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Let E be a Banach function space and X be an arbitrary Banach space. Denote by
E(X) the Köthe-Bochner function space defined as the set of measurable functions
f : Ω → X such that the nonnegative functions ‖f‖X : Ω → [0,∞) are in the
lattice E. The notion of E-variation of a measure —which allows to recover the p-
variation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced
by Gresky and Uhl— is introduced. The space of measures of bounded E-variation
VE(X) is then studied. It is shown, among other things and with some restriction
of absolute continuity of the norms, that (E(X))∗ = VE′ (X∗), that VE(X) can be
identified with space of cone absolutely summing operators from E′ into X and
that E(X) = VE(X) if and only if X has the RNP property.

1. Introduction

The concept of variation in the frame of vector measures has been fruitful in
several areas of the functional analysis, such as the description of the duality
of vector-valued function spaces such as certain Köthe-Bochner function
spaces (Gretsky and Uhl10, Dinculeanu7), the reformulation of operator
ideals such as the cone absolutely summing operators (Blasco4), and the
Hardy spaces of harmonic function (Blasco2,3). The variation of a vector
measure has been considered in more an more wide families of function
spaces, starting with the p-variation in Dinculeanu7, and following with the
Φ-variation in Uhl16 or the E-variation in Gretsky and Uhl10 for certain
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Banach lattices E. Recently the authors have considered a new approach
to (p, q)-variation in Blasco and Gregori5.

Here we present a theory of E-variation which covers the one in Gretsky
and Uhl10, but also allows us to include more general Banach lattices.

We present in a second stage the development of the theory of Lorentz
spaces Λ and M in the setting of vector measures. This will include as
particular cases the spaces Vp,∞(X) and Vp,1(X) introduced in Blasco and
Gregori5.

The research of this paper is placed into the theory of function spaces
and vector measures, then some introductory notation and preliminary de-
finitions are needed.

In order to fix notation, the underlying measure space (Ω,Σ, µ) is an
arbitrary finite nonatomic measure space. For arbitrary measurable set A,
DA stands for the set of all finite partitions of A into measurable subsets.
Letter X shall usually denote an arbitrary Banach space.

In reference to vector measure theory, we recall that a vector mea-
sure is a countably additive set function F : Σ → X for which the (to-
tal) variation is the measure |F | : Σ → [0,+∞] defined by |F |(A) :=
supπ∈DA

∑
Ai∈π ‖F (Ai)‖X . The vector measure F is said to be absolutely

continuous with respect to µ (also called µ-continuous and denoted by
F � µ) when limµ(A)→0 ‖F (A)‖X = 0, and of bounded variation if the
measure |F | is finite, i.e.,|F |(Ω) < +∞.

(Indefinite) Bochner integral of measurable functions provide µ-
continuous vector measures and of bounded variation. The converse, that
is, if every µ-continuous vector measure of bounded variation arises as the
Bochner integral of a measurable function, is a geometric property that the
Banach space X might fulfill or not. It is called Radon-Nikodým Property
and when satisfied it is denoted by X ∈ (RNP ) (see Diestel and Uhl6).

Further definitions of variation have led, since the 30’s until the 70’s, to
the consideration of p-variation (Dinculeanu7), Φ-variation (Uhl16,17) and
E-variation (Gretsky and Uhl10), with several applications to the study of
Banach spaces and operator theory.

On the side of function spaces, we fix on the family of Banach function
spaces (or Köthe function spaces, see Bennett and Sharpley1 for a complete
reference).

In the set of nonnegative measurable functions on Ω —actually equiva-
lence classes of functions and denoted by M+—, equipped with the usual
pointwise order, Banach function spaces can be expressed by means of a
function norm ρ satisfying, for f, g ∈ M+:
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(1) ρ(f) ≥ 0 and ρ(f) = 0 iff f = 0, ρ(αf) = αρ(f) for α ≥ 0 and
ρ(f + g) ≤ ρ(f) + ρ(g).

(2) f ≤ g in M+ implies ρ(f) ≤ ρ(g).
(3) 0 ≤ fn ↑ f in M+ implies ρ(fn) ↑ ρ(f).
(4) µ(E) <∞ implies ρ(χE) <∞.
(5) µ(E) <∞ implies

∫
E
fdµ ≤ CEρ(f).

The definition of ρ is extended to M (the class of all scalar measurable
functions on Ω) by ρ(f) = ρ(|f |) and ta Banach function space E is given
by the functions of M such that ρ(f) < ∞, taking the notation of ‖f‖E

for ρ(f).
Since we are assuming µ(Ω) <∞ from 4 and 5 we have that

L∞(µ) ⊆ E ⊆ L1(µ).

A “dual” norm is defined by ‖f‖′ = sup{
∫
Ω
|fg|dµ : g ∈ M+, ρ(g) ≤ 1}.

It shares the properties of ‖ · ‖E (i.e., it is a function norm) and defines
in M the called associate space E′ by

E′ = {f ∈ M : ‖f‖E′ := ‖f‖′ <∞}.
The Hölder inequality reads in this case∫

Ω

|fg|dµ ≤ ‖f‖E‖g‖E′

and the second “dual” norm (i.e., the dual norm of ‖·‖′) is found to coincide
with ‖ · ‖E . In other words, E′′ := (E′)′ = E.

Two additional properties to be used latter on are the following:
Property (J), i.e. if for every function f ∈ E and every partition π ∈ DΩ

we have that

‖
∑
A∈π

∫
A
fdµ

µ(A)
χA‖E ≤ ‖f‖E .

E′ has an absolutely continuous norm, i.e. if limA↓∅ ‖fχA‖E′ = 0 for
all f ∈ E′.

The notion of absolute continuity of the norm of E is important since the
topological dual space of E, E∗, is exactly the associate space E′ whenever
E has absolutely continuous norm. The notation Ea is used for the set of
functions f of E with absolutely continuous norm, and E is said to have
absolutely continuous norm when E = Ea. Another subspace of E is of
great interest, Eb, the closure of the set of simple functions in E. The
inclusion {0} ⊂ Ea ⊂ Eb ⊂ E holds.

Note that if E has property (J) then also E′ does, but this is not the
case for E having absolutely continuous norm (for instance E = L1).
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Inside this wide family of scalar function spaces, there is an interesting
class, playing a crucial role in the theory of interpolation of operators. It
is the family of rearrangement invariant Banach function spaces.

For every measurable function f , the distribution function µf is given
by

µf (λ) = µ({w ∈ Ω : |f(w)| > λ}), λ ≥ 0.

Two measurable functions are said to be equimeasurable when their respec-
tive distribution functions coincide. The decreasing rearrangement of f is
the right-continuous inverse of µf , that is,

f∗(t) = inf{λ > 0 : µf (λ) ≤ t}, t ≥ 0.

It is easy to see that f and f∗ are always equimeasurable, and we have the
Hardy–Littlewood inequality∫

Ω

|fg|dµ ≤
∫ ∞

0

f∗(t)g∗(t)dt.

The notion of resonant measure spaces arises at this point. However,
as it is out of our scope, we just mention that these measure spaces are
characterized by either nonatomicity, or if atomic, then completely atomic
with all the atoms having the same measure. Keeping in mind that in our
situation we have a finite nonatomic measure space then (see Bennett and
Sharpley1) for every t ∈ [0, µ(Ω)] there exists a measurable set Et so that

∫
Et

fdµ =
∫ t

0

f∗(s)ds.

Hardy-Littlewood inequality motivates the definition of the maximal
function of f∗

f∗∗(t) =
1
t

∫ t

0

f∗(s)ds, t > 0,

also called the second rearrangement of f .
A Banach function space E is said rearrangement invariant when every

two equimeasurable functions have always the same norm ‖·‖E . In this
case, the notion of fundamental function of E,

ϕE(t) = ‖χA‖E , µ(A) = t, t ∈ [0, µ(Ω)]

is of rather interest. It is a continuous (except perhaps at the origin)
increasing function such that ϕE(t)

t is decreasing and holding the relation

ϕE(t)ϕE′(t) = t, t ∈ [0, µ(Ω)]
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Now, the notion of absolute continuity of the norm of E (also seen as
Ea = E) can be reformulated as ϕE(0+) = 0.

In a rearrangement invariant Banach function space E, one can take
its fundamental function and define the Lorentz spaces M(E) and Λ(E),
whose norms are given by

‖f‖M(E) = sup
0<t<µ(Ω)

f∗∗(t)ϕE(t)

‖f‖Λ(E) =
∫ µ(Ω)

0

f∗(s)dϕE(s)

= ‖f‖∞ϕE(0+) +
∫ µ(Ω)

0

f∗(s)φE(s)ds

We have to mention that it is needed ϕE to be concave, in order to have a
good definition for Λ(E), and that it is always possible after a convenient
renorming in E. Therefore φE is well defined as the nonnegative decreasing
function such that

ϕE(t) = ϕE(0+) +
∫ t

0

φE(s)ds.

Lorentz spaces Λ(E) and M(E) are rearrangement invariant spaces with
fundamental function ϕE (when it is chosen to be concave) and the inclusion
Λ(E) ⊂ E ⊂M(E) is a norm-one embedding. The study of duality of those
spaces lead to

Λ(E)∗ = M(E∗) M(E)∗ = Λ(E∗)

when ϕE(0+) = 0.
Finally recall the vector-valued Banach function spaces, also called

Köthe-Bochner function spaces. A Banach function space E and an ar-
bitrary Banach space X give rise to the Köthe-Bochner function space
E(X), defined as the set of measurable functions f : Ω → X such that the
nonnegative functions ‖f‖X : Ω → [0,∞) are in the lattice E. Besides,
‖f‖E(X) := ‖ ‖f‖X‖E .

2. Vector measures with variation in a Banach function
space

This section contains the definition of the vector space in the general case,
some useful preliminary results, and the main theorems (concerning the
Radon-Nikodým property, the compatibility with historical definitions —
see Dinculeanu7, Uhl16 and Gretsky and Uhl10—, the description of the
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dual of Köthe-Bochner function spaces and descriptions in terms of the
space of cone absolutely summing operators).

Definition 2.1. Let E be a Banach function space and X an arbitrary Ba-
nach space, we define the space VE(Ω,Σ, µ,X) —denoted also as VE(X)—
as the space of all finitely additive vector measures F : Σ → X for which
the supremum

sup{
∑
A∈π

|αA| ‖F (A)‖ : π ∈ DΩ, ‖
∑
A∈π

αAχA‖E′ ≤ 1}

is bounded. This supremum is called the E-variation of F and it is denoted
by |F |E .

Remark 2.1. The following basic properties are true:
(i) ‖F (A)‖ ≤ |F |E‖χA‖E′ for all A ∈ Σ.
(ii) If F ∈ VE(X) then it has bounded variation.
(iii) If E′ has absolutely continuous norm then F ∈ VE(X) implies

F � µ.
In particular if F ∈ VE(X) then F is a countably additive vector mea-

sure.
(iv) If E1 ⊂ E2 then VE1(X) ⊂ VE2(X).
In particular VL∞(X) ⊆ VE(X) ⊆ VL1(X).

Remark 2.2. A simple argument allows us to replace ‖F (A)‖ by
|F |(A)| in the previous definition. |F |E = sup{

∑
A∈π |αA| |F |(A) :

‖
∑

A∈π αAχA‖E′ ≤ 1}.

Now we can give a characterization for vector measures of bounded
E-variation in terms of the function space E.

Lemma 2.1. Let E′ have norm absolutely continuous. The following as-
sertions are equivalent:

(1) F ∈ VE(X),
(2) There exists ϕ ≥ 0, ϕ ∈ E such that

|F |(A) =
∫

A

ϕdµ, A ∈ Σ.

Moreover ‖ϕ‖E = |F |E.

Proof: For F ∈ VE(X), the set function |F | is a µ-continuous positive
measure. The Radon-Nikodým theorem provides a nonnegative function
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ϕ ∈ L1 representing |F |. Taking into account the duality of norms in E

and E′

‖ϕ‖E = sup{
∫
Ω
ϕψdµ : ‖ψ‖E′ ≤ 1}.

and approximating the supremum with the use of simple functions in E′,
we just have to replace ϕ with |F | to get that

‖ϕ‖E = sup{
∑
A∈π

|αA| |F |(A) : ‖
∑
A∈π

αAχA‖E′ ≤ 1} = |F |E .

When ϕ is as described in 2, the fact that F ∈ VE(X) is an immediate
corollary of the Remark 2.2. �

Proposition 2.1. (VE(X), | · |E) is a Banach space.

Proof: Norm properties of | · |E are easy to check. For the completeness,
let {Fn}∞n=1 ⊂ VE(X) be a Cauchy sequence. For every A ∈ Σ, the sequence
{Fn(A)}∞n=1 ⊂ X is also Cauchy (hence convergent) since

‖Fn(A) − Fm(A)‖X ≤ ‖χA‖E′ |Fn − Fm|E , m, n ∈ N

The set function F defined as F (A) := limn Fn(A) for A ∈ Σ is finitely
additive.

Assuming {Fn} not convergent in VE(X), we can find an ε0 > 0
such that for every k ∈ N there is a nk ≥ k and a simple function
sk =

∑
A∈πk

αk
AχA suct that ‖sk‖E′ ≤ 1 for which

ε0 <
∑

A∈πk

|αk
A| ‖Fnk

(A) − F (A)‖X .

Now let us take k := n( ε0
2 ) (from the Cauchy’s condition of {Fn}n with

ε0
2 > 0). Fix an integer nk ≥ k and a simple function s =

∑
A∈π αAχA

with ‖s‖E′ ≤ 1. For any m ≥ nk we have

ε0 <
∑

A∈π |αA| ‖Fnk
(A) − F (A)‖X

≤
∑

A∈π |αA| ‖Fnk
(A) − Fm(A)‖X +

∑
A∈π |αA| ‖Fm(A) − F (A)‖X

≤ |Fnk
− Fm|E +

∑
A∈π |αA| ‖Fm(A) − F (A)‖X

< ε0
2 +

∑
A∈π |αA| ‖Fm(A) − F (A)‖X .

Therefore ∑
A∈π

|αA| ‖Fm(A) − F (A)‖X >
ε0
2

for every m ≥ k, which leads to a contradiction.
Finally F ∈ VE(X) since |F |E ≤ |F − Fn|E + |Fn|E <∞. �
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Proposition 2.2. Let E be a Banach function space satisfying property
(J). The space VE(X) can be reformulated with the equivalent expression
of E-variation

sup
π∈DΩ

‖
∑
A∈π

F (A)
µ(A)

χA‖E(X)

Proof: It is plain that for π ∈ DΩ and the simple function s =∑
A∈π αAχA, with ‖s‖E′ ≤ 1, we have that

∑
A∈π

|αA|‖F (A)‖X =
∫
Ω
(
∑

A∈π |αA|χA)(
∑

A∈π
‖F (A)‖X

µ(A) χA)dµ

≤ ‖
∑

A∈π
‖F (A)‖X

µ(A) χA‖E

which proves an inequality. The reverse inequality is obtained by means
of the duality between norms in E and E′. Let us take arbitrary π ∈ DΩ.
Then

‖
∑
A∈π

‖F (A)‖X

µ(A) χA‖E = sup{
∫
Ω
(
∑

A∈π
‖F (A)‖X

µ(A) χA)gdµ : ‖g‖E′ ≤ 1}

= sup{
∑

A∈π(
∫

A
gdµ

µ(A) )‖F (A)‖X : ‖g‖E′ ≤ 1}
= sup{

∑
A∈π |αA|‖F (A)‖X : ‖

∑
A∈π αAχA‖E′ ≤ 1}

where, for the last step, the inequality

‖
∑
A∈π

(
∫

A
gdµ

µ(A) )χA‖E′ ≤ ‖g‖E′ ≤ 1

has been used, and was available since E′ ∈ (J) from the hypothesis on E.
�

Proposition 2.3. Let E be a Banach function space and let X be a Banach
space. Then E(X) ⊆ VE(X).

Proof: The operator λE : E(X) → VE(X) given by the (indefinite)
Bochner integral f �→

∫
(·) fdµ is the isometric inclusion, since for every

(Bochner)-integrable function f , we have that |λE(f)|(·) =
∫
(·) ‖f‖Xdµ.

Assuming ‖f‖X ∈ E, we conclude that λE(f) ∈ VE(X) and |λE(f)|E =
‖ ‖f‖X ‖E = ‖f‖E(X). �

Theorem 2.1. Let E′ have absolutely continuous norm and let X be a
Banach space. Then E(X) = VE(X) if and only if X ∈ (RNP ).
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Proof: Assume that X ∈ (RNP ). As long as any vector measure F ∈
VE(X) is µ-continuous and of bounded total variation, our assumption
provides a function f ∈ L1(X) such that F (A) =

∫
A
fdµ. Since |F |(·) =∫

(·) ‖f‖Xdµ it follows that f ∈ E(X).
For the converse assume that λE : E(X) → VE(X) given by f �→∫

(·) fdµ is surjective. We shall prove that every bounded linear operator
T : L1 → X is representable by some function g ∈ L∞(X) (characterizing
therefore the (RNP ) for X).

For this purpose we shall deal with the Lebesgue measure space
([0, 1],m). Let T : L1 → X be bounded and linear operator. Let us
define the measure G : Σ → X by G(A) := T (χA) for every measur-
able set A. Since ‖G(A)‖X ≤ ‖T‖m(A). This shows that G ∈ V∞(X),
i.e. ‖G‖V ∞(X) = supA

‖G(A)‖X

m(A) ≤ ‖T‖ < ∞. Since V∞(X) = VL∞(X) ⊂
VE(X) and the surjection VE(X) = E(X) we have a function g ∈ E(X) ⊂
L1(X) such that G(A) =

∫
A
gdµ for any measurable set A. The Lebesgue

Differentiation Theorem yields

‖g(t)‖X =

∥∥∥∥∥ lim
h→0

1
h

∫ t+h

t

g(s)ds

∥∥∥∥∥
X

= lim
h→0

‖G([t, t+ h])‖X

h
≤ ‖T‖

for almost all t ∈ [0, 1]. Therefore g ∈ L∞(X) and T (ϕ) =
∫
Ω
ϕgdµ for all

ϕ ∈ L1. Hence X ∈ (RNP ). �
Vector measures and linear operators defined on the set of sim-

ple functions have always been connected by FT (A) = T (χA) and
TF (

∑
A∈π αAχA) =

∑
A∈π αAF (A). The space of all linear bounded oper-

ators from a Banach function space E to an arbitrary Banach space X can
be found isometric (or only isomorphic) to a space of vector measures with
weak E-variation (see Gretsky9, Gretsky and Uhl10 and Gregori8). Now
that we are restricted to the space VE(X), we show the ideal operator which
is in correspondence with this vector measure space: the cone absolutely
summing operators.

Definition 2.2. (see Schaefer14) Let E be a Banach lattice and B a Banach
space. A linear operator from E to B is said to be cone absolutely summing
(c.a.s.) if there is a constant C > 0 such that for every k ∈ N and every
family e1, e2, . . . , ek ∈ E of positive elements we have

k∑
i=1

‖T (ek)‖B ≤ C sup
‖e∗‖E∗≤1

k∑
i=1

|〈ei, e
∗〉|.

Denoting by Λ1(E,B) the set of such operators, its norm is given by the
infimum of such constants C holding the previous inequality and it denoted
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by ‖T‖c.a.s..

Remark 2.3. If E is a Banach function space and e1, e2, . . . , ek positive
elements then

sup
‖e∗‖E∗≤1

k∑
i=1

|〈ei, e
∗〉| = ‖

k∑
i=1

ei‖E .

Proposition 2.4. (see Schaefer14) T ∈ Λ1(E,X) if and only if there exists
φT ∈ E′, φT ≥ 0 such that

‖T (f)‖ ≤
∫

Ω

|f |φT dµ.

Moreover ‖T‖c.a.s. = ‖φT ‖E′ .

Theorem 2.2. Let E be a Banach function space with absolutely continu-
ous norm and X a Banach space. Then Λ1(E,X) = VE′(X)

Proof: If T ∈ Λ1(E,X), the measure FT : Σ → X associated to T

belongs to VE′(X), because if A ∈ Σ then Proposition 2.4 gives ‖FT (A)‖ ≤∫
A
φT dµ for all A ∈ Σ and some φT ∈ E′ and then

sup{
∑
A∈π

|αA|‖F (A)‖ : ‖
∑
A∈π

αAχA‖E ≤ 1}

≤ sup{
∫

Ω

(
∑
A∈π

|αA|χA)φT dµ : ‖
∑
A∈π

αAχA‖E ≤ 1}

= ‖φT ‖E′ = ‖T‖c.a.s.

Conversely, since the norm in Λ1(E,X) coincides with

‖T‖c.a.s. = sup{
n∑

i=1

‖Tϕi‖X : n ∈ N, ‖
n∑

i=1

ϕi‖E ≤ 1, ϕ1, . . . , ϕn ≥ 0}

Applying Lemma 2.1 we have that, for every function f simple function,

‖TF (f)‖X ≤
∫

Ω

|f |ϕdµ

where ϕ represents |F |.
Therefore, for ϕ1, . . . , ϕN ≥ 0, ϕi ∈ Eb = E we have

N∑
n=1

‖TF (ϕn)‖X ≤
N∑

n=1

∫
Ω

ϕnϕdµ =
∫

Ω

(
N∑

n=1

ϕn)ϕdµ ≤ |F |E′ ‖
N∑

n=1

ϕn‖E .

and then ‖TF ‖c.a.s. ≤ ‖F‖E′ . �
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Theorem 2.3. Let X be a Banach space and E be a Banach function space
with absolutely continuous norm. Then VE′(X∗) = (E(X))∗.

Proof: Let F ∈ VE′(X∗). Define ΦF : E(X) → K using

ΦF (
N∑

n=1

xnχAn) =
N∑

n=1

〈F (An), xn〉.

Recall that simple functions are dense in E(X) because of the assumption
and let s =

∑N
n=1 xnχAn

be a simple function in E(X),

|ΦF (s)| = |
N∑

n=1

〈F (An), xn〉| ≤
N∑

n=1

‖xn‖X |F |(An) =
∫

Ω

‖s(·)‖Xϕdµ

where the function ϕ is the one of Lemma 2.1. Applying now Hölder’s
inequality and density of simple functions, we get ‖ΦF ‖ ≤ ‖ϕ‖E′ = |F |E′ .

In order to see the surjectivity, let us consider the measure FΦ : Σ → X∗

induced by an element Φ of (E(X))∗. Let ‖
∑

a∈π αAχa‖E ≤ 1,

∑
A∈π

|αA‖‖FΦ(A)‖X∗ = sup‖xA‖≤1 |
∑

A∈π Φ(αAxAχA)|

= sup‖xA‖≤1 |Φ(
∑

A∈π αAxAχA)|
≤ ‖Φ‖ sup‖xA‖≤1 ‖

∑
A∈π αAxAχA‖E(X)

= ‖Φ‖

Then FΦ ∈ VE′(X∗) and also the isometry is proved.
�

3. Variation in rearrangement invariant function spaces

Rearrangement invariant Banach function spaces (r.i. spaces for short) sat-
isfy property (J) (see Bennett and Sharpley1). This family of spaces is very
important in the theory of interpolation of operators. A part of the the-
ory of rearrangement invariant function spaces —the one concerning the
Lorentz spaces Λ(E) an M(E) associated to every rearrangement invari-
ant function space E— is going to be transferred to the setting of vector
measures.

Definition 3.1. (see Blasco and Gregori5) Let (Ω,Σ, µ) be a measure space
and let us denote the interval I = (0, µ(Ω)]. Let X be an arbitrary Banach
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space. For every finitely additive set function F : Σ → X we define the
function

ωF (t) = sup
µ(A)≤t

|F |(A), t ∈ I

Proposition 3.1. (see Blasco and Gregori5) For an arbitrary vector
mesure F , the following properties are true:

(1) ωF is nondecreasing and subadditive.
(2) If µ is resonant then the function ωF is continuous and concave.
(3) Let F be of finite total variation. Then F � µ iff w(0+) = 0
(4) If F = fdµ for some f ∈ L1(µ) then ωF (t) = tf∗∗(t) for all t ∈ I.

Now we are presenting a bigger measure space for VE(X), in a simi-
lar way as the Lebesgue–Marcinkiewicz Lp,∞ —also referred as weak-Lp—
contains Lp.

Definition 3.2. The space VE,∞(Ω,Σ, µ) —denoted also as VE,∞(X)— is
the space of all finitely additive vector measures F : Σ → X for which

|F |(A) ≤ C‖χA‖E′

for every mesurable set A and some constant C > 0 independent of A. The
infimum of those constants C is the norm, denoted by |F |E,∞.

Remark 3.1. (i) If E is a r.i. space then VE,∞(X) is given by all finitely
additive vector measures F of bounded variation such that

ωF (t) ≤ CϕE′(t) ∀t ∈ I.

(ii) If E′ has absolutely continuous norm then F ∈ VE,∞(X) implies
F � µ and F is countably additive.

Definition 3.3. The space VE,∞(Ω,Σ, µ) —denoted also as VE,∞(X)— is
the space of all finitely additive vector measures F : Σ → X for which

‖F (A)‖ ≤ C‖χA‖E′

for every mesurable set A and some constant C > 0 independent of A. The
infimum of those constants C is the norm, denoted by ‖F‖E,∞.

Theorem 3.1. Let E be a r.i. space such that E has norm absolutely
continuous. Then VE′,∞(X) = L(Λ(E), X).

Proof: Clearly if T ∈ L(Λ(E), X) then FT (A) = T (χA) defines a finitely
additive measure in VE′,∞(X) and ‖FT ‖E,∞ ≤ ‖T‖.
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Conversely, given F ∈ VE′,∞(X) and defining TF in the natural way,
we have that if f is a positive simple function f =

∑n
i=1 αiχAi where

A1 ⊆ A2... ⊆ An then we can write

‖TF (
n∑

i=1

αiχAi)‖ = ‖
n∑

i=1

αiF (Ai)‖ ≤
n∑

i=1

αi‖F (Ai)‖

≤ C

n∑
i=1

αiϕE(µ(Ai)) = C

∫ µ(Ω)

0

n∑
i=1

αiχ(0,µ(Ai))(s)dϕE(s)

= C

∫ µ(Ω)

0

f∗(s)dϕE(s) = C‖f‖Λ(E).

For a general real-valued simple function write f = f+ − f− where
f+, f− are non-negative simple functions and ‖f+‖Λ(E), ‖f−‖Λ(E) ≤
‖f‖Λ(E). Since TF (f) = TF (f+) − TF (f−) we get ‖TF (f)‖ ≤ 2‖f‖Λ(E).

Now a density argument finish the result because simple functions are
dense in Λ(E) due to the absolutely continuous norm of E. �

The Lebesgue–Marcinkiewicz space Lp,∞ is nothing but the Lorentz
space M(Lp). The following result shows that these new vector measure
spaces are very related to the ones defined in the precedent section with
the additional ingredient of Lorentz spaces.

Theorem 3.2. Let E be a r.i. space such that E′ has norm absolutely
continuous and X a Banach space. Then VE,∞(X) = VM(E)(X).

Proof: From Remark 2.2 one gets |F |(A) ≤ |F |M(E)‖χA‖E′ . Hence the
inclusion VM(E)(X) ⊆ VE,∞(X) holds.

Conversely if F ∈ VE,∞(X) then, using the Radon-Nikodym theorem,
we get φ ∈ L1(µ) such that |F |(A) =

∫
A
φdµ for all A ∈ Σ. From 4 in

Propostion 3.1 we get that wF (t) = tφ∗∗(t). Hence φ ∈ M(E), because
ϕE(t)φ∗∗(t) = ϕE(t)

t wF (t) =≤ 1
ϕE′ (t)

wF (t) ≤ C. This shows the corre-
sponding isometry. �

Part 2 in the Proposition 3.1 allows us to give the following definition:

Definition 3.4. In a resonant measure space (Ω,Σ, µ) where the function
ωF is defined for every vector measure F , we define the function WF on the
interval I as the nonnegative, decreasing function such that for t ∈ I

ωF (t) = ωF (0+) +
∫ t

0

WF (s)ds.

Now we are introducing certain space contained in VE(X), in a similar
way as the Lorentz space Lp,1 is contained in Lp.
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Definition 3.5. The space VE,1(Ω,Σ, µ) —denoted also as VE,1(X)— is
the space of all µ-continuous vector measures F : Σ → X for which

|F |E,1 =
∫ µ(Ω)

0

WF (s)dϕE(s) <∞

Theorem 3.3. Let E be a r.i. space and X a Banach space. Then
VE,1(X) = VΛ(E)(X).

Proof: If F is µ-continuous and of bounded variation then we have
ωF (t) =

∫ t

0
WF (s)ds. Assuming that φ represents the variation of |F | then∫ t

0
WF (s)ds =

∫ t

0
φ∗(s)ds for all t > 0. Therefore φ∗ = WF . Hence φ ∈ Λ(E)

(or equivalently F ∈ VΛ(E)(X)) if and only if F ∈ VE,1(X). �
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