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INTRODUCTION.

The duality between H' and BM O, the space of functions of bounded mean oscillation
(see [JN]), was first proved by C. Fefferman (see [F], [FS]) and then other proofs of it were
obtained. Using the atomic decomposition approach ([C], [L]) the author studied the
problem of characterizing the dual space of H! of vector-valued functions . In [B2] the
author showed, for the case Q = {|z| = 1} , that the expected duality result H'-BMO
holds in the vector valued setting if and only if X* has the Radon-Nikodym property. If
we want to get a duality result valid for all Banach spaces we may consider vector valued
measures (see [BT], where the vector valued L, case is treated, for an explanation) and
therefore to deal with the general case it was necessary to consider a new space of vector
valued measures closely related to BMO (see[B1]).

In this paper we shall study such space in little more detail and we shall consider
the H'-BMO duality for vector-valued functions in the more general setting of spaces of
homogeneous type (see [CW]).

Throughout the paper X will stand for a Banach space, {2 will be a space of homoge-
neous type (see definition in the preliminary section) and we write L, (2, X) for the space
of measurable functions on € with values in X such that ||f(x)|| belongs to L,(2). As
usual C will denote a constant not necessarily the same at each occurrence.

PRELIMINARIES

A space of homogeneous type € is a topological space endowed with a Borel measure
m and a quasi-distance d , that is d : X x X — R™ with

a) d(z,y) = d(y, ) ,
b) d(z,y) =0 if and only if r=vy,
c) d(x,y) < K(d(z,2) +d(z,9)) -

and we assume that the balls B.(z) = {y € Q : d(z,y) < r} form a basis of open
neighborhoods of the point x and there exists a constant A satisfying

(1.0) m(B,(x)) < Am(B,2(x))
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From (1.0) we can assume that 0 < m(B) < oo for every ball B (otherwise m would be
identically 0 or co) and therefore m is a o-finite measure on Q. Denote by ¥ the ring of
bounded measurable sets. The o-finiteness condition implies that the o-algebra generated
by Yo coincides with the Borel o-algebra that we shall denote by X.

Let us now recall the notion of atom with values is X. Given 1 < p < oo , a function
ain L,(2, X) is called (X,p)-atom if

a) the support is contained in a ball B = B,(z,)
1 al P dm(z) P 1 00
) (i [ @ (@) < — (o <)
) fa@) < = m-ae (p=oo)
— m(B)

c) /Ba(:v) dm(x) =0

In the case m(€2) < oo the constant function ﬁ b, where b € X with ||b|| = 1, is

also considered as a (X,p)-atom.
Note that the atoms are in the unit ball of L (£, X).

Following [CW] we define H (€2, X) as the space of functions f in L (€2, X) admitting
an atomic decomposition

(1.1) f=Y Na
j=0

where the a;’s are (X,p)-atoms and Z;io |Aj| < 0o .(The convergence of (1.1) is taken in
Li(Q,X) ).
We get a Banach space if we consider the norm

o0
Iy = inf > (A
=0

where the infimum is taken over all representations f = Z;io Ajaj .
The same arguments as in [CW] show that, in fact, for 1 < p,r < 0o

1 . 1 . .
(1.2) H,(Q,X) = H_. (2, X) (with equivalent norms) .



Let us also recall the definition of vector-valued BMO. Let 1 < g < oo, an X-valued
function which is locally in L, (€2, X) is said to belong to BMO,(£2, X) provided that

(1.3) sup ( / l9(@) — gsl|dm(z)"* < ©

ballB m

where gp = ﬁ [ 9(x) dm(x).
Let us denote by

1 q 1/q.
lollq = supl (=25 [ llote) = g dm(@))" : B ban)

When m(€) = oo then ||g||pamo, = [|gl/+,q gives a norm on the set of equivalence
classes of functions which differ by a constant in X.
For m(Q) < oo we consider the norm ||g||sao, = |9ll«q + || [ 9(x) dm(z)]| .

Let us recall now a few definitions about vector-valued measures we shall use later on.
Let (€2,%,m) be any o-finite measure space , A a measurable set and 1 < p < co. Given
a vector valued measure G, we denote by |G| the variation of G, that is

(1.4) |G|(A) = sup{z |G(E E;) partition of A}

and by |G|,(A) the p-variation on A, that is

(1.5) Gl (4) = supf Z )y

where the supremum is taken over all finite partitions (FE;) of disjoint measurables sets
contained in A with m(E;) > 0.

For the case p = oo we shall denote by V>°(£2, X) the space of X-valued measures G
satisfying

(1.6) |G(E)|| < Cm(E) for all measurable set E
Defining the norm by the infimum of the constants satisfying (1.6) we get a Banach space.

Remark 1.1. It is not hard to see that in fact |G(E;)|| can be replaced by |G|(E;) in
the definition of p-variation.(See Lemma 1 in [B3])

Remark 1.2. If G is a vector valued measure defined on ¥y which is absolutely

continuous with respect to m, that is (lir)n G(E) = 0, then it can be extended to a
m(E)—0

measure on X, being still absolutely continuous with respect to m.(See [D],[DU])



We refer the reader to ([DUJ, [D]) and to ([J], [GC-RF]) for general theory and the
properties we shall use about vector valued measures and Hardy spaces respectively.

VECTOR VALUED MEASURES OF BOUNDED MEAN OSCILLATION.

Definition 2.1. Let 1 < g < oo . Given a countably additive measure GG defined on
¥ and with values in X, it is said that G belongs to M BM O, (2, X) if

L I 1

where the supremun is taken over all balls B and over all finite partitions of B in pairwise
disjoint measurable sets F; with m(E;) >0 .

When m(€2) = oo then ||G|mBrmo, = |Glsq gives a norm on the set of equivalence
classes of measures: G; ~ Gy if there is b in X such that G1(E) — G2(E) = bm(E) for all
measurable set E .

For m(€2) < oo we consider the norm ||G||a»rBmo, = |G

wq TGO
It is obvious that if 1 < ¢; < g2 < 0o then
(2.2) Ve(Q,X) C MBMO, (2, X) C MBMO,, (2, X)

Remark 2.1. Let us assume G belong to M BMO,(€2, X). Given a ball B and a measurable
set £ C B, it is quite immediate to find a constant C'p depending on B satisfying

(2.3) IG(B)| < Cp maz(m(E), m(E)'~/9)

Suposse we consider B, = {y € Q : d(zo,y) < n} and denote by G, the measure G
concentrated on B,, , that is Gp, (F) = G(ENB,). A glance at (2.3) allows us to say that
for any 1 < ¢ < oo if G belongs to M BMO,(2, X) then Gp, are necessarily absolutely
continuous with respect to m and this clearly implies that also G is absolutely continuous
with respect to m. (Recall that for vector-measures on o-algebras it suffices to check that
they vanish on m-null sets).

Proposition 2.1. Let 1 < g < oo, g be locally in L,(2,X) and G be an X- valued
measure such that G(E) = fE g(x) dm(x) for all measurable bounded set E.

Then g belongs to BMO,(2, X) if and only if G belongs to M BMO,(Q2, X).

Moreover ||G||arBro, = |l9]Bro, -

Proof.- Given any ball B | consider Gp(F) = G(E N B) — % m(E N B). Observe
that

sup{(; Hgigﬁ; — gig; quvj(%)))l/q . (E;) partition of B}



coincides with the g-variation of G on Q divided by m(B)Y¢ and Gp is a measure
represented by the function (¢ — gg)xp , that is

Gr(E) = /E (9(x) — g5)x5 dm(z).

Therefore the proposition follows from the equality between the g-variation and the norm
in L, of the function which represents the measure (see [D]).$

Remark 2.2. In general it is not true that any measure in M BMO,(2, X) is repre-
sentable by a function, this depends on the Radon-Nikodym property. We refer the reader
to [B1] for the case Q = {|z] = 1}, but a similar result and proof can be established also
in this general setting.

Proposition 2.2. Let 1 < ¢ < co. G belongs to MBMO,(Q, X) if and only if there
exists a family of vectors in X , say {ap: B ball}, such that

(2.4 sul (L 150 — anllt ) < oo

where the supremum is taken over all balls B and over all finite partitions of B in pairwise
disjoint measurable sets E; with m(E;) > 0 .

Proof.- The direct implication is obvious by taking ap = %. To show the converse
let us assume that we have {ap: B sphere} with the above property, and notice that

G(B)
las — @H <C

for all B ( simply take the partition of B given only by B).
Therefore for any B and any partition

(S IEE) S Py e

m(B)" m(B)"
n @ . qm(EZ) 1/q - an — G(B) qm(El) 1/q
(;”m@i) sl m(B)> +(;” B (@) m(B)) =C ¢

As in the case of functions we can define an equivalent norm in M BMO, (2, X).

/ . 1
(2.5) Gliq = billll%{;g)f( W'G —am|q(B)}.



Note that essentially the same argument as in Proposition 2.2. shows the following

(2.6) Gl,., <|Glq <CIG.,

Proposition 2.3. Let 1 < g < oco. If G belongs to MBMO,(2, X) then there exists
a non negative function ¢ in BMO4(2) such that

GI(E / o(z) dm(s

Moreover ||¢|ro, < C |G| mBmo,

Proof.- Since G is countably additive and m-continuous then the same is true for
the variation of G, |G|. Therefore using the Radon-Nikodym theorem there exists a non
negative measurable function ¢ which represents the measure |G|. To show that ¢ belongs
to BMO,(Q2), we shall use Propositions 2.2 and 2.1. We simply have to find a family of
real numbers {ap} such that

" |G|(Ei am(Ei)\1/q
(oylaE m((B)>) 1y < oo
Take ap = ”i((g))” , and observe that
61 - 2 )| <16 - S mie)
Then

G|(FEi G(B)|| jgm(FE;)\1/q
unl( Z\' (50 _ 1) ey

1 - G(B) A\ 4 N1—q\1/q
sup{W(ZﬂG— Wm\(m)) m(Fi)' 1)1} < |G,

i=1

»q

The last inequality follows from Remark 1.1.$
THE THEOREM AND ITS PROOF.

In the sequel 1 < p,q < oo, with %—i—% = 1. In this section we shall achieve the duality

result between H, (€2, X) and MBMO,(Q, X*). We shall need several lemmas before we
prove the result. The next result was done in [B1] for the circle and for q = 2, and here we
present a different approach which is valid for general spaces of homogeneous type. The
author would like to point out that a similar and independent proof of the following lemma
has been obtained by T. Wolniewicz (personal communication).



Lemma 3.1. Let G be a measure in MBMO,(2, X). Then for each integer n € N
we can find a measure G,, in V*°(Q, X) and a constant C,, satisfying |G|+, < C,, and
such that

(3.1) |Glsq < lim C), < K|Gls 4
(3.2) lim G, (F)=G(F) for all measurable bounded set E.

Proof.- Using Proposition 2.3 we first get a function ¢ in BMO,(12).
Denote by Q,, ={z € X : ¢(z) > n } and ¢,(x) = min(1,n/¢(x)). Let us define now

(3.3) G, (E) = /E bu(x)dG(z)  (E € %)
Notice that
1Gu(B)|| < |Gul(E) < / 6n(2) d|G|(z) < / 6n (%) B() dm(z) < nm(E)
FE E

This, using Remark 1.2., allows to extend G, to ¥ and shows that G,, belongs to V>°(Q, X).
On the other hand

(3.4) G(E) = Gu(B) = [ (1= 60())dG(
ENQ,
Therefore if F is contained in some ball B

IG(E) — Gu(B)|| <2 / b (x)dm(z)

ENQ,

Since ¢xp is in L;1(2) then taking limit as n — oo shows (3.2).
From (2.6) we have finally to estimate m(B)~/?|G,, —am|,(B) for all balls B. Using
(3.4) we have that for any £ C B

|G(E) - Go(B)| < /E (= /o) di6I@
If ||a|| < n then

IG(E) - Gu(B)| < /

ENQ,

(6(x) — ) dm(z) < / (6(z) — [lall) dm(z)

ENQ,

Therefore we have

(3.5) |G, — G|y(B) < |G —aml|,(BNQ,)



Though |G|, is not a measure for q > 1 the g-variation es subadditive and therefore
we get that for all ||al| < n

(3.6) m(B)~Y4|G,, — am|,(B) < 2m(B)"Y|G — am|,(B)
Denoting now by

D, = sup inf {m(B)"Y9|G — aml|,(B)}
ballB llall<n

we get (3.1) for C), = 2C D,, where C is the constant appearing in (2.6).<
Notice that V°°(£2, X*) can be obviously identified with the dual of L, (€2, X). Indeed

any measure G in V°°(Q, X*) defines a functional T acting on X-valued simple functions
(which are dense in L1 (€2, X) ) by the formula

(37) TG(Z aiXEi) = Z < G(Ei),ai >
=1 =1

where <, > means duality betweenX and X*.
Lemma 3.2. Let 1 < p,q < o0, % + % =1 and G belong to V°>°(Q2, X*). Then

(3.8) T (f)| < CllGlvBumo, | Il for all fin Hy (S, X).

Proof.- Let us first take a “simple atom” in H;(Q, X), that is
s=Y 1 bixg, E; C B for some sphere B, > " bym(E;) =0
and S, [0l m(E,) < m(B)~7 .

For such an atom we can write

Tg(i b'LXEl) = i < G(Ez),bz >= i < G(EZ) — %m(lﬂ),bl >
Therefore
[Tas) < 3 1G(E) — (B lx-m(E)Pm(E) ] x <

= <z_; HS;((EJ;Z; - iig)) ”g(*m(Ei))l/q(; 16:]% m(Ei))l/p <

)1 <16,

" G(E) G(B),, m(E)
< Q) ~ m(m) 1 (B

For a general atom a supported in B in H; (©, X) we can use approximation by
simple functions in L, (€2, X) , and find a sequence of simple functions dj supported in B



converging to a in L,(€2, X) , and take the sequence s, = (dk — fB di(z) dm(x))xB which
clearly also converges to a in L,(£2, X) . Hence ||sk||, < 2||a||, for k large enough, and
therefore si/2 are “simple atoms”.

Using now that T is continuous as operator on L (2, X), and that s converges to a
in L1 (9, X), then

(3.9 Ta(a) = lim [T(s)] =2 Jim [T(s¢/2)] < 2|Gl.,q

For a general function f, take any representation of f in H; (Q,X), say f = Z;io Ajag,
where the a; are (X,p)-atom and Z;io |Aj| < oo and notice that (3.8) follows from (3.9)
and the fact that the series f = Z;io Aja; is absolutely convergent in L;(f2, X) what

implies that T (f) = >720 A\j Ta(a;) O
Theorem 3.1. Let 1 < p,q < oo and % + % = 1. Then
(3.10) (H; (Q,X))" = MBMO/(Q, X™) (equivalent norms)

Proof.- Let us take G in M BMO4(2, X*), and define as above

TG(Z bZXEz) = Z < G(EZ),bl >
=1 =1

From the definition of H;(Q, X) we can easily see that simple functions with support in
balls are dense in the space, therefore it is enough to see that

|1}

(3.11) T (D bixm,)| < ClGlag D bix,)
=1

=1

To see (3.11) we first invoke Lemma 3.1 to find a sequence of measures G,, in V>°(Q, X*),
that according to (3.2) verifies lim,o.Tq, (s) = Te(s) for all simple function supported
in a ball.

Secondly we use Lemma 3.2, together with (3.1) to get

Ta(s) < Jim [Ta, (s)| < C Tim [Galegllsliy <

*,4

C lim C’rlHSHHl §C|G SHHl.

n— 00 P p
For the converse we shall deal first with the case m(2) < co. Let us take now a functional
T in (H; (Q,X ))* Since constant functions are also considered as X-atoms in the case of
finite measure we have that axp € H}(Q, X), what allows us to define the following X*
valued measure.

(3.12) < G(E),a >=T(axg) (aeX)



Given a ball B and a partition of B , say {E;} , of pairwise disjoint sets, using the duality
(IP(X))* =19(X™), we have

" GE)  GB) |, m(E) e
@)~ mE) S mm)

(Mo — o) (o) 1) =

n G i m(E;)\1/q " )
sup{; < (m((gl)) B m(B)) m((i))) / b > ; Ib:]|% = 1}

On the other hand we have

—

m(B) =1 =1
T (o B ) ~ T

where b = ﬁ (>, m(E;)Y ;).

Denote by a = 2m(1B)1/q (Z?:l m(E;)~YPb;x g, — bXB)- It is elementary to show that
it S ||bil|% =1 then a is a (X,p)-atom.

Therefore we obtain

~ G(E:)  G(B) ., mEi)1/q
(ZX_; ”m(El) " m(B) [ m(B) ) <2(T(a)| < 2|7

This shows |G|+, < 2||T||. Since T and T coincide over simple atoms, we have T' = T¢.
On the other hand

1G] < sup{ [T(bxa)l: ol <1 } <m(Q)[T]
and this finishes the proof for the finite measure case.

Let us deal now with the case of m(£2) = co. Take a functional T in (H} (£, X))* and
a ball B in €). Let us consider the following space

LB(B,X)={f € L,(,X) :supp f C B and /Bf(x) dm(x) =0}



The following function is an (X,p)-atom

@
"= sy, 1)

hence

1 lley < m(B) | £l

and therefore

ITAIN < IT ) m(BY NI f 1

This shows that T defines a bounded functional on L§(B, X) and hence from the Hahn-
Banach extension theorem,we get an element in the dual of L, (B, X). The characterization
of the dual space (Lp(B,X ))* in terms of X*-valued measures of bounded g-variation
allows us to find a measure Gp with values in X* verifying

(3.13) T(f) = /B fdGy  feIR(B,X)

(Note that this measure is uniquely determined up to a measure F(E) = { m(E N B) for
some £ € X*). Now if we take an increasing sequence of balls converging to €2, say B,,, and
we determine G, by the assumption G, (B1) = 0, then we can construct a vector-valued
measure on Y, given by G(F) = Gp, (F) for E C B,,. It is clear that G, are absolutely
continuous and hence the same is true for G. Now from remark 1.2 we get an extension

to 2.

"\ GE) _GB) ., mE) e _ )
ey~ @5 @) = 20, s [, 74 ™)

1 £llp=1 m

For each f € L,(B,X), consider a = (f — fB)xB and therefore

B)l/q

(2 Iﬁg; - HE(“’Z((?;)”Q = sup2|T'(a)| < 2|7

This completes the proof.<$

Remark 3.1. For 1 < p,r < oo,
MBMO4(Q,X)=MBMO,(2, X) with equivalent norms

For dual spaces follows from the theorem and (1.1), and the general case is consequence
of the embedding X C X**
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