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Summary. Let X be a complex Banach space and let H2(D, X) stand for the space
of X-valued analytic functions in the unit disc such that sup0<r<1

R 2π

0
‖F (reit)‖2 dt

2π
<

∞. It is shown that a function F belongs to the unit ball of H2(D, X) if and only
if there exist f ∈ H∞(D, X) and φ ∈ H∞(D) such that ‖f(z)‖2 + |φ(z)|2 ≤ 1 and

F (z) = f(z)
1−zφ(z)

for |z| < 1.

1 Introduction.

Let 1 ≤ p ≤ ∞, T = {z ∈ C : |z| = 1}, D = {z ∈ C : |z| < 1}, let X be
a complex Banach space and denote by Hp(T, X), 1 ≤ p ≤ ∞, the set of
functions f ∈ Lp(T, X) such that f̂(n) = 0 for n < 0, and by Hp(D, X) the
set of holomorphic functions F : D → X such that, for 1 ≤ p <∞,

‖F‖Hp(D,X) = sup
0<r<1

( ∫ 2π

0

‖F (reit)‖p dt

2π

)1/p

<∞ (1)

and
‖F‖H∞(D,X) = sup

|z|<1

‖F (z)‖ <∞.

Is is elementary to see that Hp(T, X) ⊆ Hp(D, X) by means of the Poisson
integral. That is to say if f ∈ Hp(T, X) then F (reit) = Pr ∗f(eit) ∈ Hp(D, X)
and with the same norm. Actually Hp(T, X) can be identified with the closure
of the polynomials in Hp(D, X) for 1 ≤ p < ∞. It is a well known fact that
for X = C both the spaces Hp(T) = Hp(D) for 1 ≤ p ≤ ∞ due to the
fact that functions in Hp(D) do have non-tangential boundary values almost
everywhere which belong to Hp(T). The reader should be aware that this is
not longer true for infinite dimensional Banach spaces. Spaces satisfying that
any function in H∞(D, X) has radial boundary limits almost everywhere are
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said to have the analytic Radon Nikodym property (ARNP for short). This
property was first considered by A.V. Bukhvalov and A.A. Danilevich (see
[3] or [2]) and it was shown to be equivalent to the fact that functions in
Hp(D, X) for some (and equivalently for all) 1 ≤ p <∞ have radial boundary
limits a.e. It was observed that the well known Radon-Nikodym property
(RNP for short) (see [4] for the definition) was actually equivalent to the fact
that any X-valued bounded harmonic functions in the unit disc has boundary
limits a.e. Hence RNP implies ARNP. It was shown that X = c0 fails to have
ARNP and that L1(µ) is a space with ARNP but without RNP. The fact that
a Hilbert space H has the ARNP follows, among many other ways, from the
description of functions F ∈ H2(D,H) as F (z) =

∑∞
n=0 hnz

n where hn ∈ H
and

‖F‖H2(T,H) = ‖F‖H2(D,H) = (
∞∑

n=0

‖hn‖2)1/2.

One can also consider the weak vector-valued Hardy spaces, denoted by
Hp

weak(T, X) and Hp
weak(D, X), consisting in weakly measurable functions f :

T → X such that 〈f(eit), x∗〉 ∈ Hp(T) for any x∗ ∈ X∗ and X-valued analytic
functions F : D → X such that 〈F (z), x∗〉 ∈ Hp(D) for any x∗ ∈ X∗, where
we use the notation 〈·, ·〉 for the duality pairing. Of course, from the scalar
valued result, one has that Hp

weak(T, X) = Hp
weak(D, X). The norm in the

space is given by

‖F‖Hp
weak(D,X) = sup

‖x∗‖=1

‖〈F (·), x∗〉‖Hp . (2)

Actually in the case of dual spaces X∗ we can even consider another spaces
Hp

weak∗(T, X) and Hp
weak∗(D, X) given by w∗-measurable functions f : T →

X∗ such that 〈f(eit), x〉 ∈ Hp(T) for any x ∈ X and X∗-valued analytic
functions F : D → X∗ such that 〈F (z), x〉 ∈ Hp(D) for any x ∈ X∗. Again we
have Hp

weak∗(T, X∗) = Hp
weak∗(D, X∗) and the norm now is given by

‖F‖Hp
weak∗ (D,X∗) = sup

‖x‖=1

‖〈F (·), x〉‖Hp . (3)

Clearly the Hp
weak(D, X∗) is embedded into Hp

weak∗(D, X∗) and both
spaces coincide for reflexive spaces X but, in general, they are different.

For p = 2 and X = H a Hilbert space, one has the following useful
description: F ∈ H2

weak(D,H) if F (z) =
∑∞

n=0 hnz
n where hn ∈ H and

‖F‖H2
weak(D,H) = ‖F‖H2

weak∗ (D,H) = sup
‖h‖=1

(
∞∑

n=0

|〈hn, h〉|2)1/2.

The case Hp
weak∗(D, X∗) is a particular instance of a more general notion

that is defined for operator-valued functions. Let 1 ≤ p ≤ ∞, let X1, X2 be
Banach spaces and X = L(X1, X2) and denote by Hp

strong(T,L(X1, X2)) the
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set of functions f : T → L(X1, X2) such that eit → f(eit)(x1) ∈ Hp(T, X2)
for all x1 ∈ X1 and we write

‖f‖Hp
strong(T,L(X1,X2)) = sup

‖x1‖=1

‖f(·)(x1)‖Lp(T,X2). (4)

Similarly we denote by Hp
strong(D,L(X1, X2)) the set of holomorphic func-

tions F : D → L(X1, X2) such that z → F (z)(x1) ∈ Hp(D, X2) for all x1 ∈ X1

and we write

‖F‖Hp
strong(D,L(X1,X2)) = sup

‖x1‖=1

‖F (·)(x1)‖Hp(D,X2). (5)

Of course Hp
strong(T,L(X1, X2)) ( Hp

strong(D,L(X1, X2)) as it is shown
by taking X1 = C and X2 = X not having the analytic Radon-Nikodym
property.

It is also elementary to see that, for 1 ≤ p ≤ ∞,

Hp(D,L(X1, X2)) ⊆ Hp
strong(D,L(X1, X2)) ⊆ Hp

weak(D,L(X1, X2)) (6)

with continuous inclusions. Actually in the case p = ∞, taking into account
that

‖T‖ = sup
‖x1‖=1

‖T (x1)‖ = sup
‖x1‖=1,‖x∗2‖=1

|〈T (x1), x∗2〉|

for T ∈ L(X1, X2), one can conclude that

H∞(D,L(X1, X2)) = H∞
strong(D,L(X1, X2)) = H∞

weak(D,L(X1, X2)) (7)

Let us see the expressions of the norms in these different spaces in the
particular case X = L(H,H′) where H and H′ are Hilbert spaces.

Let F : D → L(H,H′) be an analytic function given by F (z) =
∑∞

k=0 Tkz
k

where Tk ∈ L(H,H′).
F ∈ H2(D,L(H,H′)) if and only if

‖F‖H2(D,L(H,H′)) = sup
0<r<1

(
∫ 2π

0

‖
∞∑

k=0

Tkr
keikt‖2L(H,H′)

dt

2π
)1/2 <∞. (8)

F ∈ H2
strong(D,L(H,H′)) if and only if

‖F‖H2
strong(D,L(H,H′)) = sup

‖h‖=1

(
∞∑

k=0

‖Tk(h)‖2)1/2 <∞. (9)

F ∈ H2
weak∗(D,L(H,H′)) if and only if

‖F‖H2
weak∗ (D,L(H,H′)) = sup

‖h‖=1,‖h′‖=1

(
∞∑

k=0

|〈Tk(h), h′〉|2)1/2 <∞ (10)

which follows from the fact (H⊗̂H′)∗ = L(H,H′).
Let us mention that for infinite dimensional Hilbert spaces the Hardy

spaces considered above are different.
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Proposition 1. Let H and H′ be separable infinite dimensional Hilbert spaces.
Then

H2(T,L(H,H′)) ( H2(D,L(H,H′)).

Proof. Let (ek) and (e′k) be orthonormal basis ofH andH′, and write ek⊗e′k ∈
L(H,H′) for the rank 1 operator given by h→ 〈h, ek〉e′k. Define Tk = ek ⊗ e′k
and F (z) =

∑∞
k=0(ek ⊗ e′k)zk. Therefore

F (z)(h) =
∑

k

〈h, ek〉zke′k.

It follows that ‖F (z)‖L(H,H′) = supn≥0 |zn| = 1. This shows that F is
bounded and therefore F ∈ H2(D,L(H,H′).

To see that F /∈ H2(T,L(H,H′)) note that if there exists limr→1 F (reit) =
F (eit) in L(H,H′) for some t ∈ [0, 2π) then F (eit)(h) =

∑
k〈h, ek〉eikθe′k. On

the other hand F (z) is compact for any z ∈ D (because (zn) ∈ c0 for |z| < 1)
but F (eit) is not compact. �

Proposition 2. Let H and H′ be separable infinite dimensional Hilbert spaces.
Then

H2(D,L(H,H′)) ( H2
strong(D,L(H,H′)) ( H2

weak(D,L(H,H′)).

Proof. Fix h′ ∈ H′ with ‖h′‖H′ = 1 and (ek) an orthonormal basis ofH. Define
Tk = ek ⊗ h′ and F (z) =

∑∞
k=0(ek ⊗ h′)zk = (

∑∞
k=0 ekz

k)⊗ h′. Therefore

F (z)(h) = (
∞∑

k=0

〈ek, h〉zk)h′

for any h ∈ H. This implies ‖F (z)‖L(H,H′) = 1
(1−|z|2)1/2 and ‖F (z)(h)‖H′ =

|
∑∞

k=0〈ek, h〉zk)| which shows that F ∈ H2
strong(D,L(H,H′)) but F /∈

H2(D,L(H,H′)).
Fix h0 ∈ H with ‖h0‖H = 1 and (e′k) an orthonormal basis of H′ . Define

Tk = h0 ⊗ e′k and F (z) =
∑∞

k=0(h0 ⊗ e′k)zk = h0 ⊗ (
∑∞

k=0 z
ke′k). Therefore

F (z)(h) = 〈h0, h〉(
∞∑

k=0

zke′k)

for any h ∈ H. This gives ‖F (z)(h)‖H′ = |〈h0, h〉| 1
(1−|z|2)1/2 and |〈F (z)(h), h′〉| =

|〈h0, h〉||
∑∞

k=0〈e′k, h′〉zk)|. Hence F ∈ H2
weak(D,L(H,H′)) but F /∈ H2

strong(D,L(H,H′)).
�

Our objective is to describe the elements in the unit ball of these spaces
for the case p = 2.

Our starting point is the following factorization result due D. Sarason for
scalar-valued functions.
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Theorem 1. (See [9] page 490) Let h be an analytic function in the unit disc
D. The following are equivalent:

(i) h ∈ H2(D) and ‖h‖H2(D) ≤ 1.
(ii) There exist φ, ψ ∈ H∞(D) such that |φ(z)|2 + |ψ(z)|2 ≤ 1 and

h(z) =
φ(z)

1− zψ(z)
.

This gives a very interesting and useful factorization of functions in the unit
ball of H2, that is any h ∈ H2 and ‖h‖H2 ≤ 1 can be written as h(z) = f(z)

1−zg(z)

where z → (f(z), g(z)) belongs to the unit ball of H∞(D,C2).
Sarason’s result was extended to matrix-valued functions by D. Alpay, V.

Bolotnikov and Y. Peretz in [1]. Let us set the notation to establish the result.
Given p, q ∈ N the authors denoted by Hp×q

2 the Hilbert space of Cp×q-valued
functions with H2 entries endowed with the inner product

〈f, g〉 =
∫ 2π

0

tr(g(eit)∗f(eit))
dt

2π
,

and denote Hp×q
2 (Iq) for the set of functions f ∈ Hp×q

2 such that

∞∑
k=0

f∗kfk ≤ Iq

where Iq is the identity operator on Cq and f(z) =
∑∞

k=0 fkz
k with fk ∈ Cp×q.

Theorem 2. (See [1, Theorem 2.2]) Let f be a Cp×q-valued function analytic
in D. Then f belongs to Hp×q

2 (Iq) if and only if it can be written as

f(z) = s1(z)(Iq − zs2(z))−1

for some Schur function S(z) = (s1(z), s2(z)), that is s1 and s2 are Cp×q-
valued and Cq×q-valued analytic functions in D with

‖s1(z)‖+ ‖s2(z)‖ ≤ 1, |z| < 1,

and conversely.

We can rephrase the result using our vector-valued Hardy spaces. Let us
observe that

‖f‖2
Hp×q

2
=

∫ 2π

0

tr(f(eit)∗f(eit))
dt

2π
= tr(

∫ 2π

0

f(eit)∗f(eit)
dt

2π
)

= tr(
∞∑

k=0

f∗kfk) =
∞∑

k=0

q∑
i=1

p∑
j=1

(f∗k )i,j(fk)j,i

=
∞∑

k=0

q∑
i=1

p∑
j=1

|(fk)i,j |2 =
∞∑

k=0

q∑
i=1

p∑
j=1

|〈fk(ei), e′j〉|2,
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where ei and e′j stand for the canonical basis of Cq and Cp respectively. Hence

‖f‖2
Hp×q

2
= sup
‖h‖Cq =1,‖h′‖Cp=1

∞∑
k=0

|〈fk(h), h′〉|2.

This shows that Hp×q
2 is nothing else than H2

weak(D,L(Cq,Cp)).
Observe now that H2

strong(D,L(Cq,Cp)) is now defined by the condition

sup
‖h‖Cq =1

∞∑
k=0

‖fk(h)‖2 <∞,

which is equivalent to

sup
‖h‖Cq =1

∞∑
k=0

|〈f∗kfk(h), h〉| <∞.

In particularHp×q
2 (Iq) coincides with the unit ball ofH2

strong(D,L(Cq,Cp)).
This point of view also shows that f ∈ Hp×q(Iq) if and only if the operator of
multiplication by f is a contraction from Cq to H2(D,Cp) (see [1, Theorem
2.1]).

The Schur class S(H,H′) is the set of L(H,H′)-valued analytic functions
S in the unit disc such that S(z) are contractions. In other words S(H,H′)
coincides with the unit ball of H∞(D,L(H,H′)) or H∞

strong(D,L(H,H′)).
It is well known that a Cp×q-valued analytic function in D is a Schur func-

tion is equivalent to the operator of multiplication by the function is a con-
traction from H2(D,Cq) to H2(D,Cp). This, in our terminology, corresponds
to the fact that elements in the unit ball of H∞

strong(D,L(Cq,Cp)) define con-
tractions from H2(D,Cq) to H2(D,Cp) via multiplication and clearly exhibits
that the difference between the Schur class and Hp×q

2 (Iq) is nothing else but
the difference between H∞

strong(D,L(Cq,Cp)) and H2
strong(D,L(Cq,Cp)).

A further generalization of Theorem 2 to the infinite dimensional case is
due to A.E. Frazho, S. ter Horst, M.A. Kaashoek (see [5, 6]).

Given two Hilbert spaces H and H′ the authors denote H2
ball(L(H,H′))

the set of L(H,H′)-valued analytic functions F such that F (z)h ∈ H2(D,H′)
for any h ∈ H and ‖F (z)h‖H2(H′) ≤ ‖h‖. Hence H2

ball(L(H,H′)) is the unit
ball of H2

strong(L(H,H′)) and, in particular, H2
ball(Cq,Cp) = Hp×q

2 (Iq).

Theorem 3. (See [5, Corollary 0.3]) Let F be an L(H,H′)- valued analytic
function in the unit disc D. Then F ∈ H2

ball(L(H,H′)) if and only if there
exist S = (s1, s2) ∈ S(H,H′⊗H) such that

F (z) = s1(z)(IH − zs2(z))−1.

The reader is referred to the papers [1, 9, 5, 6] for the use of these theorems
in interpolation theory, computing exposed points and connections with the
relaxed commutant lifting problem.
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The aim of this paper is to get the analogue to Theorem 3 for functions
in H2(D,L(H,H′)) instead of H2

strong(D,L(H,H′)). It will be shown that if
F ∈ H2(D,L(H,H′)) and ‖F‖H2(D,L(H,H′)) ≤ 1 then the operator-valued
function s2(z) can be chosen to be φ(z)IH for some scalar-valued function φ.

Namely we will show the following:

Theorem 4. Let H and H′ be complex Hilbert spaces . The following are
equivalent

(i) F ∈ H2(D,L(H,H′)) and ‖F‖H2(D,L(H,H′)) ≤ 1.
(ii) There exist f ∈ H∞(D,L(H,H′)) and φ ∈ H∞(D) such that

‖f(z)‖2 + |φ(z)|2 ≤ 1

and

F (z) =
f(z)

1− zφ(z)
.

Let us point out that there is nothing special in the space X = L(H,H′)
for this result to be true and it actually holds in any Banach space X.

Before embarking in the proof let me point out the following general ob-
servation which shows which is the main point in the converse implication of
the theorem.

Proposition 3. Let 1 ≤ p <∞, X and Y be Banach spaces, A be a Banach
algebra and B : X × A → Y a bounded bilinear map. If f ∈ H∞(D, X) and
g ∈ H∞(D, A) such that

‖f(z)‖p
X + ‖g(z)‖p

A ≤ 1. (11)

Then
F (z) = B(f(z), (1− zg(z))−1) ∈ Hp(D, Y )

and

‖F‖Hp(D,Y ) ≤
‖B‖‖f‖H∞(D,X)

1− ‖g‖Hp(D,A)
.

Proof. From (11) one gets ‖f‖p
Hp(D,X) + ‖g‖p

Hp(D,A) ≤ 1. Now we can assume
that ‖g‖Hp(D,A) < 1, otherwise F = 0.

We first observe that ‖gn‖Hp(D,A) ≤ ‖g‖n
Hp(D,A).

Indeed, ∫ 2π

0

‖g(reit)n‖p
A

dt

2π
≤

∫ 2π

0

‖g(reit)‖pn
A

dt

2π
≤

≤ ‖g‖p(n−1)
H∞(D,A)

∫ 2π

0

‖g(reit)‖p
A

dt

2π
≤ ‖g‖pn

Hp(D,A).

Hence z →
∑∞

n=0 z
ng(z)n defines an absolutely convergent series in

Hp(D, A) and we denote by (1− zg(z))−1 its sum which satisfies



8 Oscar Blasco

‖(1− zg(z))−1‖Hp(D,A) ≤
1

1− ‖g‖Hp(D,A)
.

Define F (z) = B(f(z), (1 − zg(z))−1). Is is elementary to see that F is a
Y -valued analytic function. Moreover

∫ 2π

0

‖F (reit)‖p
Y

dt

2π
≤

∫ 2π

0

‖B‖p‖f(reit)‖p
X‖(1− reitg(reit))−1‖p

A

dt

2π

≤ ‖B‖p‖f‖p
H∞(D,X)‖(1− zg(z))−1‖p

Hp(D,A) ≤
‖B‖p‖f‖p

H∞(D,X)

(1− ‖g‖Hp(D,A))p
.

�

When applying Proposition 3 for p = 2, X = Y = L(H,H′), A = L(H,H)
and B : X × A → Y given by B(T, S) = TS one realizes that the point in
the reverse implication of Theorem 3 is actually to get that F belongs to the
unit ball of H2

strong(D,L(H,H′)) because the function F ∈ H2(D,L(H,H′))
but with norm 1

1−‖g‖H2(D,L(H,H)
≥ 1.

2 Proof of the main theorem

We start working with analytic functions that can be approached by polyno-
mials in H2(D, X), that is to say functions with boundary values belonging
to the space H2(T, X). This actually allows us to give an alternative proof of
Theorem 1 for X = C. We use the same notation for the function defined at
the boundary and its Poisson extension to the disc.

Theorem 5. Let X be a complex Banach space. The following are equivalent:
(i) F ∈ H2(T, X) and ‖F‖H2(T,X) ≤ 1
(ii) There exist f ∈ H∞(T, X) and φ ∈ H∞(T) such that for any |z| < 1,

‖f(z)‖2 + |φ(z)|2 ≤ 1

and

F (z) =
f(z)

1− zφ(z)
.

Proof. (i) =⇒ (ii) Assume F ∈ H2(T, X) and ‖F‖H2(T,X) = 1. Then u(z) =
‖F (z)‖2 is a subharmonic function in D and

∫ 2π

0
u(eit) dt

2π = 1. Consider the
harmonic function U(z) given by the Poisson extension of u(eit) = limu(reit)
and write U = <(k) where k is holomorphic which takes values in {<w ≥ 0}
and k(0) = 1. One has that

∫ 2π

0
U(eit) dt

2π =
∫ 2π

0
u(eit) dt

2π = 1 and ‖F (z)‖2 ≤
Re(k(z)) for |z| < 1.
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Define G(z) = 1−k(z)
1+k(z) , that is k(z) = 1+G(z)

1−G(z) and Re(k(z)) = 1−|G(z)|2
|1−G(z)|2 .

Hence

‖F (z)‖2 ≤ 1− |G(z)|2

|1−G(z)|2
.

Clearly G ∈ H(D), |G(z)| < 1 and G(0) = 0. So we have G(z) = zφ(z) for
some φ ∈ H(D). Define now f(z) = F (z)(1− zφ(z)).

Obviously f ∈ H(D, X). Let us see that ‖f(z)‖2 + |φ(z)|2 ≤ 1 for z ∈ D.
Indeed, on the boundary

‖f(eit)‖2 + |φ(eit)|2 = ‖F (eit)(1− eitφ(eit))‖2 + |φ(eit)|2 ≤

≤ (1− |φ(eit)|2) + |φ(eit)|2 = 1.

Consider now the Banach space X1 = X ⊗2 C and look at the func-
tion h(eit) = (f(eit), φ(eit)). We have shown that h belongs to the unit ball
of H∞(T, X1). Therefore h(z) = (f(z), φ(z)) ∈ H∞(D, X1) and ‖f(z)‖2 +
|φ(z)|2 ≤ 1 for any z ∈ D.

(ii) =⇒ (i) Assume that there exist f ∈ H∞(T, X) and φ ∈ H∞ such that
‖f(z)‖2 + |φ(z)|2 ≤ 1 and

F (z) =
f(z)

1− zφ(z)
.

Let us show that F ∈ H2(T, X) with norm bounded by 1. Indeed,

∫ 2π

0

‖F (eit)‖2 dt
2π

=
∫ 2π

0

‖f(eit)‖2

|1− eitφ(eit)|2
dt

2π

≤
∫

1− |eitφ(eit)|2

|1− eitφ(eit)|2
dt

= lim
r→1

∫ 2π

0

1− |reitφ(reit)|2

|1− reitφ(reit)|2
dt

2π

= lim
r→1

Re(
∫ 2π

0

1 + reitφ(reit)
1− reitφ(reit)

)
dt

2π

= Re(lim
r→1

∫ 2π

0

1 + reitφ(reit)
1− reitφ(reit)

dt

2π
) = 1

�

In order to extend the result for functions in H2(D, X) we are going to use
the following extension of a classical factorization for vector-valued functions.
The reader is also referred to the work by G. Pisier [8] (and references thereby)
for other factorization results of vector-valued analytic functions which depend
on the geometry of the space X.
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Lemma 1. (see [2] or [7, Theorem 2.10]) Let 1 ≤ p <∞ and F ∈ Hp(D, X).
There exist F1 ∈ H∞(D, X) with ‖F1‖H∞(D,X) = 1 and φ ∈ Hp(D) with
‖φ‖Hp(D) = ‖F‖Hp(D,X) such that F (z) = φ(z)F1(z).

Theorem 6. Let X be a complex Banach space F ∈ H(D, X). The following
are equivalent:

(i) F ∈ H2(D, X) and ‖F‖H2(D,X) ≤ 1.
(ii) There exist f ∈ H∞(D, X) and φ ∈ H∞(D) such that

‖f(z)‖2 + |φ(z)|2 ≤ 1, |z| < 1

and

F (z) =
f(z)

1− zφ(z)
.

Proof. (i) =⇒ (ii) Use Lemma 1 to find F1 ∈ H∞(D, X) with ‖F1‖H∞(D,X) = 1
and φ ∈ H2(D) with ‖φ‖H2(D) = ‖F‖H2(D,X) such that F (z) = φ(z)F1(z).

Apply Sarason’s result (or Theorem 5 for X = C) to obtain φ1, φ2 ∈
H∞(D) with |φ1(z)| + |φ2(z)| ≤ 1 and φ(z) = φ1(z)

1−zφ2(z) . Define f(z) =
F1(z)φ1(z) and g(z) = φ2(z) to get this implication.

(ii) =⇒ (i) Assume now that there exist f ∈ H∞(D, X) and g ∈ H∞(D)
such that ‖f(z)‖2 + |g(z)|2 ≤ 1 and

F (z) =
f(z)

1− zg(z)
.

Arguing as above we have∫
‖F (reit)‖2dt =

∫
‖f(reit)‖2

|1− reitg(reit)|2
dt

≤
∫

1− |g(reit)|2

|1− reitg(reit)|2
dt

≤
∫

1− |reitg(reit)|2

|1− reitg(reit)|2
dt

= Re(
∫

1 + reitg(reit)
1− reitg(reit)

)dt = 1

�
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