REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES
WITH RESPECT TO BANACH SPACES.

OSCAR BLASCO

ABSTRACT. Let L1(1)&,,Y = Li(»,Y) and X®a,LP(u) = LP(u, X). It
is shown that any LP(u)-valued measure has finite L?(v)-semivariation with
respect to the tensor norm LQ(I/)®APLP(,LL) for 1 < p < oo and finite L9(v)-
semivariation with respect to the tensor norm Lq(lj)®,7q LP (1) whenever either
g=2and 1 <p<2orq>max{p,2}. However there exist measures with
infinite L9-semivariation with respect to the tensor norm Lq(u)®7q LP(p) for
any 1 < ¢ < 2. It is also shown that the measure m(A) = x4 has infinite
LY-semivariation with respect to the tensor norm Lq(u)®7q LP(p) if g < p.

1. INTRODUCTION

Let Z be a Banach space and let m : ¥ — Z be a vector measure defined on a
o-algebra ¥ of subsets of Q. We write |m| for the variation of the measure

k
|m|(A) = sup{z m(A; NA)|| : A; pairwise disjoints ,k € N}
j=1

and denote, for 1 < p < oo, the p-variation of the measure

k
lmll, = sup{(z [m(A;)|[P)/P : A; pairwise disjoints , k € N}.
j=1
We also write ||m|| = sup ¢y, [|[m(A)||, which is equivalent to the semivariation

of the vector measure m, that is
[ml & sup{[(z",m)[(Q) - [|z"[| = 1}.

Let X,Y be Banach spaces and let 7 be a norm on X ® Y such that ||z @ y||, <
C|lz|||y|| for x € X,y € Y and denote X®,Y the completion under such a norm.
Given a vector measure m : ¥ — Y defined on a og-algebra ¥ of subsets of 2, R.
Bartle (see [2, 7]) introduced the notion of X-semivariation of m in X ®, Y given
by

k
B (m, 7, Y)(A) = sup{|| Y o ©m(AN A}
j=1
for every A € ¥ where the supremum is taken over ||z;|| < 1, A; pairwise disjoints
sets in X and k € N. We shall denote

/GX (ma 7, Y) = sup 6X (ma T, Y) (A)
Aex
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It is clear that
[m|| < Bx(m,7,Y) < [Im][.
If X®.Y and X&,Y stands for the injective and projective tensor norms respec-
tively, then one always has

||m|| S BX(ma €, Y) S ﬁX(m7 T, Y) S ﬁX(maﬂ-7Y) S ||m||1

It is well-known and easy to see that actually Bx(m,e,Y) = ||m||.

In [7] B. Jefferies, and S. Okada developed a theory of integration of X-valued
functions with respect to Y-valued measures of bounded X-semivariation in the
case of completely separated tensor norms.

We shall be concerned with some interesting examples of norms coming from the
theory of vector-valued functions: Throughout the paper (©1, X1, 1) and (22, 3o, v)
are finite measure spaces, 1 < p,q < oo and the Banach spaces will be either
Y = LP(u) or X = L9(v). We define 7, and A, the norms on Li(v) ® ¥ and
X ® LP(u) identified as subspace of L4(v,Y) and LP(u, X), that is to say

Lq(y)®7quLq(V7Y)v X®Apr(M) = LP(p, X).

In the case p = ¢ the LP(v)-semivariation of LP(u)-valued measures with respect
to the topology 7, such that LP(u)&, LP(v) becomes LP(u x v) for the product
measure was studied in [9] and [10].

In particular, if both X = L(v) and Y = LP(pu) then L9(v)®a,LP(p) and
L9(v)®., LP (1) coincide with the spaces of measurable functions f : Q1 x Q; — R
such that

( /Q /Q | (@) [ ()P ()P < oo}
and

T P aNPdy(z)9 < ool
(/Qz(/ﬂllf( ) Pdp() " Pdi(z)) 1 < o)

In this paper we shall try to understand better the difference between the classical
semivariation or variation of a LP(u)-valued measure m and the L?(v)-semivariation
with respect to the norms A,, v, and 7.

Let us establish the main results of the paper. Our first result establishes the
following descriptions L%-semivariation of LP-valued measures with respect respect
the proyective tensor norm, where we denote L? = LP([0,1]) for 1 < p < co.

Theorem 1.1. Let 1 < p,q < 0o and let m : ¥ — LP([0,1]) be a vector measure.
Then

(1) By (m,m, LP) &= ||lm[ly 1 <p < oo.

(i1) Brz(m,m, LP) = |m|1, 1<p<oo.

(iii) Brz(m,m, L) ~ ||m|.

This result shows that L2-valued measures are of finite L?-semivariation on L?®,
L? if and only if they are of finite variation.

It was noticed in [9] that any L?-valued measure is of bounded L?-semivariation
with respect to L2([0, 1])®., L2([0,1]), in other words Brz(m, Ag, L?) 2 ||m)]|.

On the other hand Brq(m,m, L') = Bra(m,Aq, L'). Hence Theorem 1.1 shows
that Br2(m, Ay, LY) = ||m|.

Let us just point out that this implies

(1) Br2(m, Ap, L) = [m|[,1 < p <2
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due to the simple observation

(2) ﬁLq(V) (m7 Apl ) L (,u)) < CﬂLq (v) (m7 Apza LP> (,U)) P1 < D2

We shall present another alternative proof that cover all the cases and gives an
alternative proof of the known case p = ¢ = 2 and extend (1) as follows.

Theorem 1.2. Let 1 < p < oo and let m : ¥ — LP([0,1]) be a vector measure.
Then

Br2(m, Ay, L) = [|m]|.

The question which now arises is whether or not there exist LP-valued measures
with Bray(m, Ay, LP(u)) = oo if ¢ # 2. In [7] examples of LP([0, 1])-valued mea-
sures of infinite L?([0, 1])-semivariation in LP([0, 1])&®., L*([0, 1] were obtained for
the values p # 2. For 1 < p < 2 the approach was much simpler than for p > 2
and the example in this case relies on the existence of a non absolutely summing
operator from ¢! — (P for p > 2 (see [9, 10]).

We shall use the relationship between the tensor norms v, and A, to get other
examples. Recall that Minkowski’s inequality gives LP(u, L%(v)) C Li(v, LP(u)) for
p < qand Li(v, LP(u)) C LP(u, L4(v)) for ¢ < p. Hence

(3) 5Lq(lj) (m7 qu, Lp(,“)) S BL‘I(V) (m7 Apa Lp(/j/)>7 p S q,

(4) ﬂLq(u)(ma A;m Lp(lu‘)) < ﬂLq(lI) (ma Yq> LP(M)% q<p.

Also using general techniques, similar to those used in [9] one can show that
for 1 < p < oo and 1 < g < 2 there exist LP(u)-valued measures m such that
Bra@)(m,vq, LP(1)) = oo. This, in particular, using the estimate (3), shows the
existence of measures for which Bre¢,)(m,A,, LP(p)) = 0o if 1 < ¢ < 2,p < g,
completing and extending the case p = q.

Theorem 1.3. Let 1 < p < oo and let m : ¥ — LP([0,1]) be a vector measure.
Then

(Z')ﬂlﬁ (m772aLp) ~ ||m||> 1 < p < 2.

(“) 511‘1 (ma’ymLp) ~ ”mHa max{p,2} <4q.

This gives that any measure has Brq«(m,~,, LP) < oo for ¢ > p > 2. However
in the last section it is shown that the LP([0, 1])-valued measure m,(A) = x4 has
infinite L%([0, 1])-semivariation in L%([0, 1])®7q L?([0,1] for ¢ < p.

2. BOUNDED X-SEMIVARIATION.

We start by the following characterization of the bounded X-semivariation .
Taking into account that X®,Y C X®,Y, then (X®,Y)* can be regarded as a
subspace of the space of bounded operators L(Y, X*). Moreover [[u| < [ull xg_y)-

for any u € (X®,Y)*, where the duality is given by
k k
(,  w;@y) = (uly;),z;).
Jj=1 Jj=1
Theorem 2.1. Let m : X — Y be a vector measure. Then

Bx (m, 7, Y) = sup{luomlly  u € LV, X*), lull xoy)- < 1}



4 OSCAR BLASCO

PROOF. Let (x;) be a bounded sequence in X and (A4;) be a sequence of pair-

wise disjoint sets in ¥. Consider, for & € N, the X-valued simple function
k

¢ = ZFl xjxa, and denote

k
@, m(A)=> z;@m(ANA;) € X®Y.

j=1
Clearly this defines a new X&,Y-valued measure and one can rewrite
Bx(m,7.Y) = sup{||¢ @ m|| : ¢ € S(X), [[¢]l« <1}

We now write the semivariation of ¢ ®, m using duality, that is to say

|6 @7 mll =~ sup{[(u,p @mM)|(Q) : [|ull xe,v) <1}
k
= sup{z [(uom(A;),z;)| : (A;) pairwise disjoint, [[ull xg_y)- < 1}
j=1

which, taking supremum over ||z;|| < 1, gives

Q

k
Bx(m,7,Y) sup{z [uom(A )|l : (A;)pairwise disjoint, [ul| xg_y)- <1}
j=1

Q

sup{flucomlly s w € LY, X7), [lull xg,y)- <1}
(]

Let us see the formulation of Theorem 2.1 in the case 7 = A, or 7 = 4.
It is well known that for 1 < p,g < oo and 1/p'+1/p=1,1/¢+1/¢' =1 and
for X,Y such that X* and Y* have the Radon-Nikodym property (see [6]) then

(LU()@,,Y)" = L ()@, V"
and
(X&a, LP ()" = X*&a,, L¥ ().

Now for each f € L” (11, X*) we can define the operators uf : LP(u) — X* and
vp: X — L (1) given by

(ur(@).) = [ (70 2)0(00du(t)

Q

and
vp(z) = (f,z).

Of course (vy)* = uy and (ug)* = vy if X is reflexive.

Theorem 2.2. Let 1 < p,qg < oo, X = LY(v) and Y = LP(u). If m : ¥ — LP(p)
is a vector measure then

(5) ﬁL‘l(u)(vavap(ﬂ)) = Sup{““f oml : Hf”LP’(H,LQ’(y)) <1},

(6) Braw)(m, g, L7 (1)) = sup{[vg omllv : 9]l o (1 1o () < 1}
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PROOF. 1In the case Y = LP(u) and X = L9(v) for 1 < ¢,p < oo the elements
w: LP(u) — L7 (v) such that u € (L9(v)®a,LP(p))* can be seen as u = uy for
some f € L¥ (u, LY (v)), that is u : LP(u) — L9(v) is given by

w@)y) = | [flz,y)o(x)du(z).

Q
Then (5) follows from Theorem 2.1 in this case.
Similarly the elements u : L?(p ) — Lq/(u) such that u € (L(v)®,, LP(11))* can
be seen as u = v, for some g € LY (v, L”' (1)) and now

() (y) /Q oy, ) (@)du().

1

Again (6) follows from Theorem 2.1. O

3. PROOF OF THE MAIN THEOREMS
We use first the characterization in Theorem 2.1 to get the following corollaries.

Corollary 3.1. Let m: ¥ — Y be a vector measure and X a Banach space. Then
Bx (m,mY) ~ sup{[luomly:ue LY,X"),[lu] <1}.

We use the notation II,,(X,Y") for the space of p-summing operators from X into
Y and write m,(u) for the p-summing norm. The reader is referred to [5] for the
basics in the theory of summing operators.

Corollary 3.2. Let Y be a Grothendieck space, i.e. II1(Y,H) = L(Y, H) for any
Hilbert space H. Then

(7) Bu(m,m,Y) = |m]|.

PROOF. Note that Y m(A;) is an unconditionally convergent series in Y for any
sequence of pairwise disjoint sets A;. Now for any operator from v : Y — H one has
and then ) ||u(m(A4;))|| < Kg||u|\||m||7 where K¢ is the Grothendieck constant.
Now use Corollary 3.1. O

Proof of Theorem 1.1

(i) Let Y = L? and X = L?" then choosing u = Id : L” — (L?")*, one concludes
that ||uomljy = ||m|1. This shows 8., (m, 7, L?) = ||m|1

(ii) follows from the following observation: If X* is isomorphic to a complemented
subspace of Y then Bx(m,m,Y) = ||m];.

Indeed, assume id : Y — Y factors through X* as id = ujous where us : ¥ — X*
and uy : X* — Y are bounded operators. Now observe that ||m/|1 < ||uq]|||us om|1
and use Corollary 3.1.

Now use that the space Rad is complemented in LP([0, 1]) and isomorphic to ¢
(see Thm 1.12 [5]) and therefore to L?, to conclude that

(8) Bra(m,m, LP([0,1])) = [Im]l1,1 < p < cc.

(iii) follows from Corollary 3.2. O
We now recall a lemma that we will need in the sequel.
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Lemma 3.3. (i) Let 1 < g < oo and let Y be a Banach space such that Y* € RNP.
Ifu:Y — L (v) belongs to (L9(v)®4,Y)* then mg (u) < ||uH(Lq(V)®My)*.

(i) Let 1 < p < oo and let X be a Banach space such that X* € RNP. If
w: LP(pu) — X* belongs to (X&@a, LP(p))* then my (u*) < HU*H(X@APLP(/L))*'

PROOF. (i) Tt is well known (see Example 2.11, [5]) that if g € LY (v,Y*) then
vg 1Y — L9 (v) given by vg(y) = (9,y) is ¢'-summing and 7y (vg) < |9l e’ (1 vy-
Now use that, under the assumptions, (L9(v)®,, Y)* = L9 (v,Y*) and u = v, for
certain g € LY (v, Y*).

(i) Note that u = uy for some f € LP (i, X*). Hence vy = u* : X** — LP(u) is
p’-summing and T (u*) < HfHLP/(/hX*) = HUH(L‘I(V)QA@WY)*' [l

Proof of Theorem 1.2

The case p = 1 is included in (iii) Theorem 1.1.

Assume now 1 < p < oo and let m : ¥ — LP be a vector measure. Given
w: LP — L? with u € (L?®a,LP)* we can use (ii) in Lemma 3.3 to conclude that
there exist f € L¥'([0,1], L?) such that vp: L2 — L¥' given by ¢ — fol oY) f(z,y)dy
is p’-summing and u = uy = (vy)*. Hence, using Theorem 2.21 in [5], one has that
(vp)* =u: LP — L? is 1-summing. Therefore

[y omlly < Clluglllm]l < CllfllLo 0,11, 22) Il O

Let us mention another useful lemma.

Lemma 3.4. (Prop. 6, [1]) Let Y be a Banach space of finite cotype r and let
Zj y; be an unconditionally convergent series in'Y .

(i) If 1 = 2 then there exist (a;) € (> and a sequence in (y;) C 'Y such that
y; = a;y; and
Sl < s 365

sup Z Yy ))? < Slhrilzlwmy*ﬂ
=175

lly=Il=
(ii) If v > 2 then for any q > r there exist (a;) € £9 and a sequence in (y;) CY
such that y; = ajy; and

Zlal Vi< ( ap Zlyg, e,

yrll=1
sup Zlyy )YV < (sup Zly], A

Hv =1 H =1

PROOF. (i) Let T : ¢g — Y such that T'(e;) = y;. Note that L(co,Y") = IIz(co,Y)
for any cotype 2 space Y. Now apply Lemma 2.23 in [5] to the sequence (e;) which
satisfies sup{}_, [(e;, 2)| : [|z]la = 1} to conclude that T'(e;) = y; = a;y; with the
desired properties.

(ii) Repeat the proof using now L(cy,Y") = II4(cp, Y') for any g > r (see Theorem
11.14 [5)). O

Proof of Theorem 1.3



REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES WITH RESPECT TO BANACH SPACESt

Note Theorem 1.2 and (4) give
(9) Br2(m,y2, LP) ~ |m|,  1<p<2.

To obtain (ii) we simply use the following more general result.
Theorem 3.5. If Y has cotype r < co and Y* has the RN P then
(10) Brew)(m,v2,Y) ~ [m|, r=2.

(11) ﬂL‘I(u)(m7fYQvY) ~ ||mHv q>r>2.

PROOF. We only prove (11). The other is exactly the same.

Let (A;) be a sequence of pairwise disjoint sets. Since m(A;) is unconditionally
convergent in Y, Lemma 3.4 implies that there exist (a;) € 7 and a sequence in
(y;) C Y with m(4;) = a;y; and

Z\al )1 < ( sup Z\(m(Aj)7y*>|)”q~

H *||=1
Hsqu Zlyg YEYVe < ( |Sl\1|p ZI e
Yy 1 * 1

On the other hand 1f u € (LI(v)QY)*, using (1) in Lemma 3.3, one has u €
I, (Y, L9). Therefore

ZHU(m(Aj))II = Zlag\llu (y5)]

< Z|a| 1/QZHU )
< ()(Z\al ta( Slhp Zlyg, )7
< CHUH(Lq(

4. MEASURES OF INFINITE X-SEMIVARIATION

We shall present now some necessary conditions to have bounded X-
semivariation.

Proposition 4.1. (i) Assume that X®,Y is of finite cotype q. If m: ¥ — Y be a
vector measure then

||qu < Cqﬁx(mvﬂ Y)

for some constant C, independent of m.
In particular, if X has finite cotype q and 1 < p < oo then

Hm”max{q,Q,p} < OﬁX (ma AIH Lp(:u))'

(#i) Let 1 < q < 00, let v be a finite measure for which there exists a sequence of
pairwise disjoint sets with v(B;) > 0 and let m : ¥ — Y be a vector measure. Then

Hm”q < CqﬂL’I(V)(ma’YQa Y)
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PROOF. (i) Let (z;) be a sequence in the unit ball of X and a sequence of pairwise
disjoint sets A;. Hence , for 0 <t <1, one has

| er(t)wk ®m(4)lxe,y < Bx(m,7,Y)

where r; stands for the Rademacher sequence. Now integrate over [0,1] and use
the cotype estimate to get

k
Z x| 2llm(A7)|)Y < Cofx (m,7,Y).

Taking the sup over (x]) and (A;) one obtains the desired result.
Note that LP(u, X) has cotype equals max{p, ¢,2}.

(ii) Take z; = %, ¢ = Z?:l xjX 4, for some sequence of pairwise disjoint
J
sets in ¥ and notice that, for any A € X,

k
¢ @ m(A)|[Lawy) = Y [Im(AN A;)[[9)"4.
j=1
This gives the result O

Corollary 4.2. Let Y be infinite dimensional Banach space, 1 < ¢ < 2 and v
be a finite measure for which there exists a sequence of pairwise disjoint sets with
v(E,) > 0.

(i) There exist Y -valued measure such that Braq)(m,v,,Y) = oo.

(is) If LP(u) is infinite dimensional then there exist LP(u)-valued measures m
such that Bra)(m, Ay, LP(1)) = oo for 1 < q <2 and q¢ > p.

PROOF. (i) Select an unconditionally convergent series (y,) with Y_, |lyx||? = oo
(this can be done for 1 < ¢ < 2, see, for instance [5])).

Now we define the measure over N given by m({k}) = yi. Clearly ||m|l; = o0
and therefore Brq(,)(m,v4,Y) = oo from (ii) in Proposition 4.1.

(ii) follows from (i) and the estimate (3). O.

A very important example to analyze is my, : ¥ — LP(u) given by my(A) =
x4.- We shall see that these measures are enough to produce examples with
Braw)(m, g, LP (1)) = oo for ¢ < p.

Theorem 4.3. Let p(21) < oo, v(2) < oo, X = Li(v) and Y = LP(u).
Then the LP(p)-valued measure my(A) = xa has finite LI(v)-semivariation in
LI(v)@y, LP () if and only if L7 (v, LP (1)) € L (s, L7 (v)).

PROOF. Let g: 1 x Q29 — R be such that

191l o = /Q ( / 9, )P da(2)? 7 du ()0 < oc.

2 J

Note that the operator vy : LP(u) — L9 (v) becomes

0, (W) (1) = / oy, 2)Y(@)du(z),
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hence, we have vgom,(A) = [, g(y,z)du(zx) for all A € ;. This shows that vgom,,
is the L7 (v)-valued measure with Radon-Nikodym derivative g(y,.). Therefore

log o mylls = o, (fo, l9(y, @) dv(y)V/" du(z).
Now Theorem 2.2 shows that m, is of bounded L9(v)-semivariation in
L9(v)®., LP(p) if and only if there exists C' > 0 such that

N dy 1/q' 2)|P 2P ()4
/Ql<j£2|g<y, ) di() 7 du(y) < cer2</£1|g<y, P da() 0P dv ()

That is to say LY (v, LP (1)) C L*(u, LY (v)). O

Corollary 4.4. Let 1 < p < oo and myp : X — LP(u) given by m,(A) = xa. Then
5L‘1(V)(mp"yq7Lp(:u)) < oo forp<q.

PROOF. Note that for p < g one obviously has
LY (v, I (1)) € LY (v, LY () = LY (, LY (v)) C L} (p, LY (v)).

Apply now Theorem 4.3. (I
Actually the previous result is also a consequence of the following general fact.

Proposition 4.5. Let 1 < p < 0o, X a Banach space and let m : ¥ — LP(u) be a
positive vector measure, that is m(A) > 0 for all A € X. Then

In particular, if m is positive and p < q then

BLQ(V)(m7 Ya» LP(M)> = ||m||
PROOF. Tt is well-known that (LP (i, X))* = (LP(u)®X)* can be identified with
the space of X*-valued measures in V' (u, X*) (see [4]). In particular, if u €

(LP(p)®X)* C L(LP(p), X*) (see for instance [3]) there exists ¢ € LP' (1) such that
Ml < llull(£r(uyax)- and satisfies that

nwwns4¢mwmm@

for any positive function 1) € LP(p1). Therefore, if [|ul 1»(,5x)- =1 then

k
;;mm&»|<|mm/§hw| )(Odu(t)

wP{ZI Il =1}

IN

Hence |luy o ml|y < |m|. Apply now Theorem 2.2.
In the case X = L4(v) and p < ¢ (4) allows us to conclude the proof. O
We shall now see that the range of values in Theorem 4.3 is sharp.

Lemma 4.6. If p > q then there exists f : [0,1]> — R such that

1,1
q,4,,\P/a
L sayranyiias < o
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/ K / oy ey = o

PROOF. Denoting § = p/q > 1 and g(z,y) = f(z,y)? it suffices to find g :

[0,1]> — R* such that
11
/0 (/O g(x,y)dy)’dz < o0

/01(/019(33,?1)5(11:)1/%/ =00

Recall that the Hardy operator T'(¢ =1 [ ¢(y)dy is bounded on L?([0,1] for
£ > 1 and define

and

and

g(x,y) = %X[o,w] (y)o(y)

for a function ¢ € LA([0,1]) to be chosen later.

Clearly
1 1 3
/0 ( / o, w)dy)’ds = |T@)

()13

A
=
=

On the other hand

[ stwwpanyira / o) / ey

yB= 1)/pd

= C(/O ((bl(/ﬁ),)ﬂ/pd

> O Qi(/g), dy)*/”.

IV
Q
\
&

Now select ¢(y) = to have ¢ € LA([0,1]) and

1/ﬂlog(1/y>
1
d
¢1(y),dy:/ y
yt/p o Ylog(1/y)

Corollary 4.7. For g < p the L?([0,1])-valued measure m,(A) = xa has infinite
L([0, 1])-semivariation in L9([0, 1])&-, L*([0,1].

O
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