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Bergman and Bloch spaces of vector-valued functions

By José Luis Arregui of Zaragoza, Oscar Blasco of Valencia

(Received )

Abstract. We investigate Bergman and Bloch spaces of analytic vector-valued functions in the
unit disc. We show how the Bergman projection from the Bochner-Lebesgue space Lp(D, X) onto
the Bergman space Bp(X) extends boundedly to the space of vector-valued measures of bounded
p-variation Vp(X), using this fact to prove that the dual of Bp(X) is Bp(X∗) for any complex Banach
space X and 1 < p < ∞. As for p = 1 the dual is the Bloch space B(X∗). Furthermore we relate these
spaces (via the Bergman kernel) with the classes of p-summing and positive p-summing operators,
and we show in the same framework that Bp(X) is always complemented in �p(X).

1. Introduction.

Throughout the paper X will be a complex Banach space, 1 ≤ p < ∞, H(D, X)
(respect. P(X)) denotes the space of analytic functions (respect. polynomials) on
the unit disc D taking values in X and Lp(m, X) stands for the Bochner-Lebesgue p-
integrable functions onD where m is the normalized Borel-Lebesgue measure onD. We
write Hp(X) and Bp(X) for the Hardy and Bergman spaces of vector-valued analytic
functions respectively, which, using the notation Mp(f, r) = ( 1

2π

∫ π

−π
‖f(reit)‖pdt)1/p,

consist of those functions in H(D, X) where sup0<r<1 Mp(f, r) = ‖f‖Hp(X) < ∞ and
(
∫ 1

0
Mp

p (f, r)rdr)1/p = ‖f‖Bp(X) < ∞.

A limiting case in the scale of Bergman spaces, which is useful for many pur-
poses, is the Bloch space B(X), its elements being all functions in H(D, X) such
that sup|z|<1(1 − |z|2)‖f ′(z)‖ < ∞.

For X = C the reader is referred to [3], [15] and [22] for the scalar-valued theory
on these spaces, to [8], [9] or [10] for several properties of Bloch functions and their
connection with multipliers between H1 and BMOA in the vector-valued setting, and
finally to the paper [4] for properties on Taylor coefficient of functions in Bp(X) and
different results on multipliers between vector-valued Bergman spaces.
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In this paper we shall study questions such as the boundedness of Bergman pro-
jection, the duality or the atomic decomposition in the vector-valued setting. The
relationship between vector-valued analytic functions, vector measures and operators
is also considered.

The paper is divided into four sections. In the first one we prove some elementary
facts on the spaces Bp(X) and B(X), showing that the norm of a function in Bp(X)
can be described in terms of its derivatives, in particular that f ∈ Bp(X) if and only
if (1 − |z|)‖f ′(z)‖ ∈ Lp(m), which makes natural to introduce B(X) in the scale as a
limiting case.

The second section is devoted to analyze the Bergman projection in the vector-
valued setting. We see that the Bergman projection is bounded not only on Lp(m, X)
but even on the space of vector measures of bounded p-variation Vp(m, X). This
allows us, as in the scalar-valued case, to get the duality (Bp(X))∗ = Bp′(X∗) without
conditions on the space X. It is also shown that the Bergman projection is bounded
from V∞(m, X) onto B(X), and a projection from the space of vector-valued measures
of bounded variation M(X) onto B1(X) is also presented. Then we prove that B1(X)
coincides with the projective tensor product B1⊗̂X and that B(X) can be identified
with L(B1, X). As a consequence the duality (B1(X))∗ = B(X∗) is obtained.

Next section is devoted to relate vector-valued analytic functions and operators.
For any L(X, Y )-valued analytic function F (z) =

∑∞
n=0 Tnzn we can associate two

linear operators, TF (x) = Fx where Fx(z) =
∑∞

n=0 Tn(x)zn which maps elements in
X into Y -valued analytic functions and SF (g) =

∑∞
n=0

Tn(xn)
n+1 for any g ∈ P(X) such

that g(z) =
∑

n≥0 xnzn, which maps X-valued polynomials into vectors in Y . Under
these identifications it is shown that B(L(X, Y )) can be regarded either as L(X,B(Y ))
or as L(B1(X), Y ). Of course if F ∈ Bp(L(X, Y )) then TF ∈ L(X, Bp(Y )) and
SF ∈ L(Bp′(X), Y ) but the converse does not hold true in general. Some connections
with the theory of p-summing and positive p-summing operators are provided. It is
observed that Bp(Πp(X, Y )) is continuosly embedded into Πp(X, Bp(Y )) but again the
converse is false. As a final result of our considerations we see that if T ∈ L(Bp′ , X)
and fT (z) = T (Kz), where Kz stands for the Bergman kernel, then fT belongs to
Bp(X) if and only if the composition with the Bergman projection TP gives a positive
p-summing operator from Lp′(m) into X.

Finally, in the last section we show that Bp(X) is always isomorphic to a comple-
mented subspace of �p(X).

We write L(X, Y ) (resp. K(X, Y )) for the space of bounded (resp. compact) linear
operators between the spaces X and Y , we denote x∗x the duality pairing in (X∗, X),
un(z) = zn for n ≥ 0 and any f ∈ P(X) is written f =

∑N
n=0 un ⊗xn for some N ∈ N

where (φ ⊗ x)(z) = φ(z)x for φ ∈ H(D,C) and x ∈ X. As usual we use p′ for the
conjugate exponent, i.e. 1/p+1/p′ = 1, and C denotes a constant that may vary from
line to line.

2. Preliminaries

Definition 2.1. Let 1 ≤ p < ∞ and let X be a complex Banach space. Bp(X) is
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defined as the space of X-valued analytic functions on the unit disc D such that

‖f‖Bp(X) =
( ∫

D

‖f(z)‖pdm(z)
)1/p

< ∞.

As in the scalar-valued case one gets the following facts, whose proofs are left to the
reader.

Proposition 2.2. Let 1 ≤ p < ∞ and let X be a complex Banach space.
(i) Bp(X) is a Banach space.
(ii) If f ∈ Bp(X) then limr→1 ‖f − fr‖Bp(X) = 0, where fr(z) = f(rz).
(iii) The space of X-valued analytic polynomials P(X) is dense in Bp(X).

Remark 2.3. If H is a complex Hilbert space, then B2(H) is also a Hilbert space
under the scalar product given by

〈〈f, g〉〉 =
∫

D

〈f(z), g(z̄)〉dm(z) (f, g ∈ B2(H))

where 〈·, ·〉 denotes the scalar product on H.

For any f ∈ B2(H) such that f(z) =
∑∞

n=0 xnzn we have

(2.1) ‖f‖B2(H) = (
∞∑

n=0

‖xn‖2

n + 1
)1/2

.

This shows that B2(H) is isometrically isomorphic to �2(H). Actually, if H is separable
with an orthonormal basis (en)n≥0 then (

√
n + 1un ⊗ek)n,k≥0 is an orthonormal basis

of B2(H).
Let us mention that (2.1) is no longer true for Banach spaces, as follows from the

next easy example.

Example 2.4. Let 2 < p < ∞ and let (en) be the canonical basis of �p. If

f(z) =
∑∞

n=0 enzn = (zn)∞n=0 then f ∈ B2(�p) but
∞∑

n=0

‖en‖2

n + 1
= ∞.

The reader is referred to [4] for further results on Taylor coefficients of functions in
vector valued Bergman spaces and for connections with geometry of Banach spaces.

Let us point out that, as in the scalar-valued case, we have that for f ∈ H(D, X),
0 < r < 1 and 1 ≤ q ≤ ∞, the following inequalities hold true:

(2.2) r2 Mq(f ′, r2) ≤ Mq(f, r)
1 − r

.

(2.3) Mq(f, r) ≤ ‖f(0)‖ +
∫ r

0

Mq(f ′, s)ds.

These facts can be used to get an equivalent norm in Bp(X) by looking at the
derivatives of the function rather than the function itself.
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Theorem 2.5. (see [22]) Let f ∈ H(D, X), n ∈ N, 1 ≤ p < ∞. Then f ∈ Bp(X) if
and only if the function z 
→ (1 − |z|2)nf (n)(z) ∈ Lp(m, X).

Proof. Let us show that for any g ∈ H(D, X) and k ≥ 0, the function (1−|z|2)kg(z)
belongs to Lp(m, X) if and only if (1 − |z|2)k+1g′(z) also does. Then a recurrence
argument gives the statement.

Note that (1 − |z|2)k+1g′(z) ∈ Lp(m, X) if and only if
∫

D

(1 − |z|2)pk+p‖zg′(z)‖pdm(z) < ∞.

Let us denote h(z) = zg′(z) =
∑∞

n=0 nxnzn, and observe that for each r < 1 one
has that hr2 = gr ∗ λr, where λr(eiθ) = reiθ(1 − reiθ)−2.

Since M1(λ, r) = r
1−r2 and Mp(h, r2) ≤ M1(λ, r)Mp(g, r), one gets that

∫

D

(1 − |z|2)pk+p‖zg′(z)‖pdm(z) =
∫ 1

0

4r3(1 − r4)pk+pMp
p (h, r2)dr

≤
∫ 1

0

8r(1 − r2)pkMp
p (g, r)dr

= C

∫

D

(1 − |z|2)pk‖g(z)‖pdm(z).

Conversely, let us take g such that (1 − r2)k+1Mp(g′, r) ∈ Lp((0, 1), dr). We may
assume that

∫ 1

0
(1 − r)(k+1)pMp

p (g′, r)dr = 1 and also that g(0) = 0.
Thanks to (2.3) we have

∫

D

(1 − |z|2)kp‖g(z)‖pdm(z) =
∫ 1

0

2r(1 − r2)kpMp
p (g, r)dr

≤
∫ 1

0

2r(1 − r2)kp
( ∫ r

0

Mp(g′, s)ds
)p

dr

≤ C

∫ 1

0

(1 − r)kp
( ∫ r

0

Mp(g′, s)ds
)p

dr.

For p = 1 we get
∫

D

(1 − |z|2)k‖g(z)‖dm(z) ≤ C

∫ 1

0

(1 − r)k(
∫ r

0

M1(g′, s)ds)dr

= C

∫ 1

0

(1 − s)k+1M1(g′, s)ds = C.

For p > 1, we write for each t ∈ (0, 1)

It =
∫ t

0

(1 − r)kp
( ∫ r

0

Mp(g′, s)ds
)p

dr.

Let u(r) = − 1
pk + 1

(1 − r)pk+1 and v(r) =
( ∫ r

0

Mp(g′, s)ds
)p

.
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Since u(t)v(t) < 0 and v(0) = 0, we have

It =
∫ t

0

u′(r)v(r)dr ≤ −
∫ t

0

u(r)v′(r)dr

That is

It ≤ p

pk + 1

∫ t

0

(1 − r)pk+1Mp(g′, r)
( ∫ r

0

Mp(g′, s)ds
)p−1

dr

=
p

pk + 1

∫ t

0

(1 − r)k+1Mp(g′, r)(1 − r)(p−1)k
( ∫ r

0

Mp(g′, s)ds
)p−1

dr.

Then the assumption and Hölder’s inequality show that It ≤ CI
1/p′

t . Hence It ≤ C
for all t and the proof is finished. �

Taking the formulation in terms of the first derivative, it makes sense to look at the
extreme case p = ∞ of Bergman spaces as functions in H(D, X) such that the function
(1 − |z|)2f ′(z) belongs to L∞(m, X).

Definition 2.6. The Bloch space B(X) is defined as the set of all functions in
H(D, X) for which supz∈D (1 − |z|2) ‖f ′(z)‖ < ∞. Under the norm

‖f‖B(X) = ‖f(0)‖ + sup
z∈D

(1 − |z|2) ‖f ′(z)‖

it becomes a Banach space.
The little Bloch space B0(X) is the subspace of B(X) given by those functions for

which

lim
r→1

(1 − r2)M∞(f ′, r) = 0.

Remark 2.7. f ∈ B(X) if and only if x∗f ∈ B for all x∗ ∈ X∗.
And, interchanging the suprema, we have that

(2.4) ‖f‖B(X) ≈ sup
‖x∗‖=1

‖x∗f‖B

where x∗f(z) = 〈f(z), x∗〉.

Proposition 2.8. If f ∈ B(X) then ‖f‖B(X) = limr→1 ‖fr‖B(X).

Proof. Note that

(1 − |z|2)‖f ′
r(z)‖ = r(1 − |z|2)‖f ′(rz)‖ ≤ (1 − |rz|2)‖f ′(rz)‖

what implies that ‖fr‖B(X) ≤ ‖f‖B(X) for all 0 < r < 1.
Now, given ε > 0 take z0 ∈ D such that (1 − |z0|2)‖f ′(z0)‖ > ‖f‖B(X) − ε/2 and

take r0 verifying that r(1 − |z0|2)‖f ′(rz0)‖ > (1 − |z0|2)‖f ′(z0)‖ − ε/2 for any r > r0.
Hence

‖fr‖B(X) > ‖f‖B(X) − ε.

�
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Theorem 2.9. Let f ∈ B(X). The following are equivalent.
(i) f ∈ B0(X).
(ii) limr→1 ‖f − fr‖B(X) = 0.
(iii) f belongs to the closure of P(X).

Proof. (i)⇒(ii) Assume that lims→1(1 − s2)M∞(f ′, s) = 0. Note that for all 0 <
s < 1 we have

sup
|z|<1

(1 − |z|2)‖f ′(z) − rf ′(rz)‖ ≤ 2 sup
|z|>s

(1 − |z|2)M∞(f ′, |z|) + sup
|z|≤s

‖f ′(z) − f ′
r(z)‖.

Hence, given ε > 0 choose s0 < 1 such that sup|z|>s0
(1 − |z|2)M∞(f ′, |z|) < ε

4
and then use that f ′

r converges uniformly on compact sets to get r0 < 1 such that
sup|z|≤s0

‖f ′(z) − f ′
r(z)‖ < ε

2 for r > r0. Then ‖f − fr‖B(X) < ε for r > r0.
(ii)⇒(iii) Assume now that, for each ε > 0, there exists r0 < 1 such that ‖f −

fr0‖B(X) < ε/2. Now we can take a Taylor polynomial of fr0 PN = PN (fr0) such that
‖fr0 − PN‖H∞(X) < ε/2. Therefore

‖f − PN (fr0)‖B(X) ≤ ‖f − fr0‖B(X) + ‖fr0 − PN‖H∞(X) < ε.

(iii)⇒(i) Note that P(X) ⊂ B0(X), because if P ∈ P(X) then

(1 − r2)M∞(P ′, r) ≤ 2(1 − r) max
|z|≤1

‖P ′(z)‖.

Since B0(X) is closed the result is proved. �

3. Bergman kernels and projections.

Let us write K(z, w) = 1
(1−zw)2 and Kz(w) = K(z, w) for z, w ∈ D. That is

Kz =
∞∑

n=0

(n + 1)unzn.

Since ‖un‖Hp = 1, ‖un‖Bp ∼ n−1/p and ‖un‖B ∼ e−1 we have that, for each |z| < 1,
the series

∑∞
n=0(n + 1)unzn is absolutely convergent considered as a B, Hp or Bp-

valued function. This allows us to consider K : D → X given by K(z) = Kz as an
X-valued analytic function where X is either B, Hp or Bp for 1 ≤ p ≤ ∞.

We will call K(z, w) the Bergman kernel, and the map K : D → X the Bergman
function. Of course (n + 1)un are its Taylor coefficients, and its derivative is given by
K ′(z) =

∑∞
n=1(n + 1)nunzn−1, with K ′(z)(w) = 2w

(1−zw)3 .

In order to estimate the norms of K in different spaces we simply need the following
lemmas.

Lemma 3.1. (see [15], page 65) Let Jα(r) =
∫ 1

0
dt

|1−reit|α for α > 0. Then
(i) Jα(r) is bounded in (0, 1) for α < 1,
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(ii) Jα(r) ∼ log
1

1 − r
as r → 1 for α = 1, and

(iii) Jα(r) ∼ 1
(1 − r)α−1

as r → 1 for α > 1.

Lemma 3.2. (see [22] 4.2.2.]) Let Iα,β(r) =
∫
D

(1−|w|2)α

|1−rw|β dm(w) for β > 0 and
α > −1. Then

(i) Iα,β(r) is bounded in (0, 1) for β − α < 2,

(ii) Iα,β(r) ∼ log
1

1 − r
as r → 1 for β − α = 2, and

(iii) Iα,β(r) ∼ 1
(1 − r)β−α−2

as r → 1 for β − α > 2.

From these lemmas we get the next estimates as |z| → 1:

(3.1) ‖K(z)‖B1 ∼ log
1

1 − |z| and ‖K(z)‖Bp
∼ 1

(1 − |z|)2/p′ , for p > 1,

(3.2) ‖K(z)‖Hp ∼ 1
(1 − |z|)2−1/p

for p ≥ 1,

(3.3) ‖K ′(z)‖Bp
∼ 1

(1 − |z|)3−2/p
and ‖K ′(z)‖Hp

∼ 1
(1 − |z|)3−1/p

,

(3.4) ‖K(z)‖B ∼ 1
(1 − |z|)2 and ‖K ′(z)‖B ∼ 1

(1 − |z|)3 .

Proposition 3.3. Let 1 ≤ p, q < ∞. Let X ∈ {Bq, Hq,B, 1 ≤ q ≤ ∞}.
(i) The Bergman function K ∈ Bp(X) if and only if X = Bq and 2p < q′.
(ii) The Bergman function K ∈ B(X) if and only if X = B1.
(iii) The Bergman function K /∈ Hp(X).

Definition 3.4. (see [14] or [12]) For any Banach space X, we denote by M(X)
the Banach space of vector (X-valued) measures of bounded variation defined on the
Borel subsets of D, with norm given by ‖G‖1 = |G|(D).

For 1 < p < ∞. A measure G is said to have bounded p-variation, G ∈ Vp(m, X), if

‖G‖p = sup
π

(
∑

A∈π

‖G(A)‖p

m(A)p−1

) 1
p

< ∞,

where the supremum is taken over all finite partitions π of D into Borel sets of positive
measure.

For p = ∞ we have that G ∈ V∞(m, X) if there exists a constant C > 0 such that
‖G(A)‖ ≤ Cm(A) for any Borel set A, and its norm is given by

‖G‖∞ = sup{‖G(A)‖
m(A)

: m(A) > 0}.
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Remark 3.5. Given an X-valued simple measurable function f =
∑n

k=1 xkχAk
and

a X∗-valued measure G we denote by

〈f, G〉 =
n∑

k=1

x∗
kxk

where x∗
k = G(Āk) and Āk = {z ∈ D : z̄ ∈ Ak}.

It is not difficult to see that if G ∈ Vp(m, X∗) this extends to a linear functional
in Lp′(m, X) and actually we have the duality (Lp′(m, X))∗ = Vp(m, X∗) under this
pairing (see [14]).

If G is an X-valued measure of bounded variation, and φ =
∑n

k=1 αkχEk
is a simple

function then we define
∫

D

φdG =
n∑

k=1

αkG(Ek).

Since ‖
∫
D

φdG‖ ≤ ‖G‖1‖φ‖∞, using the density of simple functions we extend the
definition of

∫
D

φdG for any bounded function φ.

Definition 3.6. Let G ∈ M(X). We define the Bergman projection of the measure
G as the analytic function in the disc given by

PG(z) =
∫

D

Kz(w̄)dG(w) ∈ X.

Since supw∈D ‖Kz(w)‖ ≤ 1
(1−|z|)2 then PG(z) is well defined. Actually since the

series Kz =
∑∞

n=0(n+1)unzn is absolutely convergent in L∞(m) for each |z| < 1 then
for z ∈ D we have

PG(z) =
∞∑

n=0

xnzn ,

where xn = (n + 1)
∫
D

w̄ndG(w).

Remark 3.7. If f ∈ L1(m, X) then Pf(z) =
∫
D

f(w)Kz(w̄)dm(w).
In particular we have that Pf = f for f ∈ B1(X).

Indeed, if f(z) =
∑∞

n=0 xnzn then

(n + 1)
∫

D

f(w)w̄ndm(w) = (n + 1)
∫ 1

0

2rn+1(
1
2π

∫ π

−π

f(reiθ)einθdθ)dr

= (n + 1)(
∫ 1

0

2r2n+1dr)xn = xn.

This shows that the Taylor coefficients of f and Pf coincide.

Theorem 3.8. Let X be a complex Banach space and 1 < p < ∞. Then the
Bergman projection P is bounded from Vp(m, X) onto Bp(X).
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Proof. Since G ∈ Vp(m, X) there exists a nonnegative φ in Lp(m) such that d|G| =
φdm and ‖φ‖p = ‖G‖p (see [14], page 243).

Now, for each z ∈ D we have

‖PG(z)‖ = ‖
∫

D

Kz(w̄)dG(w)‖

≤
∫

D

∣
∣Kz(w̄)

∣
∣d|G|(w)

=
∫

D

∣
∣Kz(w̄)

∣
∣φ(w)dm(w),

Now to finish the proof, let us recall that if P ∗(f)(z) =
∫
D
|K(z, w̄)|f(w)dm(w) then

P ∗ : Lp(m) → Lp(m) defines a bounded operator for any 1 < p < ∞ (see for instance
[22] for a proof).

Therefore ‖PG‖Bp(X) ≤ ‖P ∗(φ)‖Lp ≤ C‖φ‖Lp = C‖G‖p. �

This allows, as in the scalar valued case, to get the duality result for vector-valued
Bergman spaces.

Theorem 3.9. Let X be a complex Banach space and 1 < p < ∞. Then (Bp(X))∗

is isometrically isomorphic to Bp′(X∗).

Proof. Let us define the linear operator J : Bp′(X∗) → (Bp(X))∗ given by

(Jg)(f) =
∫

D

g(z)f(z̄)dm(z).

It follows from Hölder’s inequatity that J is bounded. Let us see that it is injective.
If g verifies that Jg = 0, then for each n ∈ N and x ∈ X we have

(Jg)(fn) =
( ∫

D

g(z)z̄ndm(z)
)
x = 0,

where fn = un ⊗ x. This shows that
∫

D

g(z)z̄ndm(z) =
1

(n + 1)!
g(n)(0) = 0 for all

n ∈ N and hence g = 0.
Let us now show that J is surjective.
Given ξ ∈ (Bp(X))∗, the Hahn-Banach theorem gives an extension ξ̃ ∈ (Lp(m, X))∗

with the same norm. Using duality (see Remark 3.5) there exists a vector valued
measure G ∈ Vp′(m, X∗), with p′−variation equal to ‖ξ‖, for which ξ̃ϕ =

∫
D

ϕdG for
every ϕ ∈ Lp(m, X).

Let Gc be the measure defined by Gc(E) = G(Ē) for each measurable set E ⊂ D.
Clearly Gc has the same p′−variation as G, and

∫

D

ψ(z)dGc(z) =
∫

D

ψ(z̄)dG(z).

for any simple function ψ. Define g = PGc. From Theorem 3.8 we get g ∈ Bp′(X∗).
Let us see that Jg = ξ:
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For any f ∈ P(X) we can write

(Jg)(f) =
∫

D

PGc(z)f(z̄)dm(z) =
∫

D

( ∫

D

Kz(w̄)dGc(w)
)
f(z̄)dm(z)

=
∫

D

( ∫

D

Kz(w)dG(w)
)
f(z̄)dm(z) =

∫

D

( ∫

D

Kz(w)f(z̄)dm(z)
)
dG(w)

=
∫

D

( ∫

D

Kw(z̄)f(z)dm(z)
)
dG(w) =

∫

D

Pf(w)dG(w)

=
∫

D

f(w)dG(w) = ξ(f).

�

Proposition 3.10. P is not bounded neither on M(X) nor on V∞(m, X).

Proof. Assume that P is bounded on V∞(m, X). Using measures dG = (φ ⊗ x)dm
for φ ∈ L∞(m) and x ∈ X we also have that the corresponding Bergman projection
is bounded on L∞(m). In such case

sup
|z|<1

∣
∣
∫

D

Kz(w)φ(w)dm(w)
∣
∣ ≤ C‖φ‖∞

for all φ ∈ L∞(m). Hence sup|z|<1 ‖Kz‖L1(m) ≤ C, but we have previously noticed

that ‖Kz‖L1(m) = ‖K(z)‖B1 ∼ log
1

1 − |z| as |z| → 1.

The case p = 1 follows now looking at the adjoint operator. �

Theorem 3.11. The Bergman projection P defines a bounded operator from
V∞(m, X) onto B(X).

Proof. Let G belong to V∞(m, X). Therefore there exists C > 0 such that

|G|(A) ≤ Cm(A)

for all measurable sets A. Now from the Radon-Nikodym theorem there exists φ ∈
L∞(m) such that d|G| = φdm and ‖φ‖L∞ = ‖G‖∞.

On the other hand PG(z) =
∑∞

n=0 xnzn, where xn = (n + 1)
∫

D

z̄ndG(z).

Since (PG)′(z) =
∫

D

2w̄

(1 − w̄z)3
dG(w) we have

‖(PG)′(z)‖ ≤
∫

D

2
|1 − zw̄|3 φ(w)dm(w) ≤ C

‖φ‖L∞

1 − |z| .

Let us prove the surjectivity. Let f ∈ B(X) with f(0) = f ′(0) = 0.
If f(z) =

∑∞
n=2 xnzn, let g be given by

g(z) =
(1 − |z|2)f ′(z)

z̄
.
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We have that g ∈ L∞(m, X) since f ∈ B(X) and f ′(0) = 0. Now write Pg(z) =∑∞
n=0 ynzn and take n ≥ 1

yn = (n + 1)
∫

D

g(z)z̄ndm(z) = (n + 1)
∫

D

(1 − |z|2)f ′(z)z̄n−1dm(z)

= (n + 1)
∫

D

f ′(z)z̄n−1dm(z) − (n + 1)
∫

D

zf ′(z)z̄ndm(z) = xn.

Also y0 = 0. That is PG = f for dG = gdm.
The general case follows by writting f = f(0)+u1 ⊗ f ′(0)+ f1 where f1 is as above.

So if Pg1 = f1 then P (f(0) + u1 ⊗ f ′(0) + g1) = f . �

Let us recall that the Riesz projection R : Lp(T) → Hp(T) defined by R(f) =
∑

n≥0 f̂(n)un gives, as happens for the Bergman projection on Lp(m), a bounded op-
erator only for 1 < p < ∞. Nevertheless H1(T) is not isomorphic to any complemented
subspace of L1(T), so we cannot define any bounded projection from L1(T) to H1(T),
while we can define several bounded projections from L1(m) to B1 (see [22]). Let us
extend this also to the vector valued setting.

Definition 3.12. For any G ∈ M(X), we can also define

P̃G(z) =
∫

D

K̃z(w̄)dG(w),

where the kernel K̃z(w) =
2(1 − |w|2)
(1 − wz)3

=
∞∑

n=0

(n + 1)(n + 2)vn(w)zn and vn(w) =

(1 − |w|2)wn.
Hence P̃ (G)(z) =

∑∞
n=0 xnzn where xn = (n + 1)(n + 2)

∫
D
(1 − |w|2)w̄ndG(w).

Theorem 3.13. P̃ defines a bounded projection from M(X) onto B1(X).

Proof. Let us first see that B1(X) is left invariant under P̃ .
Let dG(w) = f(w)dm(w) for some f(z) =

∑∞
n=0 xnzn in B1(X). Let us show that

the Taylor coefficients of f and P̃ (f) coincide.
∫

D

(1 − |w|2)w̄ndG(w) =
∫

D

(1 − |w|2)w̄nf(w)dm(w)

=
∫ 1

0

2rn+1(1 − r2)(
1
2π

∫ π

−π

f(reiθ)e−inθdθ)dr

= (
∫ 1

0

2r2n+1(1 − r2)dr)xn

=
xn

(n + 1)(n + 2)
.



Arregui, Blasco, Vector-valued Bergman and Bloch spaces 11

Given now G ∈ M(X) we can write
∫

D

‖P̃G(z)‖dm(z) =
∫

D

∥
∥

∫

D

K̃z(w̄)dG(w)
∥
∥dm(z)

≤
∫

D

( ∫

D

|K̃z(w̄)|d|G|(w)
)
dm(z)

=
∫

D

(
∫

D

|K̃z(w̄)|dm(z))d|G|(w).

Using Lemma 3.2 for α = 0 and β = 3 we have
∫

D

|K̃z(w̄)|dm(z) =
∫

D

2(1 − |w|2)
|1 − wz|3 dm(z) ≤ C

and then ‖P̃G‖B1(X) ≤ C|G|(D). �

Theorem 3.14. B1(X) is isometrically isomorphic to B1⊗̂X.

Proof. Let P̃ and P̃X the respective projections from L1(m) and L1(m, X) onto B1

and B1(X) given above. By the properties of the projective tensor product, P̃⊗idX is a
projection from L1(m)⊗̂X onto B1⊗̂X. Then the usual isometry J between L1(m)⊗̂X
and L1(m, X) restricts to an operator J̃ from B1⊗̂X such that J̃(P̃ ⊗ idX) = P̃XJ,
and J̃ is an isometry between B1⊗̂X and B1(X). �

Remark 3.15. The Bloch space was first shown to be a dual space in [1]. In fact
one has that (B1)∗ = B and (B0)∗ = B1 (see [22]) under the pairing

〈f, g〉 =
∫

D

f(z)g(z)dm(z),

which is well defined for polynomials and then extends by density for functions in B1.

That it is well defined and bounded is seen as the first part in the following propo-
sition:

Proposition 3.16.
(i) If T ∈ L(B1, X) then fT (z) = T (Kz) ∈ B(X).
(ii) If f ∈ B(X), the linear operator defined by Tf (φ) =

∫
D

f(z)φ(z̄)dm(z) for each
polynomial φ extends to a bounded operator in L(B1, X).

(iii) B(X) is isomorphic to L(B1, X).

Proof. (i) Let g(z) =
2w

(1 − zw)3
. One easily sees that f ′

T (z) = T (gz) and ‖gz‖1 ∼
1/(1 − |z|). This shows that fT ∈ B(X).
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(ii) From Remark 2.7 x∗f ∈ B and then x∗Tf ∈ (B1)∗ for all x∗ ∈ X∗. Since
‖Tf (φ)‖ = sup‖x∗‖=1 |x∗Tf (φ)|, we have that Tf is bounded. Moreover

‖Tf‖ = sup
‖x∗‖=1

‖x∗Tf‖(B1)∗ ≈ sup
‖x∗‖=1

‖x∗f‖B ≈ ‖f‖B(X).

(iii) follows easily from (i) and (ii). �

We will explore further this interplay between functions and operators in section 4.

Corollary 3.17. (see [7]) B(X∗) is isomorphic to (B1(X))∗.

Proof. Since (X⊗̂Y )∗ = L(X, Y ∗), Proposition 3.16 and Theorem 3.14 give the
result. �

4. Vector-valued functions and operators.

Given two complex Banach spaces X and Y there are two natural ways of looking at
a map F : D×X → Y : it can be regarded as a map from X into Y D or, alternatively,
from D into Y X (and vice-versa). More precisely, given F : D×X → Y , we can define
Fx : D→ Y and Fz : X → Y by

Fx(z) = Fz(x) = F (z, x)

for any x ∈ X and z ∈ D.

Proposition 4.1. Let F : D × X → Y be a continuous map such that Fz is linear
for all z ∈ D. Then Fz ∈ L(X, Y ) for all z, and the norm ‖Fz‖ is locally bounded.

Proof. First statement is immediate. To see the second one, let us assume there
exists a compact set K ⊂ D where {||Fz||; z ∈ K} is not bounded. By the Banach-
Steinhaus theorem the set A = {x ∈ X; supz∈K ||F (z, x)||Y = ∞} will be dense in
X. Then we can take two sequences (xj) ⊂ X and (zj) ⊂ K such that xj → 0 and
||F (zj , xj)|| ≥ j. By the compactness of K, passing to a subsequence we see that we
can assume that (zj) converges to certain z0 ∈ K. But (zj , xj) tends to (z0, 0) and
F (z0, 0) = 0, so F cannot be continuous. �

Theorem 4.2. Let F : D × X → Y be continuous, such that Fz is linear for all
z ∈ D and Fx is analytic for all x ∈ X. Then

(i) The map z 
→ Fz is an L(X, Y )-valued analytic function.
(ii) The operator x 
→ Fx is linear, and continuous with respect to the topology of

the uniform convergence on compact sets on the space H(D, Y ).

Proof. For each n ≥ 0 we define

Tnx =
1

2πi

∫

|z|=r

Fz(x)
zn+1

dz.



Arregui, Blasco, Vector-valued Bergman and Bloch spaces 13

Of course Fx(z) =
∑∞

n=0(Tnx)zn.
It is clear that Tn is linear for each n ∈ N. By the previous proposition, there exists

Cr such that ‖Fz‖ ≤ Cr for all z ∈ D(0, r), and then ‖Tnx‖ ≤ Cr||x||/rn.
Now for each z ∈ D the series

∑
n≥0 Tnzn is absolutely convergent in L(X, Y ). Hence

z 
→
∑

n≥0 Tnzn defines an analytic function from D into L(X, Y ).
To see (ii), note that the linearity is immediate, so it suffices to see that if xj → 0

then Fxj → 0 uniformly on compact sets. If K ⊂ D(0, r) is compact and we take
s ∈ (r, 1) and C such that ‖Tn‖ ≤ C/sn, then for any z ∈ K,

‖Fxj
(z)‖Y ≤

∑

n≥0

‖Tn‖‖xj‖|z|n ≤ C‖xj‖
∑

n≥0

(
r

s
)n =

Cs

s − r
‖xj‖.

�

Definition 4.3. Let X, Y be two complex Banach spaces and let F (z) =
∑∞

n=0 Tnzn

be a function in H(D,L(X, Y )). We denote by TF : X → H(D, Y ) the linear operator
given by

(TF x)(z) = (F (z))(x) =
∞∑

n=0

(Tnx)zn.

Theorem 4.4.
B(L(X, Y )) is isomorphic to L(X,B(Y )) (via the map F 
→ TF ).

Proof. Let F ∈ B(L(X, Y )) we have that

sup
‖x‖=1

‖Fx(0)‖Y = ‖F (0)‖L(X,Y )

and also

sup
‖x‖=1

sup
z∈D

(1 − |z|2)‖F ′(z)x‖Y = sup
z∈D

sup
‖x‖=1

(1 − |z|2)‖F ′(z)x‖Y

= sup
z∈D

(1 − |z|2)‖F ′(z)‖L(X,Y ).

This shows that ‖TF ‖L(X,B(Y )) ≈ ‖F‖B(L(X,Y )).
Now given T ∈ L(X,B(Y )) we can define F : D×X → Y by F (z, x) = Tx(z). Now

by Theorem 4.2 we have that z 
→ Fz belongs to H(D,L(X, Y )). Since TF = T the
previous identities complete the proof. �

Proposition 4.5. Let 1 ≤ p < ∞. Bp(L(X, Y )) ⊂ L(X, Bp(Y )) (via the mapping
F 
→ TF ). In general Bp(L(X, Y )) �= L(X, Bp(Y )).

Proof. Given F ∈ Bp(L(X, Y )) we clearly have

‖TF x‖Bp(Y ) =
( ∫

D

‖F (z)x‖p
Y dm(z)

)1/p

≤ ‖x‖
( ∫

D

‖F (z)‖p
L(X,Y )dm(z)

)1/p = ‖F‖Bp(X)‖x‖ .
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To see that this inclusion is not surjective, let us take X = �1 and Y = C. The
inclusion becomes Bp(�∞) = Bp(L(�1,C)) ↪→ L(�1, Bp) = �∞(Bp).

Let us consider the function f(z) =
1

(1 − z)1/p
. Clearly

‖f‖p
Bp

∼
∫ 1

0

(
1
2π

∫ π

−π

1
|1 − reiθ|dθ)dr ∼

∫ 1

0

log
1

1 − r
dr < ∞.

Now let (ζn) be a dense sequence in the unit circle, and define fn(z) = f(ζnz) for each
n and F (z) = (fn(z))n∈N .

By the density of (ζn) one gets

‖F (z)‖�∞ = sup
n

|fn(z)| = sup
n

|f(ζnz)| = M∞(f, |z|) =
1

(1 − |z|)1/p

for every z ∈ D. Then, despite (fn) obviously belongs to �∞(Bp), we get that the
vector valued function F does not belong to Bp(�∞) since

∫ 1

0

Mp
p (F, r)dr =

∫ 1

0

1
1 − r

dr = ∞.

�

Let us now introduce an interesting ideal of operators that play an important role
in understanding the interpretation of vector-valued Bergman functions as operators.

Definition 4.6. Let X and Y be Banach spaces and 1 ≤ p < ∞. A linear operator
T ∈ L(X, Y ) is said to be p-summing (denoted T ∈ Πp(X, Y )) if there is a constant
C > 0 such that for every k ∈ N and x1, x2, . . . , xk ∈ X we have

(
k∑

i=1

‖T (xi)‖p)1/p ≤ C sup
‖x∗‖X∗≤1

(
k∑

i=1

|〈xi, x
∗〉|p)1/p.

Its norm is given by the infimum of the constants C satisfying the previous inequality
and is denoted by πp(T ).

The reader is referred to [13], [21], [19] or [18] for results and references on these
classes of operators. We simply include the following remark to be used in the sequel.

Remark 4.7. (see for instance [21]) Let (Ω,Σ, µ) be a measure space, let f : Ω → X
be a measurable function such that x∗f ∈ Lp(µ) for all x∗ ∈ X∗ and T ∈ Πp(X, Y ).
Then Tf : Ω → Y given by Tf(ω) = T (f(ω)) belongs to Lp(µ, Y ).

Proposition 4.8. Let 1 ≤ p < ∞. Then Bp(Πp(X, Y )) ⊂ Πp(X, Bp(Y )) (via the
mapping F 
→ TF ).

There exist infinite dimensional Banach spaces X and Y such that

Bp(Πp(X, Y )) �= Πp(X, Bp(Y )).
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Proof. Let x1, x2, ..., xn be elements in X. Then

n∑

k=1

‖TF xk‖p
Bp(Y ) =

n∑

k=1

∫

D

‖F (z)x‖p
Y dm(z)

=
∫

D

n∑

k=1

‖F (z)(xk)‖pdm(z)

≤
∫

D

πp
p(F (z)) sup

‖x∗‖=1

n∑

k=1

|〈x∗, xk〉|pdm(z)

= ‖F‖p
Bp(Πp(X,Y )) sup

‖x∗‖=1

n∑

k=1

|〈x∗, xk〉|p.

To see that the embedding is not surjective even for infinite dimensional Banach
space we can take p = 2, X = �1 and Y = �2. It is well known (see [18]) that
Π2(�1, H) = L(�1, H) for any Hilbert space (actually Π1 ⊆ Π2, and Grothendieck
theorem (see [13] or [18]) even says that Π1(�1, H) = L(�1, H)). Hence, in our situation
Π2(X, Y ) = L(X, Y ) and Π2(X, B2(Y )) = L(X, B2(Y )). Therefore we simply need to
show that B2(�∞(�2)) is strictly contained in �∞(B2(�2)).

Let us define now fn(z) = 1
log(n+1)

∑∞
k=1(1 − 1/n)kekzk where ek is the canonical

basis of �2.
Using (2.1) one has that

‖fn‖B2(�2) =
1

log(n + 1)
(

∞∑

k=1

(1 − 1/n)2k

k + 1
)1/2.

Hence supn ‖fn‖B2(�2) < ∞.
On the other hand, for all n ∈ N

‖fn(z)‖�2 =
1

log(n + 1)
(

∞∑

k=1

(1 − 1/n)2k|z|2k)1/2

≥ C
1

log(n + 1)
(

∞∑

k=n

|z|2k)1/2

≥ C
1

log(n + 1)
|z|n

(1 − |z|2)1/2
.

This shows that F /∈ B2(�∞(�2)) = B2(Π2(X, Y )) while (fn) ∈ �∞(B2(�2)) and
therefore TF ∈ Π2(X, B2(Y )). �

Definition 4.9. Let X, Y be two complex Banach spaces and let F (z) =
∑∞

n=0 Tnzn

be a function in H(D,L(X, Y )). We denote by SF : P(X) → Y the linear operator
given by

SF (g) =
∫

D

F (z)(g(z̄))dm(z) =
∑

n≥0

Tn(xn)
n + 1
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for g =
∑

n≥0 un ⊗ xn.

Theorem 4.10. (see [7]) B(L(X, Y )) = L(B1(X), Y ) (via the map F 
→ SF ) with
equivalent norms.

Proof. Theorem 3.14, Proposition 3.16 and L(X⊗̂Y, Z) = L(X,L(Y, Z)) imply that

L(B1⊗̂X, Y ) = L(B1,L(X, Y )) = B(L(X, Y )).

It is rather clear that the mapping which gives the isomorphism is actually F 
→ SF .
�

Proposition 4.11. Let 1 < p < ∞ and let X and Y be complex Banach spaces.
Then Bp(L(X, Y )) (resp. B0(L(X, Y )) ) is isomorphically embedded in K(Bp′(X), Y )
(resp. K(B1(X), Y ) ), via the map F 
→ SF .

Proof. For the case F ∈ B0(L(X, Y )), Theorem 4.10 gives ‖F‖B(L(X,Y )) ≈ ‖SF ‖.
In the case F ∈ Bp(L(X, Y )). Clearly

‖SF (g)‖ ≤
∫

D

‖F (z)‖‖g(z̄)‖dm(z) ≤ ‖F‖Bp(L(X,Y ))‖g‖Bp′ (X).

So ‖SF ‖ ≤ C‖F‖Bp(L(X,Y )). The compactness of SF in both cases follows from the
fact that P(X) is dense in the corresponding spaces and for polynomials F then SF

is finite rank operator.
�

Remark 4.12. Let X, Y be two complex Banach spaces. If T : P(X) → Y is a
linear operator such that the linear operators Tn : X → Y given by Tn(x) = T (un⊗x)
are bounded and lim supn→∞ ‖Tn‖1/n ≤ 1 then we can define the L(X, Y )-valued
analytic function

FT (z) =
∑

n≥0

(n + 1)Tnzn.

It is worth mentioning that this is the inverse map of F 
→ SF , so that FSF
= F

and SFT
= T .

Definition 4.13. Let 1 < p < ∞, and let X be a complex Banach space and
T ∈ L(Bp′ , X). We define fT ∈ H(D, X) given by

fT (z) = T (Kz).

Remark 4.14. T ∈ L(B1, X) if and only if fT ∈ B(X) (see Proposition 3.16).
If p > 2 and T ∈ L(Bp′ , X) then fT ∈ Bq(X) for 1 ≤ q < p

2 (use Proposition 3.3).
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We would like to find some properties of T to get that fT ∈ Bp(X).
For that purpose we need to use the following class of operators.

Definition 4.15. (see [6] and [5]) Let E be a Banach lattice and Y a Banach
space. A linear operator T ∈ L(E, Y ) is said to be positive p-summing (denoted
T ∈ Λp(E, Y )) if there is a constant C > 0 such that for every k ∈ N and positive
elements e1, e2, . . . , ek ∈ E we have

(
k∑

i=1

‖T (ei)‖p)1/p ≤ C sup
‖e∗‖E∗≤1

(
k∑

i=1

|〈ei, e
∗〉|p)1/p.

Its norm is given by the infimum of the constants C satisfying the previous inequality
and denoted by λp(T ).

Remark 4.16. In the case p = 1 these operators are also known as cone absolutely
summing (c.a.s) operators (see [20]).

In this case, T ∈ Λ1(E, Y ) if and only if there is a constant C > 0 such that for
every k ∈ N and positive elements e1, e2, . . . , ek ∈ E we have

(4.1)
k∑

i=1

‖T (ei)‖ ≤ C‖
k∑

i=1

ei‖.

It is easy to see that Λp1(E, Y ) ⊂ Λp2(E, Y ) if p1 < p2, and it was shown in [5] that,
for E = Lp(µ), we have Λr(E, Y ) = Λ1(E, Y ) for all 1 ≤ r ≤ p′.

Theorem 4.17. Let 1 < p < ∞ and X a Banach space.
(i) If T ∈ L(Bp′ , X) and fT ∈ Bp(X) then T is compact.
(ii) If T ∈ Πp(Bp′ , X) then fT ∈ Bp(X).
(iii) If T ∈ Λp(Lp′(m), X) and T1 denotes its restriction to Bp′ then fT1 ∈ Bp(X).

Proof. To see (i) we show that T = SfT
and then (ii) in Proposition 4.11 gives the

compactness.
Indeed, since fT (z) = T (Kz) =

∑∞
n=0(n + 1)Tunzn, we have for any m ∈ N

SfT
(um) =

∫

D

∞∑

n=0

(n + 1)Tunz̄nzmdm(z) = T (um).

To prove (ii) let us first observe that if φ ∈ Bp

〈K(z), φ〉 =
∫

D

Kz(w)φ(w̄)dm(w) = φ(z).

Hence it follows that the function K : D → Bp′ verifies, for all φ ∈ (Bp′)∗, that z 
→
〈K(z), φ〉 belongs to Lp(m). Now Remark 4.7 gives that fT (z) = T (Kz) ∈ Lp(m, X).

To see (iii) let us observe first that the measure G(E) = T (χ
E
) belongs to Vp(m, X).
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Indeed, for any partition π we have

∑

A∈π

‖G(A)‖p

m(A)p−1
=

∑

A∈π

‖T (
χA

m(A)1/p′ )‖p

≤ λp
p(T ) sup{

∑

A∈π

|(
∫

A

g(z)dm(z)
1

m(A)1/p′ |p : ‖g‖p = 1}

= λp
p(T ) sup{‖

∑

A∈π

∫
A

g(z)dm(z)
m(A)

χA‖p
p : ‖g‖p = 1}

≤ λp
p(T )

Given z ∈ D we get, taking Gc(E) = G(Ē),

fT1(z) = T (Kz) =
∫

D

Kz(w)dG(w) =
∫

D

Kz(w̄)dGc(w) = PGc(z),

and then FT = PGc ∈ Bp(X) according to Theorem 3.8. �

Theorem 4.18. Let 1 < p < ∞, and let X be a complex Banach space and F ∈
B1(X). Then F ∈ Bp(X) if and only if the linear operator ΦF (φ) =

∫
D

F (z)φ(z̄)dm(z)
defined on the subspace of simple functions extends to an operator in Λp(Lp′(m), X).

Moreover ‖F‖Bp(X) ∼ λp(ΦF ).

Proof. Let us assume that F ∈ Bp(X), which ensures that ΦF ∈ L(Lp′(m), X).
Now take positive functions φ1, φ2, ..., φn ∈ Lp′(m). We have that

n∑

k=1

‖ΦF φk‖p =
n∑

k=1

|
∫

D

F (z̄)φk(z)dm(z)|p

≤ ‖F‖p
Bp(X)

n∑

k=1

( ∫

D

‖F (z)‖
‖F‖Bp(X)

φk(z)dm(z)
)p

≤ ‖F‖p
Bp(X) sup

‖ψ‖p=1

n∑

k=1

|〈ψ, φk〉|p.

This shows that λp(ΦF ) ≤ C‖F‖Bp(X).
To see the converse let us observe that fS = F , where S denotes the restriction of

ΦF to Bp′ . Indeed, for all z ∈ D

S(Kz) = ΦF (Kz) =
∫

D

F (w)Kz(w̄)dm(w) = F (z).

Now (iii) in Theorem 4.17 gives that F ∈ Bp(X) and ‖F‖Bp(X) ≤ Cλp(ΦF ).
�

From Theorem 3.16 we have that B(X) = L(B1, X). The next result covers the
cases 1 < p < ∞.



Arregui, Blasco, Vector-valued Bergman and Bloch spaces 19

Corollary 4.19. Let 1 < p < ∞. Then

Bp(X) = {T : Bp′ → X : TP ∈ Λp(Lp′(m), X))}.

Moreover λp(TP ) ≈ ‖fT ‖Bp(X).

Proof. If TP is positive p-summing then (iii) in Theorem 4.17 gives that F ∈ Bp(X)
for F (z) = T (Kz).

To see the converse, assume that F ∈ Bp(X). Let ΦF as in Theorem 4.18 and let T
be its restriction to Bp′ . Now take the vector measure defined by G(E) = T (P (χE))
and denote Gc(E) = G(Ē) for all measurable set E. We have that

Gc(E) = T
( ∫

Ē

K(., w̄)dm(w)
)

= T
( ∫

E

K(., w)dm(w)
)

=
∫

E

T (K(., w))dm(w) =
∫

E

Φ̃F (Kw)dm(w) =
∫

E

F (w)dm(w).

Therefore dGc = Fdm.
This obviously implies that TP (φ) =

∫
D

F (z)φ(z̄)dm(z) for all φ ∈ Lp′(m), and, in
particular

‖TP (φ)‖ ≤
∫

D

‖F (z)‖φ(z̄)dm(z)

for all positive φ ∈ Lp′(m).
A simple computation using (4.1) now shows that TP is cone abolutely summing

and hence also positive p-summing. �

5. Bp(X) is complemented in �p(X).

A classical result in the theory of Bergman spaces is the isomorphism between Bp

and �p for each p ≥ 1 (see [21]). It is enough to see that Bp is isomorphic to a
complemented subspace of �p, since then it is automatically isomorphic to �p. In the
vector case, Theorem 3.14 gives the isomorphism for p = 1:

Theorem 5.1. For any complex Banach space X, B1(X) is isomorphic to �1(X).

Proof. B1(X) is isomorphic to B1⊗̂X, and then to �1⊗̂X = �1(X). �

As for p > 1, we will show next that Bp(X) is isomorphic to a complemented
subspace of �p(X). The proof follows similar ideas to the ones used to get a so-called
atomic decomposition of Bp (see [22], theorem 4.4.6).

For each z ∈ D, let ϕz the involutive Möbius transformation fixing the unit disc and
verifying ϕz(0) = z and ϕz(z) = 0, that is

ϕz(w) =
z − w

1 − z̄w
.
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The Bergman metric between z and w is defined by

β(z, w) =
1
2

log
1 + |ϕz(w)|
1 − |ϕz(w)| .

Note that |ϕz(w)| is the hyperbolic tangent of β(z, w).
This distance β is not bounded on D, and for any z ∈ D and r > 0 the β-ball

E(z, r) = {w ∈ D; β(w, z) < r}

is the euclidean disc with center
1 − s2

1 − s2|z|2 z and radius
1 − |z|2

1 − s2|z|2 s, where s = tanh r.

One relevant connection between Bergman metric and Bloch spaces is the following
result:

Theorem 5.2. (see [22], 5.1.6.) β(z, w) ∼ sup{|f(z) − f(w)|; ‖f‖B ≤ 1} (with
constants independent from z and w in D).

In particular this allows us to get the following remark.

Corollary 5.3. If F ∈ B(X) then F : D→X is a Lipschitz map with respect to the
Bergman metric.

Proof. A look at Proposition 3.16 gives that F (z) = T (Kz) for some T ∈ L(B1, X).
Hence

‖F (z) − F (w)‖ ≤ C‖T‖‖Kz − Kw‖B1

≤ C‖T‖ sup |ξ(Kz − Kw)|; ξ ∈ B∗
1}

∼ sup{|f(z) − f(w)|; ‖f‖B = 1}
∼ β(z, w).

�

The key point in order to relate Bp(X) to �p(X) is the use of sequences in D with
good separation properties with respect to Bergman metric. The next lemma resumes
some well known results (see for instance [22]):

Lemma 5.4. There exists a number N ∈ N such that, for any r ≤ 1, we can take a
sequence (λn) in D and a decomposition of D into a disjoint union of measurable sets
En such that

(i) E(λn, r/4) ⊆ En ⊆ E(λn, r) for every n,
(ii) every point in D belongs to no more than N discs from {E(λn, 2r)},
(iii) |En| ∼ |E(λn, r)| ∼ |E(λn, 2r)| ∼ (1−|λn|2)2 ∼ |E(w, r)| for any w ∈ E(λn, 2r)

and
(iv) 1 − |λn|2 ≤ C(1 − |z|2) for each z ∈ E(λn, 2r).

The well known fact that, for all 0 < p < ∞, |f |p is a subharmonic function with
respect to β-balls for any analytic function f , also holds true in the vector valued
setting.
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Lemma 5.5. Let X be any complex Banach space, let f ∈ H(D, X) and p > 0.
There exists a constant C > 0 such that we have

‖f(z)‖p ≤ C

|E(z, r)|

∫

E(z,r)

‖f(w)‖pdm(w)

for any r ≤ 1 and z ∈ D.

Proof. From the scalar valued case we get C > 0 such that

|x∗f(z)|p ≤ C

|E(z, r)|

∫

E(z,r)

|x∗f(w)|pdm(w) ≤ C

|E(z, r)|

∫

E(z,r)

‖f(w)‖pdm(w)

for all r ≤ 1 and z ∈ D.
Now take the supremum over the unit ball of X∗ to finish the proof. �

Corollary 5.6. Let r < 1 and p > 1, and let X be a Banach space. Let Qr =
Qr,p,X : Bp(X) → Lp(m, X) be defined by

Qr(f) =
∞∑

n=1

f(λn)χEn
.

Then Qr is a bounded operator.

Proof. By Lemmas 5.5 and 5.4
∞∑

n=1

|En|‖f(λn)‖p ≤ C

∞∑

n=1

∫

E(λn,r)

‖f(z)‖pdm(z)

=
∫

D

‖f(z)‖p
∞∑

n=1

χ
E(λn,r)(z)dm(z)

≤ CN

∫

D

‖f(z)‖pdm(z).

This shows the boundedness of Qr,p,X . �

Lemma 5.7. Let r ≤ 1. The linear operator

f 
→
∞∑

n=1

(f − f(λn))χ
En

is bounded from Bp(X) to Lp(m, X), and its norm is less or equal than C tanh r.

Proof. Let z ∈ En, and observe that

‖f(z) − f(λn)‖ =
∥
∥

∫

[λn,z]

f ′(w)dw
∥
∥ ≤

(
sup

w∈[λn,z]

‖f ′(w)‖
)
|z − λn|.

Since E(w, r) ⊂ E(λn, 2r) for any z ∈ En and w ∈ [λn, z], by Lemma 5.5 and the
properties of (λn) we have that

‖f ′(w)‖p ≤ C

|E(w, r)|

∫

E(w,r)

‖f ′‖pdm ≤ C

|En|

∫

E(λn,2r)

‖f ′‖pdm.
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Hence if w ∈ [λn, z]

‖f(z) − f(λn)‖p ≤ C

|En|
( ∫

E(λn,2r)

‖f ′‖pdm
)
|z − λn|p.

Let s = tanh r. As E(λn, r) is a disc with center z0 =
1 − s2

1 − s2|λn|2
λn and radius

R =
1 − |λn|2

1 − s2|λn|2
s, for any z in it

|z − λn| ≤ R + |λn − z0| =
1 − |λn|2

1 − s2|λn|2
s(1 + s|λn|) ≤ Cs(1 − |λn|2),

and then

‖f(z) − f(λn)‖p ≤ C

|En|
sp

( ∫

E(λn,2r)

‖f ′‖pdm
)

(1 − |λn|2)p.

Therefore
∫

En

‖f(z) − f(λn)‖pdm(z) ≤ Csp(1 − |λn|2)p

∫

E(λn,2r)

‖f ′‖pdm.

We use now that (1 − |λn|2)p ≤ C(1 − |z|2)p for each z ∈ E(λn, 2r), and then
∫

En

‖f(z) − f(λn)‖pdm(z) ≤ Csp

∫

E(λn,2r)

(1 − |z|2)p‖f ′(z)‖pdm(z).

Hence

∞∑

n=1

∫

En

‖f(z) − f(λn)‖pdm(z) ≤ CNsp

∫

D

(1 − |z|2)p‖f ′(z)‖pdm(z),

which is bounded by Csp‖f‖p
Bp(X) in view of Theorem 2.5. �

Corollary 5.8. There exist r0 > 0 such that PQr,p,X : Bp(X) → Bp(X) is an
isomorphism for all r < r0, 1 < p < ∞ and all Banach spaces X.

Proof. We shall show this by noting that, if I denotes the identity in Bp(X), then
‖I − PQr‖ tends to zero as r → 0. Recall that then, if r is such that ‖I − PQr‖ < 1,
the inverse of PQr is just

∑∞
n=0(I − PQr)n.

Now from Lemma 5.7 one has that I − PQr ∈ L(Bp(X), Bp(X)) and ‖I − PQr‖ ≤
C‖P‖ tanh r. �

Theorem 5.9. For every p > 1 and every complex Banach space X, the Bergman
space Bp(X) is isomorphic to a complemented space of �p(X).
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Proof. We take r small enough to have that PQr is an isomorphism on Bp(X). Then
the identity in Bp(X) factorizes as I = (PQr)−1PQr. Now write Q̃r : Bp(X) → �p(X)
for the operator given by

Q̃r(f) =
(
|En|1/pf(λn)

)

and J : �p(X) → Lp(m, X) for the one given by

J
(
(xn)

)
=

∞∑

n=1

|En|−1/pxnχEn
.

Since J is an embedding and Q̃r is bounded due to Corollary 5.6 we can factorize the
identity as I = (PQr)−1PJQ̃r and therefore Bp(X) is isomorphic to the image of Q̃r

in �p(X). �

Theorem 5.10. Let r < 1, p > 1 and X be a Banach space. Let Pr = Pr,p,X the
linear operator Pr : Vp(m, X) → Bp(X) defined by

Pr

(
G

)
=

∞∑

n=1

Kλn ⊗ G(Ēn).

Then the linear operator Pr is bounded.
Moreover ‖Pr,p,X‖ = ‖Qr,p′,X∗‖.

Proof. For any polynomial g ∈ P(X∗) we have that

〈
∞∑

n=1

Kλn ⊗ G(Ēn), g〉 =
∞∑

n=1

G(Ēn)g(λn) = 〈
∞∑

n=1

g(λn)χEn , G〉 = 〈Qr,p′,X∗(g), G〉.

Since Vp(m, X) is isometrically embedded in (Lp′(m, X∗))∗ it follows that

|〈
∞∑

n=1

Kλn ⊗ G(En), g〉| ≤ ‖G‖Vp(m,X)‖
∞∑

n=1

g(λn)χEn‖Lp′ (m,X∗).

Now Corollary 5.6 gives that ‖Pr,p,X‖ ≤ ‖Qr,p′,X∗‖.
A similar argument shows that Q∗

r,p′,X = Pr,p,X∗ , giving the other inequality. �

Let us now compare P̄r and the Bergman projection on Vp(m, X).

Theorem 5.11. Let p > 1 and X be a Banach space. Then
(i) limr→0 Pr = P .
(ii) The restriction of Pr to Bp(X) given by

Pr

(
g
)

=
∞∑

n=1

Kλn ⊗
∫

Ēn

g(z)dm(z)

is an isomorphism for r close enough to zero.
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Proof. An easy computation shows that 〈P (G), g〉 = 〈g, G〉 for any G ∈ Vp(m.X)
and g ∈ P(X∗).

Therefore for all G ∈ Vp(m, X) and g ∈ P(X∗) we have

〈(P − Pr)(G), g〉 = 〈g −
∞∑

n=1

g(λn)χEn , G〉.

Now applying Lemma 5.7 we get ‖P − Pr‖ ≤ C tanh r and (i) follows.
(ii) is proved the same way as Corollary 5.8. �

Note that β(z, w) = β(z̄, w̄), and then (λ̄n) and (Ēn) satisfy the same estimates and
properties as (λn) and (En).

Theorem 5.12. Let X be a Banach space and p > 1. For each f ∈ Bp(X) we
denote

Sr(f) =
∞∑

n=1

|En|Kλn
⊗ f(λ̄n).

Then f = limr→0 Sr(f) in Bp.

Proof. We shall see that Sr = Sr,p,X : Bp(X) → Bp(X) are bounded operators and
limr→0 Sr = I.

Let us denote by Q̄r the operator associated to (λ̄n) and (Ēn), that is Q̄r(f) =∑∞
n=1 f(λ̄n)χĒn

. We actually have Sr = PrQ̄r and

‖I − PrQ̄r‖ ≤ ‖I − PQ̄r‖ + ‖PQ̄r − PrQ̄r‖ ≤ ‖I − PQ̄r‖ + ‖P − Pr‖‖Qr‖.

The result follows from Corollary 5.8 and Theorem 5.11. �
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