by

Y (x) = p(j)gﬁ();ej) forxex,

where ¢ (1) = ' Put g*(s) = Zijzan¥ie” . Then (denoting by ax b the
convolution of the functions g and &)

Vo8 )=¢'(Vepy) forferl.
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:_'j.nus_, renentoering-that -] ’le <2 weget

18" <l 1V, < 2Cp1(

. Y ”)JEGJ'

Onthc other hand, taking into account that x-e, € H.xly for jz0and xe X,
wegetfor 0<j<N

: g (ix) =y (x) = V(1o  (xe)) = V()dylxe;) = x](x).

i Thus 2°(U)=x; for 0< /<N,
iRy = (1), Let m€ FM and let / be an X-valued analytic trigonometric
polynomial of degree N. For j=10,1,..., N pick y; € X so'that j[yjfﬂ =]

sand _1’;(‘1*?(]')) = /). Put x; =|mfy; for 0<j <N and x; =0 for j>
N, Obviausly‘ p((”.\‘;’ ”;ga} < p(#1). By (iii) therg is an X' -valued irigonometric
polynomial g~ satistying (2.2). We have

Dollm Sl =g < g 1L,
J=0

< Op({

Hence m is {1, 1)-bounded.

10 I A1 < Cotm)lif], -

Clearly Definition 2.1 vields
Corellary 2.1. Every Banach space crudely finitely represeutable in a space of
{H 'y i)-Fomu!'{?a" type is an {H by 1)n.z‘?cu,ufz]er type space.

Let {u, £2} be a measure space and et X be a Banach space. By L;,(,u} We
denote the space of A-valued Bochner x integrable functions on Q.

Propositien 2.2, If X isan (H - })»Fomfer type space 5o is L;,(,u).
Progf. 1t is enough 1o show that l_l( is of (HE - ;’i)-Fourier type, because for
every measure space (u, £33, L;.(,u) is finitely representable in i;, .

Let [ = (f,) be an l}i.»va!ued analytic trigonometric polynomial. Then
obviously each of the coordinates f_ is an X-valued analytic trigonometric

polynomial. Hence, by the hypothesis on X there is € > 0, such that for
gvery me FM

Dolm Ll < Cptmlifilly  tk=0,1,...).
i=0

Summing over all &, we get

(&) (eI o]

Do lm FGe = 37 3 lim f )]

=0 =0 k=0

6 ]
D Cptmlifll = Cptm)iifl; -

Ko=)

X

A
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£33 L I—
SUIUHIAl Y s

then L7 is isometrically
compicx case).

Another obvious but useful consequence of Definjtion 2.1 is

Corollary 2.3. Assume that a Banach space X Sii_fisﬁes

{(#) there is C > O such that for every f e H ; there is a complex valied
function ¢e H' such that

{2.3) IS <190 for j=0,1,

i el <l
Then X isan (H' —

/! -Fourier tvpe space.

For I <p<oo let Sp denote the pth Schatten-von Neumann anitary'ideal
L.e. the space of all operators A: P2 such that

il = (race(4” 4)"*)'" <
It is well known (cf. [G-K]) that S, coincides with the space of all nuclear
operators on 7 and 8, with the space of all Hilbert-Schmidt operators.
Theorem 2.2, (a) The space S, satisfies () with C = 1, hence it isan (H'—1")-
Fourier type space
- E R Frion ‘

(b) If 1 <p <2 then S, isan (H' —I")-Fourier type space.

The proof of Theorem 2.2 is based nupon

Theorem 2.3 (the noncommutative factorization theorem). For every f € H
there are g and h in H such that

(2.4) =g, 171, = lglls, oMbl

Here [ = go#h means f(1) = g(t)oh{t) for 1 €R, ie. at each point ¢ the

operator f{¢) is the composition 01‘ the operator #(7) with the operator g(¢)
To avoid misunderstanding we write here

s, = @n [ wron an™

fori<p<ooandl <r<oo.
J—n

Theorem 2.3 is due to combined efforts of Lowdenslager, Helson, Devinatz
Douglas, and Sarason (cf. [S, §10] and references there).

Proof of Theorem 2.2, Let f¢ H; and g, ke Hi satisfy (2.4). Put

o/
=73 > llatk s, if?(j*k)ﬂg

=0 k=0

H
1
1%
|
|
i
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the

ed

Using the tnequality- 4 0 Bllg <fi4llg | Blg, and (2:4) we get
P R j H‘l{i‘\.,.\ ?a- “ o e
()] = Hg(k}c’”lf““’c)“g = “g_,g( ) o A )H =1/l

k= )

O

L

On the other hand, note that ¢ = G- H where

o } o
G =3 lglse” =Y A€
Jj=9 j=0

WNext observe that if E is a Hilbert space, then for every F) & HE, HF”? =
Z HF H2 and conversely for every sequence (x} e F with El]x HZ

oo the function ). >ije * belongs to H . Thus remembering that §, 15 a
Hilbert space we get G, = Hg!ls o and HH&EZ = i[hHS ,. Now using the
Schwarz inequality and (2.4) we get

SNGILIHY, = llgls, Ll Als, » =1 s,

This proves part (a}.
To prove part (b), ix m € F'M and define for v = 1, 2 the bilinear operators
2 2 1
Ut Ly =Ly — g by

i
Ulg, h)= (?ang(k)?z(j - fc)\) .

k=0

First we verify that U, is bounded for v = 1,2, Since §, is a Hilbert
space and S, is a UMD space (cf. [B1, Be-Gi-Mu]) there are X, > 0 for

v = 1,2 (actually K, = 1), such that if f € L then Rf € H; and
IR | < K,Ifls, . where Rf is defined by (Rf)™ () = fij) for j >0
and (Rf) (i1=20 fo;‘ j < 0. Next observe that if g and / are in L then
f=RgoRhe HSL . Indeed, using the inequality [j4 oBEiSp < || A4l 35'3F|‘B§E52p and
Schwarz’s inequality we get

s, s @m0 [ iRe e, RIS, dr

-7

<liRglls, [RAls, | = KZ,Ilgligzl,_zllhﬂsn_z-

Now, by part (a) of the theorem, §, is an (# b l)»I-"‘ourier type space;
S, being a Hilbert space has aiso the same property. Thus there are constants

C >0 forv=1,2 such that

Z\gm N li < C,plm)iflls  for everyfeh’g.:.
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In particular for /= Rgo Rl we have

)

LACHUIVEDY

Z

”m%‘g{k/\}}g‘k}” _ e
[ ”;

L.
<@

Y ’
m, Y Re) URE) () N
=0
9

=2
i20 : S,
=2 llm ff < C‘,,Ki,zp(m)!lgifswHffH_gh,_j :
J20 i

This proves the boundedness of the operators U, and U,

Note that L;p x Lip and !;p are for 1 < p < 2 interpolation scales (cf.
[BG-La]). Thus, by an interpolation theorem for multilinear Operators (cf. [Bg-
L8], p. 96) we infer that for each p with | <P <2 thereisa constant Mp >0,

such that [|U/ (g, h);f{:}) < ,prﬁgus.w 4, , for ¢ e LSZ,)F, hoe Lip, where
U L‘j X L;ﬂ s s defined by Uplg s )= (m; 2 glhyo by — k) g -

Now let fe H;. - By Theorem 2.3 there are g & H;. and A e Hf 50 that
(2.4) is satisfied. Thus we have - )

2 lIm sl =16, g 4 My < Mligls, o < m g .

i20 v

Corollary 2.4. The dual af B(!zj has (H' — ] 1)"f‘bui'f€r type.

Froof. We have ST = B(I*). Hence [BUDT is finitely representable in S,
because by the Local Reflexivity Frinciple (cf, {L-R]) the second dua] of any
Banach space is finitely fepresentable in the space.

Rewmarks, 1° Clearly X has (¥) if there is C > 0, such that for every X.-
valued analytic trigonometric polynomial there is be H s such that (2.4) holds.
Thus if X has {*), so does eVEry space crudely finitely representable in X

2°. The classical factorization theorem for Hlvfunctions easily yields that
/' has {#). Indeed given I = (Sl e Hfr » pick by the factorization theorem
§={g) and = (k) sothat g_e 2, he € 7' and g, |, = gl = 17,172
for k=0,1,2, ... Then g €M he HE S =gh and ||f], = el lAl, .
The rest of the argument is the same as in the proof of Theorem 2.2,

3", For SYEry measure space (£, 1) the space Li(u) is finitely representabie
in /', Thus, for PSp <2, L7(y) has (v,

Next we discuss some other classes of (B J-muitipliers and related classes
of Banach spaces,

Let 1 <p <2, Denote Dy FM!, the Banach space {under the norm IAOY




e
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m—-c_}f_s{:a E'ai‘"-’sﬂq-u-ﬂﬂ Ces. pi.—. ( .?MJ )J Suf‘h that

oo [Mi)\ e
Tw-‘ i 1
(2.3) [)pim}— ksupg \ DRUO] +;m| —1—|fr[0| O
1 hs+1

Observe that
(2.6) FM,=FM: FM =I'; ifl<p <p, then FM, CFM,,
((G+17" Jso €[V EM, .
Pl

Definition 2.2, A Banach space X € ‘/ if for every mu}tlpher me F M the
induced operator m, is (1, )~bounded

A Banach space X isan ¥ space, in symbols X € Z7 if thereis ¢ >0,
such that

(2.7) SU+D IO

j=0

for f ¢ Hl;, .

#¥ stands for “Hardy inequality”; obviously (2.7) is a vector-valued ana-
logue of the Hardy inequality [Du].

Note that inclusions (2.6) yield that .%, is the class of all spaces of (7 —1H-
Fourier type., # is the class of all Banach spaces (by the observation before
Proposition 1.1) and
(2.8) if1<p <p,<2, then ¥, D7, . Fo#F oS,

By i
pl

Proposition 2.1 generalizes 1o the case of /j . we replace in (i) and (iii) p(imn)
by pp(m} The proof remains the same. Wa also have a similar result for %}”
spaces.

Proposition 2.3. For every Banach space X the following are equivaient:

® 4) X e 77

(§) There is C > 0 such that for every eventually zero sequence (x; ) >0 in
X" with Hx;ii <(j+0 for j=0,1, ... thereisan X -valued trigonometric
polynomial " such that &7 (j) = x; for j=0,1,2,... and g7 <C.

Next we examine connections between Fourier type, type, and 9‘; classes.

First we have
Theorem 2.4. If a Banach space X has Fourier type p then X 65*;

Proof. By Theorem 1.1 it suffices to show that there is € > 0 such that for
every X-atom a and every me M,

L= |maij)) < Cp,im).
=0}
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This 1s trivial for constant atoms. Otherwise it is-enough to consider atoiis

supported on an interval {~3, §] for some & with 0O <d <
translate of an atom is again an atom).

integer s sothat 6 <1 <sd+ 4. Put

because a
Given & as above pick a positive

§ oo {k+1)s
=3 lmag); %= Z 70 ()] :Z > hmal.
1=0 J=s+1 k=1 ks
To estimate Z, note that if m e FMP then

2 S FN) .
> fmf= %" Il < p,im) forr=1,2,. .
27 PSS
Pick a nonnegative integer 7, 50 that 2% < 5 < 20" Then 27+ <256 <2,
Thus remembering that (by 1.1) Ja(/)} <687 for j=0.1, ... we get
207! el 3
PINES Z i ma( ) < limpa(0y) + flo,a (1)) + Z Z Hm a{ i)
=0 r=1 gt

gt ! 2
<87’ fm”Jrz Z Jim ]
r=1 oty

1yt

<8 §p () 1+22 <27’ P, ().

To estimate L, for k=1,2... pick Ji 50 thai

@700 = max{a(j)]: ks < j < (k + 135}
Then, by the Halder inequality, we get

(k-+1ys
by < Z ha(jol Z fm, E
k=1 j=ks+1
o 2o f s Py P )
, | . ~1/p
o > > 2| < p(m)7 &
k=1 J=ks+l
where 7 = 37 i]&(jk}ﬂp’, To estimate T first observe that for fixed & =
t,2,... and r= I,2,...,5 we have
(k+1)s
Ul s llatks + 0+ 37 flats)— ati+ 1))
J=ks+1
(k+1)s e

<latks+ A+ [ S 1aty—at+ v

Jmks+1
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, s (k+1)s
laGlP < 2 [atks + 0t 5777 3 ) - ati+ I )

Pt e
Averaging over r= 1,2, ..., 5 we obtain
) , (h+1)s (k4108 ,
IR /o =1 ' [y -A : i
laGol” <277 [s™ S jal + 5" Z ajy — alj + 1)
Je=ks41 J=ks+1

Thus summing over k=1, 2... we get

T <2 [T S Jaif + 577 Y jaty - at+ DI

J=s+1 J=5+1
Sl Y O
J=s+1 Je=s+1

I

where d(f) =a{t)(l —e 7).
Now use the hypothesis that X has Fourier type p, say with constant K.
Then ’ , 4 ’ ,
P —1,
7 <27 PR (s Ml 57N
1i foliows from the definition of an X-atom supported on [~d, 4] that [a]], <
lall}?all < (w6 ") Hence
1], < sup |1 ¢ "|(nd” W
le=
Thus

7 Pk (s s Ty < 2P Pk (1457 1) < 6K
Therefore £, < (67)° f"Kpp(m} , and conseguently L < (2"'}+(6n}"’fpr)pp(m).
Corollary 2.5. If X has nontrivial Fourier type then X € ZF .

Next we have
Proposition 24. If X ¢ % for some p with 1 <p <2 then X has cotype o
in particular all (H -7 )-P()une; type spaces have cotype 2.
Proof. For arbitrary scalar sequence (1), with 377 |4 = I define m =

(M) g by m; =0 for f#2,4,8, .;_mz,-:,% for;ﬁl . Then a

direct compulanon shows that g, (m)y=1. Thusif X €.% ) and (,x ),>l is any
eventually zero sequence m X then for the X-valued analytic trigonometric

polynomial f =3, ,x,_e“ “

STAx < CUA, for (4,),,, with =1

¥

we have the estimate
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where (" > 0 depends only on X . Hence ¢

2 ) < iy Thas,
by a result of Pisjer IPil)ief

also- (P}, - X -has cotype p'.

Remark. The proof of Theorem 2.
P then

(2.9) there exists C > 0 such that for every f ¢ H
22 is0 Hf(J}m I <AL L

We show next that (2.9) implies a slightly
of X'; namely,

Proposition 2.5, 15 ¥ satisfies {
Proof, Similarly,

4 actually shows that if X has Fourier Iype
“ and gvery mc FMﬁ
stronger property than cotype p’

2.9) then X* hgs lype 2.
as in the proof of Proposition 2, 4, we show- that (2.9

i/
(2.10) (Z”f ) SCIAY, L, for fem!®

=1

implies

Now pick an eventually zero sequence (x )v] in X* and put I = };‘r X e

Clearly ||~ I < lemo - By Theorem i .2, there is a numerical constant

{independent of /7 ) such that i o < CUL (i - Thus applying (2, 10)
and the Holder inequality we get

W gy = supditr, £13): f e oot I w13

* P r " "
=sup ¢ 13 (/2 })I SN
/

r>i
i/ i
<sup g | 3 et Doy AL s
red =3
Ly
S
re|
Thus 177, < ¢ e, iy

Therefore, by Pisier’s theorem X" has
type p.

Applying Theorem 2.4 and Proposition 2.4 10 19

Corollary 2.6. Fer | LPp < oo, Let E denote either an infinite-dimensional
L) space or the trace class S, Tizen o= (mj. € FMmm(E’pf) Wom, s
(1, 1)-bounded

fil
Proof. By Theorem 2.1, for every Banach space X if My is (1, 1)-bounded

then me F M, = FM . Thus if I <p <2 then the desired conclusion follows
from Comlldry 22for E, = L‘D( ) and from Theorem 2.2 for E,=5,.

Let p > 2. Then mm(Z ) = . By a simple interpolation argumeni E
is of Fourier type p' (cf. iPee and MI]). Thus, by Theorem 24 f mce EM :

and S we get
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then.. £ £ is (1,.1)-bounded. To prove the converse we modify an 1rgument

from [SZ-W]. First we have

Fact. If m’EJ is (o0, 1)-bounded, say with a bound X, then (Z,\______[fﬂ_i;f)..w’ <
K. ‘
The fact is a direct consequence of
. 7 is finitely representable in £ .

Cf {6 )y 5 15 an eventually zero scalar sequence and if (6, )54 is the

l,ﬂ’p’
= (}: Lcﬂp) .
k=0

To complete the proof we shall show that if My is (1, 1)-bounded for

uni‘i vector basis of ¥, then

ZC :Ar
k

k>0

some m = {m,) then for 5§ = 1,2,... m'lc and mE are (oo, I)-bounded
with a bound mdependem of 5 where m' = (mk) and m” = (m;\f) are defined
by 2’”0 = my = 0; My = Pocaes Msed my, = Posjr<des Mhsid for k =
1,2,....

Let / bean £ -valued analytic irigonometric polynonual. Fix s=1,2,
and define [ by f( y = f{2st}. Then f n) =0 for n# 2ks, f(2k5) f(k)
for k=0, 1.... Nextput g = f,G where

251 o
Gy =S (1~ s = jI/se’” .
=t
Then for # = 2ks+j with A=0,1,...., J=1,2,...,25—1

25—1
n}mZG(j)f (n—j) =Gk

i=

Since G is a shifted Fejér kernd, |Gl = 1. Thus lgh, < LI IGH, = 11
Hence, if € isa (1, 1)-bound for my, ,Ihen
Clifl, = Clglh 2 > lgililm,l = Z mm |G
el k=0 j=
% / I oy
> imzk“; ‘ f‘z_" l i O

0 s<j<ds/2 | k>0

because, for s < j < 3s/2, G(jy > . Thus mJE is (0o, 1)-bounded with a

wound 2C . The verification of (oc 1) boundedness of M 15 similar,

We end this section by discussing the relationship between the type of a
Ranach space and the vector-valued Hardy inequality. The main result is:

Theorem 2.5. If a Banach space X has nontrivial type, then X € Z7 .




3520 it " O.BLASCO AND A, PELCZYNSK]

Theorem 2.5 is due 1o Jean Bourgain and is published here with his permis-
sion. Our proof is slightly different from Bourgai’s original argument {(which

deals with the integral analogue of the Hardy Inequality on the rea) Iine),
The proof is based on

Theorem 2.6, ' X has nontriviaj iype, then there gre q€(2, 0] and ¢ ~ 0,
stch that

+oo l/q
( Hf(n}iiq) SCIf, mrrer?,
Theorem 2.6 i5 a particular of [B3, Theorem il

An easy consequence of Theorem 7.4 is

Lemma 2.1, Lo ¥ have nontrivigl vpe, let b be either o consiant X-atom or
an X-atom supported on (=7, ). For r req Pt e(si=e" for sep Then

+oo Lg
( fl(be,) ™ (n)!iq) <20+ 1,

where O gnd 4 are as in Theorem 2.6,

Proof If « is an X-atom supported op (~7, 7)), then lall, < flajl_ < 1.
Thus, by Theorem 2.6,

+00 /g
( Ef&(n)!rq) < Clal, < C.

Write be, = pt L pl where 5% . (2m)~! ffﬂ(ber)(s) ds-1 and p'V - be, —
s By the hypothesis on &, Hber”m < 1. Hence p'V 5 a4 multiple of an
X-atom by a nonnegative number < 2. Thus

00 I/g
(Z‘ ﬁé“wu‘?) <2C.

— 0

On the other hand, $'% is a constant atom; therefore

+oa tia
(Z Hb”%nw*’) ={6% 0y < 1.

—co

Proof of Theorerm 2.5 A standard reduction as in the proof of Theorem 2.4
shows that it ig enough to prove

(2.11) There exists K > 0 such that DI la(mlin + D7 < K for every
X-atom a Supported on (-4, nd) with 0 < & <1.

Let m be the integer satisfying (s + ISR <m ! puy

Silay =3 la(myn + 1)t Splay =3 " atnyn « 1),

n<m nxm
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By (1.1) and the choice of m, S{a) <3 4~ Dasan+ V7 < wf2. To

estimate S,(a) first observe that

AY i/ql r ot

/ g
‘ +00 ] By
iZ(n +177 ) < (/ x 1 dx) = A(q)m"”q,

nzm

where 4(g) = (g — "'""9/9 Thus, by the Holder inequality,

1/g.
Sya) < A(gym™ " (Z ifl(”}ﬂq) :

nzm

Let b be the periodic function on R defined by #(s) = 5a{s/%n) for 5 €
(-m,m),andlet b, =be ., for k=0,1,...,m—1. Note that b isan X-

—kfm
atom supported on (~x, 7). Fix n=mj+k for j=1,2.... Remembering

that a(t) =0 for > ] > am” and substituting s = m¢ we get

- wfo —int T -1 —iks/m —ijs
23m(n)=[ aitje dr:[ m o als/mye e 7 ds

—n/m o
= 21(md)” b ().
Thus |a(n)]| < 2||b,(j)|| because md > L. Therefore, by Lemma 2.1,

pi-—| n—

S pamif <2" 37 Y b <2 i (4C +2)'m

n=m k=0 j=1

b

Hence §,{a) < A(q)m"im(-flC + Z)ml/q = A(g)4C + 2}. Thus we have estab-
lished (2.11) with K < A{g){(4C +2)+ n/2.

Theorem 2.5 yields yet another characterization of Banach spaces with a
nontrivial type,

Proposition 2.6. For every Banach space X the following are equivalent:
(+) X has a nontrivial type,
(++) there isa K >0 such that for every f < H,

> 1 tmyin + Hl<
n=0
Proof. () = (++). This implication follows from (2.11).

(++) = {+). First note that if a Banach space Y fails {++) then for
every K > 0 there is a Y-valued trigonometric polynomial, say /, such that
1Al <1 and anﬂj mj|(n + 1) ~!' > K. Now a routine argument shows
that if. ¥ fails {(++4) and Y is crudely finitely representable in X', then X
fails {++). (Note only that if £ is a subspace of X, and f isan Z-valued
trigonometric polynomial, then |\f||Hx a > HfHHi.m .3 Furthermore, it is weli

1, at

known (cf. [M-P]) that if p, = 1 then L' is finitely represented in X . Thus
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fo_prove the implication “not = not{(+4)" it is enough to show that 7!

fails (++). To this end given K > 0 pick a trigonometric polynomial # S0
that [Fll, =1, " Fiyar = 22F(0) = 0 and YistiE@in+ 1 s g
Next define an 7.'-valued trigonometric polynomial f by T8y = £ where
B = Fis+ 1), Clearly finy = Fnle, where e (1) = ¢ Thus Sis) =
2ongo £{mie ™ Hence [T fsyds = 0. Qbviously 1), = &0, =

Fll,y=1 for s € R, Thus fisan Llgtom supported by (—n, 7). Hence
L

IV
On the other hand

Dol 1yt o S e s k.

n>0 n=0

Remark. Theorem 7.5 obviousiy improves Coroliary 2.5 because a Banach space
with nontrivial Fourier type has nontrivial type (well known and easy). After
the preliminary version of this paper had been written, J. Bourgain (B4} proved
in August 1987 (solving a problem which has been open for 2 while, ¢f, M
the converse;

Every Banack space with type > 1 has Fourier Iype > 1. This gives via
Corollary 2.5 vet another proof of Theorem 2.5.

3. PALEY spaces

Recall (cf. [Du, p. 103]) that m = (72,) 10 18 (H' —~ I?)-multiplier iff

172
i
2 -2 .2 2
oim) = { Im,|" +supn 1. < +oo.
(m) (! ol sur ;]J! jl)

Denote by PM the Banach space (under the norm o(-) ) of all sequences m
satisfying (3.1).

Definition 3.1. A Banach space X is called 3 Faley space provided for every
(H' - i’z)—multfpiier # the induced operator 18 (1, 2)-bounded.

Recall that given g > 1 a sequence (7 ), of positive integers is called
g-lacunary for some g > 1 provided

{(3.2) !‘?fﬁ;lf?kﬂ >yg.

A lacunary sequence is a ¢-lacunary sequence for somie g > |,

Ouwr first result coliects several equivalent conditions for a Banach space of
being a Paley space.

Propesition 3.1, Ler X pe g Banach space. Then the Jollowing are equivalens:
() X isa Paley space,
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(i).there is C >0 such that for every | € H; and every me PM

AR
Sl ST < Cotm)
i»0 j

(iii} for every lacunary sequence (n,),., there is a constant C(W > 0 such
that for every X-valued analytic trigonometric polynomial f

. 2 20 o2
Yol <16, VI
k>
(iv} for same g > | there is a constant C, >0 such that for e very g-facunary
sequence (1.} and every X-valued analync trigonometric paiynomzal !

STl < A
k=l

(v) for some g > 1 there is a constant C e O such that for every eventually
zero sequence (x) )., in X* and every g-lacunary sequence {n.) there is an
X" -valued trigonometric polynomial g° such that

(33) el <G o lxlt.  eng=xi Jork=1,2,
k2
Eljy=0 forj=0, j#n 0
Proof. {1} = (i1). Use a Baire category argument.

(i) = {iil). Observe that every lacunary sequence belongs 1o P4 .

(iii) = (iv). If (iv) were false then one could define inductively a sequence
(f,) of X-valued trigonometric polynomials (each f, of degree N, respectively}
and a sequence ((ni”) ioi sy Of g-lacunary sequences such that N, > 1, and
forr=1,2,...

=1 S 22N, N 2N,
k

Let (n,) be the enumeration in the increasing order of the set

U U {nﬁ”} )

2N, <IN,

k=

Then (."z‘k)k?__} is a lacunary sequence, and for r =2, 3,

N, N N
DN AT RS N EACTA RS FAC
k>1 =1 =1

22N _ N _ >N,

re re-1

because [[f[, = | yiclds i]f;(j}\! < 1 for all j. Thus the lacunary sequence
(n,),~, would not satisfy (i1i}, a contradiction.
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f!\) = .(,\’,!} ; Tk
Proposition 2.1

FIE Proo: 1s similar to that of the implication (if) = (iii} of
{(v}={i). Let ¢ and C, beasin (v). Let me PAM . Fix

|
\
asin (v). Le = g . Then - \
\
qofl
Z im{ \QOZIJH] i'qo <a(m)g,.
Fix /¢ H,. For k_i 2
/I = max{ 7)1

0
g-lacunary sequences and

p:ck n, wnh q" "< n < qo 30 that

F < j< gg} Obvicusly (fzﬁf\ .} and {n,,) are

Zi DIl < loomPa i fin ) fork=1,2
k in x°

Next fix a positive integer N and choose for k=1, 2,
80 that

functionals x; and
N
2
Z e

= Z il =
k=
f.\"' . N

; 12
)) = (Z N.f(’?z;\-.._l)ﬂz) ;
k=1
N
> yifn
k=

N 12
| 2
= (Z “f(”zk)” ) .
ﬁ] 8
{t foliows from {v) that there are X*
8, such that lg/fl_ + g7 ll.,
k=1,2,

~valued trigonometric polyniomials g and
N, g] ( )
Jj=0 and j#zz,,

< 20, & (}1‘2!‘ = x,\, gz(n,,\j =y, for
—-Of()i‘j>0 and j # n,,
1, . Clearly

3 : gg (/) =0 for
N 1/2 & /2
\j & +&)= (Z ”.f(”g/\-._g)“z) + (/Z”f Hap) )
k=1
Hence o

k=1
<IAle + 850, <€ 2C )11,
o' -1 )
22 W im 1 = 1 7o) m
7=

IN qo—i

o35 1700

f’” i
k= i‘?rﬁ ]
- 2, 2
< O m,

N R
Pt le(mil g ( ( - ilf(f?z,;.._.;}i!‘)
’l\-A
<{o(m)F(1 +4C7

N ) 1/2 !
+(Z|rf<f32k_>ie2) )
=1 k=1
(1 +4C A1

Thus m is (1, 2)-bounded
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ROESATCo Paley proved “in {Pa) that characteristic functions of lacunary -
1

sequences are (/7 3 wiz)-muliipiiers, This together with the equivalence (i) = (v}
motivate the name “Paley spaces”.
We begin the discussion of Paley spaces with the obvious

Corollary 3.1. Every space which is crudely finitely represeniable in a Paley space
is itself a Paley space.
Next we have (compare with Proposition 2.4): :
Proposition 3.2. If X is a Paley space then X s cotype 2.
Proof. For an arbitrary eventually zero sequence ()i in.X put f =

- [ A - - » N .
e x. e ' Since X isa Paley space, there is an absolute constant O, {in-
kx>t 7k 2
dependent of the sequence (x, ). ,} such that
i1

frmk g2 . 20 2
SOUROI = Yl = G
Thus, by a result of Pisier (cf. [Pil} and [P]), X has cotype 2.

Remarks. 1°. The space L /Fé is of cotype 2 {¢f. [B2]), but it is not a Paley

space. Indeed define m = (mj) by My = K7V ofor ko=1,2,..., m; = 0

for j >0, 7#2,4,8,.... I Li/ﬁé were a Palev space, then the oper-

ator M gm induced by m would be (1, 1)-bounded. This would contradict
4

Proposition §.1.
2°. For ever p with 1 < p < 2 there are spaces in the class 9(; which are

not of cotype 2 (for instance ¥ or S, ). Thus for p < 2 the class Joi; {as

well as # ) is not contained in the class of Paley spaces. However, we have

Proposition 3.3. Every space of (H g V-Fourier type is a Paley space.

Proof. Let m = (m j) be an (A ) })~mu1ﬁplier. Then for every sequence

(/lj)jze e I* the sequence (A;m) 150 isa (H - ll)umu!tipiier. Hence, if X

is of (Hl — {")-Fourier type then for every [ € Hi,, 2o lAml O < o0

for every (4,) € /*. Hence, by the Landau theorem, 2230 |;44:j§2|]f(“,i)[{2 < 00.

Now a standard Baire category argument vields that m_ 1s {1, 2)-bounded.
We shall show next that a slightly stronger assumption than “cotype 27 already

implies that a space is Paley.

Theorem 3.1, If X" is of iype 2, then X is a Paley space.

Proof. In view of Theorem 1.1 it is enough to prove

Proposition 3.4. If X7 has type 2, then for every q > 1 there is a constant ¢,

such that
(3.4) for every g-lacunary sequence (i), ., and every fc H ;.‘“

4, “ 2 -,24 2
L“f(”k)n,\( < Cqﬁflh,ar
k>t
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Procf-H-is-encugh-to-show-that there-is-a- constant C such that for ever uSub‘SU
g-lacunary sequence (n,) and for every X-atom g ;

(3.5) D=2 hatagft < ﬁ
k> 7 Obse
This is trivial for constant atoms. Otherwise it is enough to consider atoms
supported on the interval [-7d, nd] for some, § with 0 < & < | (because a
translate of an atom is again an atom} Let A_ be the positive integer satisfying
n, <o <my w1 Write Z=3, 43, where ‘ wh
Y k, y orer
- " Sy 2 , \
z a(n)||", X, = Z lain . Th
(= k>ky, )
To estimate X, observe that (3.2) implies
ky—1
~1 -1 k—k,
ntty < H B, S g for 1<k < ky .
Jeh
Now using the estimate j[a(/}l < =d|j1/8 for j =0, £1, 42 which follows
from (1.1} we obtain
ﬂ> &g ﬂ_z k, 72 qz
- # — MM, < A
4; i 42 k A 64 q ‘".[
To estimate Z,, for every integer & > k, pick a sequence ('x;)k0<k51"~’ in
X" so that
N , )
Z o ” =1, x{aln ) 20 fork =1,
k=ky i
I , e Iy
2 lam)it = 3 xiany)).
h=k+1 b=k, +1 s g
Pui N
N ) H
= 3 s
=k +1

Remembering that a is supported on [~76, nd] and therefore lall < &7
we have

N | ifi)
2 )=, £y =0 [ (Rl
h==ky+ | -7

A

2w et [ 10,

2w [ 100 e

1A
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3

Svery-Substituling =35 we get

) ad . B it)
<2m5>“f 0l di= 0 [ s dr.

— g v —nd

' (Observe that

dfomsg N ;
use y | fysoy= >, e
fying Kkt
. where A, =n,8 for k=ko+ 1, k+2,.... Clearly (J}m Kok, 188 sequence of

real numbers such that AA b2 +1(”1\ +i) > 1 and mfbA A1 hi T>g>1.
Thus, by [P, Theorem 3], there is a constant Clg) (dependmg only on ¢ ) such
that

5 i
on [ 1ol ds < Cla) |

Hence if’ 7, is a type 2 constant of X~ then

N He
(271)_}] /3 (s 5 ds < Cla) T, Zi!XZ|52> < Gy

N H2
s 2 - .
( a(n )l < C9)7,

kyr

Thus

Consequently %, < C(q)z?'f . This completes the proof of (3.5) with

BN S cf o2
ClgY'1
tq a7, LT ()

Observe that in fact {3.4) characterizes Banach spaces whose first duals are
of type 2. Precisely we have

1
[ Y

Preposition 3.5, [f X is a Banach space such that for some g > 1 there is a
constant € such that (3.4) holds, then X™ is of type 2.

The prootf of Proposition 3.5 is similar to that of Proposition 2.5,

Next we discuss the case of complex Banach lattices.

Let X be an arbitrary Banach space and let (¥, ||-||) be a Banach lattice of
absolutely integrable scalar functions on a probability space (Q, 1) (cf eg [L-
T, Chapter 1]). By £, we denotc the space of X-valued Bochner p-integrable
functions f on suah that the function w — [|f{e)|, belongsto £ equipped
with the norm

e, = SOl

- Recall that if (£, g C L'(u) is as above, then the lattice norm. |} || is
c} 10.be two concave prowded there is a constant 4 such that for every finite
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sequence (f ) in E

\ 172 2

()

(zn.f;n;}} <4
k

With these concepts we have

E -

Proposition 3.6, If X isa Paley space and (£, - £} IS a two concave Junction
lattice then F v 15 a Paley space.

Proof. Let (1) be a fixed lacunary sequence. Let F be an £\ -valued analytic
trigonometric polyaomial, Then Fle) is an X-valued analytic trigonometric -
polynomial and F(w) ) = F(j)(w) H-almost avelywhqu for all j. Since
X Is a Paley space, there is a constant ' = (X, (#,)} > 0 such that H-almost
everywhere

1/2 n
(Z uﬁ(nmw)ni) < c@n)™ f W (@) (D) di.
i —n

Since |- [, is a lattice norm, the latter inequality implies
1/2 . |
(Z I!F(nk)(')!ii) < C2m! f HECHON a’fl
K . -7 £

Since the norm of the integral is dominated by the integral of the norm, we get

[ o a

On the other hand, the two concavity of the norm -1, impiies

t/
(Z Jsﬁmkw;) (C1iEemoen) "
f 1/2
(Z Wnk)(-)ui)
k

C(2my”!

24
b4

< C(an)”! j HFOWI,di = 7], .
i :

+

&

(AN

A

F
Thus

/2 '
(E !;F“(nk>fi,;) < CA|F,.
k

Corollary 3.2. Ler 1 < p < 2. Then for every measure space {vE) and every
Faley space X the space Li,(:/) is @ Paley space.

It is well known that Li(u) is finitely represented in Li, For 1 <p<2,
L7 isa complex two concave Banach lattice on a probability space. Thus the
desired conclusion follows from Corollary 3.1 and Proposition 3.6,
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Another simple consequence of Proposition 3.6 is

: Tﬁéorem 3.2. 4 complex Banach lattice is a Paley space iff it is of cotype 2.
Proof. Let E bea Banach lattice of cotype 2. Since a Banach space is Paley iff
every separable subspace is Paley, we can assume without loss of generality that
£ is separable. Thus we can also assume that I being of cotype 2 is a lattice
of integrable functions on a probability space (£, p) and the lattice norm of
£ is two concave (cf. e.g. [L-T, Chapter 1]). Now we apply Proposition 3.6 for
X = C. The converse implication follows from Proposition 3.2.

Finally we shall show £

Thoerem 3.3. The dual of a C -algebra is a Paley space.

The proof is based on two lemmas. The first exploits the € *-algebra structure
via the von Neumann inequality (cf. [H, No. 229]).

Lemma 3.1, If X isa C'-algebra, then

127 as+ (1~ s )a - 2saa’} < 1
for ae X with la| <1, caeC with |al=1,and 05 < 1.

Proof. Let P(f) = 27 s + (i~ 52},6’ - 2_33&,82. Then by the von Neumann
ineguality

1P{a)| < sup |[P(f) forae X with [jg]| € 1.
[fi=1

Let f=e”, a=¢" Then 27 '(af — fa) = isin(f, — 8). Thus

sup |[P(fB)] = sup |issin(f, — )+ 1 »—52\ < 1.
1Bl=1 0<f<2a

Lemma 3.1 allows one to adopt the one-sided Riesz product construction (cf.
[Sm}) for functions with values in a € -algebra.

¥ @ Lemma 3.2, Let (4, ). ,cn D€ @ finite sequence of unitary elements of a C”-
E algebra X and let (5}, .oy be a sequence of nonnegative numbers such that
; N2 st -

21 S = :

Then for every g > 2 and every g-lacunary sequence ()., there is an
X-valued trigonometric polvnomial g such that

(3.6) gl = 1.

N
. —1 P — 2
(3.7) glny) =2 suy: gny=2""s, JT =5y
J=kd

Jork=1,2,...,N~1,

(3.8) glny=0 forn>Candn#n,ny, ...
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Progf. Define inductively a sequence (8.))<p<n Of X-valued trigonometric
poiynomials by
gl - 2_1Sil{I€m]r ,

"-Hik:’

-1 i, 2 -1 —1
B =2 sue™ + (1 =58, - 27 g, g _e
t fork=2,3,...,N.

Then g, satisfies (3.6}, (3.7), (3.8) with N replaéed by m and g replaced
by g, - Indeed assume that, for some m > 1, g | satisfies (3.6)-(3.8).
in t Y '

Fix t € {(—m, ), put S, =8, a=¢e ", g gmii(t)iz;l. The hypoth-

esis |lg,,_ il < 1 implies fla = |g (O < 1. Thus, by Lemma 3.1,
g, (t) ) < 1. Thus ||g, ()] <1 because i, is a unitary element. Hence
g, satisfies (3.6). Next observe that the assumption that g,,_, satisfies {3.7)

and (3.8) implies (g, v, g, ) (n)y =0 for n > 2n Thus the condi-
—1
m—1

-1

> ¢ > 2 implies that all nonnegative Fourier coefficients of the

polynomial 2"}3,” gmmlu;fgm_le'"”’ﬂ” vanish. Now it is evident that if g

satisfies (3.7) and (3.8), then s¢ does £,
We put g = g,

fion ﬁm A

m—1

Proof of Theorem 3.3, Let X bea (-algebra. Since X* embeds isometrically
into X™°7, and X" is a unital C”-algebra, we may assume that X is a unital
C"-algebra. Let f be an X -valued analytic trigonometric polynomial and lat
{(n,} be a g-lacunary sequence for some ¢ > 2. Put § =3, iﬁf(nk)\iz. If
S = U there is nothing to prove. If § # 0, fix N so large that f(nk) =0
for k> N. Put x; = f(n,)-(2V8)™', s, = lxj|l (k=1,2,...,N). Then

?_; sf = 47" By the Russo-Dye theorem [Bo-Dun, p. 210, there exists a
sequence (i, },., ., of unitary elements of X such that

s,z (1) > 245,\_ fork =1,2,..., N,

Let g be an X-valued trigonometric polynomial satisfying (3.6)~(3.8) for
the sequences (n,), (5,) and {1, ). Then

N Iy
(6. @V8) N =35 TT U -soxiw)>27" s TT -5,
k J=kel k J=kt]

Next observe that the condition 2}\\1 sﬁ = 47" implies that

A
inf Mu-sHzex0

I e

where ¢ is a numerical constant independent both of & and of the sequence
(5,). Thus

(g, V8 'y =2 tems =87 e,




n -theother-hand,-
VST > VAL lell, = (g, VST
Thus |Lfll, =4 'ev/S ; equivalently

1/2

2 ) W <4 L

. Corollary 3.3, I/ 1 <p <2 then S is a Pafey space.
 Proof. For } < p <2 the dual (§ ) =S, is of type 2 (cf. [T -, S, is the

dual of the " -algebra of all C(}mpd(,t operators on I* sowe can. apply Theorem
3.3. Alternatively we can use Theorem 2.2 and Proposition 3.3,

4, REMARKS AND UNSOLVED PROBLEMS

4.1 Paley spuaces versus spaces of (H g \-Fourier type. We do not know exam-
ples of Paley spaces which are not of (Hl — !W-Fourier type. We do not even
know whether for every Paley space the vector-valued Hardy ineguality holds.
The vector-valued Hardy inequality is not a “formal consequence”™ of the
vector-valued Paley inequality in a natural sense described next.
Let PM - 4% be the class of scalar sequences 1 = {(m;) such that m = as

i)
for j=0,1,... forsome {q;je PM and (5,) € *. We have
2k 2
2

{4.1) (i?tj)€P1va' iff Z Z [ || <o,

=1 2/« i
because

pAp
(4.2) (aJEPM 1ﬁ"supZ§a S <0,
k>1

Akl

Clearly, if X is Paley space then for every m € PM - 7, m, is (1,1)-
bounded. On the other hand, the Hardy multiplier {{j + 1)71)20 does not

k
belong to PM - 1*, because Eikf,l(j + i}‘i >4 fork=1,2,
4.3. More characterizations of Banach spaces with type > 1. Propositions 3.4
and 3.5 can be modified to obtain yet another characterization of Banach spaces
with nontrivial type.
Propesition 4.1, 4 Banach space X has type > 1 iff for some p > 2 there is
C > 0 such that for every 2-lacunary seguence (n,}

e
(4.3) ST <Ol for S HYT

k>l

Moreover, (4.3) holds iff ' is the type of X°.

THEOREMS OF HARDY AND PALEY Claeg
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For the necessity of (4.3) first observe that if X has type > 1, then X°
has type > 1, say p’ (cf {M- -Pi}}. Next we essentially repeat the argument
of Propos;tion 3.4, Conversely, if (4.3) holds for some p > 2 then a simijar
argument to that of Proposition 2.5 yields that X* has type 7. Thus X has
type > 1.

After reading the preliminary version of this paper, G. Pisier has kindly
comununicated to us that another modification of the proof of Proposition 3.4
yields

Proposition 4.2. 4 Banach space X has type > 1 iff there £ a constant C > 0

such that
i
J

where (1) is the Rademacher system.

2 12

d Jor fe H™

Sordnf2h

k=1

4.3. (1, 2)-bounded multipiiers from H ip into !i;,- . We do not have a satisfac-
tory description of scalar sequences m such that m ;0 18 {1, 2)-bounded. To
formulate our conjecture we first introduce new classes of sequences.

Let 2<r<coo. Let PM_ be the class of scalar sequences m = {m ; ) y such
that o,{m) < co, where

so f2N AN
o, (m)j= | |myl + > (Z inrzjiz for2<r<oo;
k=1 } 5k-1

S 1/2
2
o_(m)=max | |m,|, sup M,
oo (7] Igtkalzfji)

By(4.2), PM__ = PM as classes of sequences Le. g and ¢ are equivalent
norms. Clearly PAL, coincides with P Thus, if m € PM, then m is (1, 2)-
bounded for every Banach space X . Funhermore it fo!iows from Pwpos;tlon
1.1 that if either X =¢, or X = L /} then m_ is {1, 2)-bounded iff m €
P, .
Conjecture. Let £ denote either an infinite L7{g)-space or S, 1<p<oo.
Let #> 2 sothat /! = ma;sv;(?;"i -p !, 0). Then
{(4.4) me PM_iff Mg is (1, 2)-bounded.

In fact, what is left is the validity of the implication: “m E, (1, 2)-bounded

= mEPMW Up "for po> 2.

If 1 <p <2 then, by Corcllaries 3.2 and 3.3, EP is Paley space. Thus, (4.4)
1s a consequence of (3.1), because if m, 1s (1, 2)-bounded for some Banach
space X then mec PM = PM_




THEOREMS OF HARDY AND PALEY 365

3N e-glso-have

Proposition 4.3, Ler 2 < p < o0, Let m & PMUZ—I/:J' Then mEp is {1, 2)
bounded. s
Outline of the proof. Tt is well known that (Ep)' can be identified with E ..
Furthermore, for p > 2, E is of type p’ (cf. e.g. [M-Pi and TI}). Thus the
desired conclusion follows from the next two facts,

Corollary 4.1. If X~ isof type p' > 1 and if r Salz'sﬁé’s 27 = pT ! then
there is a positive C such that for every m e PM, and every [ € H‘,i,’a‘,

12
(4.5) (Z ||.f“u)||2|mjf) < Co(mfl; -

=0

Corollary 4.2. If X~ isof type p' » | and m € PM_ with Pl =27t —p_l

then m_ is (1, 2)-bounded.

Froof of Corollary 4.1. Fix f € H;.’m and pick n, for k= 1,2,... sothat
2 <y <28 and | fin)) = max{ | f()l: 257 < j < 2%} Then (m) is the
union of two 2-lacunary sequences. Now using Proposition 4.1 and the Hoider
inequality we get (4.3).

Corollary 4.2 follows from Corollary 4.1 and Theorem 1.1,

4.4. Paley spaces versus 2-uniformly PL convexifiable spaces. Comparing results
of §3 with results in [D-Ga-TJ] (cf. also [B-D]), it is natural to ask what is the
relationship between Paley spaces and 2-uniformly PL convexifiable spaces.

Recall that 2 Banach space X is 2-uniformly PL convexifiable provided it
has an equivalent norm |- || such that for some ¢ >0

I ;2 2z
(2m) [ e it de > P + vl

-

After this paper had been submitted for publication, J. Bourgain communi-
cated 10 us an example of Paley space which is not 2-uniformly convexifiable.
On the other hand, G. Pisier observed that every 2-PL convexifiable space is a
Paley space. Combining Pisier’s result with [D-Ga-TJ, Theorem 4.3] {due to U.
Haagerup), one geis an aiternative proof of our Theorem 3.3,

4.5, More about preduals of C"-algebras, After this paper had been submitted
for publication, U. Haagerup and G. Pisier [Ha-Pi] generalized Theorem 2.3
{the noncommutative factorization theorem) to the case of an arbitrary -
algebra. As a consequence they generalized our Theorem 2.2 to the following:
Every predual of a C -algebra is of (Hi !l)-F{)urier ivpe; in particular for
every predual of a (" -algebra the vector-valued Hardy ineguality holds, The
same result was independently obtained by P. Muhly [Mu]. For related results
see also Xu [X1, X2] and [P12].

Finally observe that our Theorem 3.3 combined with Proposition 1.1 implies
the result due to Pisier (of. [D-Ga-TI, Theorem 6.3 and Corcllary 6.4]) that
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the-aisc-algebra is not the continuous image of any € -algebra. The approach

via the vector-valued Paley inequality seems to be slightly simpler than that
presented in {D-Ga-TJ). This approach was also proposed by (5. Pisier who
knew a long time ago that the trace class S, and the dual of B(z’z) are Paley
spaces (private discussion in Georgenthal in 1981).
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