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Let E be a Banach function space and X be an arbitrary Banach space. Denote by
E(X) the Kothe-Bochner function space defined as the set of measurable functions
f : © — X such that the nonnegative functions ||f||x : € — [0,00) are in the
lattice E. The notion of E-variation of a measure —which allows to recover the p-
variation (for E = LP), ®-variation (for E = L?) and the general notion introduced
by Gresky and Uhl— is introduced. The space of measures of bounded E-variation
VE(X) is then studied. It is shown, among other things and with some restriction
of absolute continuity of the norms, that (E(X))* = Vg/(X*), that Vg (X) can be
identified with space of cone absolutely summing operators from E’ into X and
that E(X) = Vg(X) if and only if X has the RNP property.

1. Introduction

The concept of variation in the frame of vector measures has been fruitful in
several areas of the functional analysis, such as the description of the duality
of vector-valued function spaces such as certain Kothe-Bochner function
spaces (Gretsky and UhI', Dinculeanu”), the reformulation of operator
ideals such as the cone absolutely summing operators (Blasco?), and the
Hardy spaces of harmonic function (Blasco?3). The variation of a vector
measure has been considered in more an more wide families of function
spaces, starting with the p-variation in Dinculeanu”, and following with the
®-variation in Uhl'® or the E-variation in Gretsky and UhI'® for certain



Banach lattices E. Recently the authors have considered a new approach
to (p, q)-variation in Blasco and Gregori®.

Here we present a theory of E-variation which covers the one in Gretsky
and Uhl'?, but also allows us to include more general Banach lattices.

We present in a second stage the development of the theory of Lorentz
spaces A and M in the setting of vector measures. This will include as
particular cases the spaces V,, oo (X) and V,, 1(X) introduced in Blasco and
Gregori®.

The research of this paper is placed into the theory of function spaces
and vector measures, then some introductory notation and preliminary de-
finitions are needed.

In order to fix notation, the underlying measure space (£2,%, ) is an
arbitrary finite nonatomic measure space. For arbitrary measurable set A,
D 4 stands for the set of all finite partitions of A into measurable subsets.
Letter X shall usually denote an arbitrary Banach space.

In reference to vector measure theory, we recall that a vector mea-
sure is a countably additive set function F' : ¥ — X for which the (to-
tal) variation is the measure |F| : ¥ — [0,+00] defined by |F|(A) =
SUPrep, 2oa,ex IF(Ai)][x. The vector measure F' is said to be absolutely
continuous with respect to p (also called p-continuous and denoted by
F < p) when lim,4)—¢ [|[F(4)|lx = 0, and of bounded variation if the
measure |F| is finite, i.e.,|F|(Q) < +oo.

(Indefinite) Bochner integral of measurable functions provide pu-
continuous vector measures and of bounded variation. The converse, that
is, if every p-continuous vector measure of bounded variation arises as the
Bochner integral of a measurable function, is a geometric property that the
Banach space X might fulfill or not. It is called Radon-Nikodym Property
and when satisfied it is denoted by X € (RNP) (see Diestel and Uhl®).

Further definitions of variation have led, since the 30’s until the 70’s, to
the consideration of p-variation (Dinculeanu”), ®-variation (Uhl'6:17) and
E-variation (Gretsky and Uhl'?), with several applications to the study of
Banach spaces and operator theory.

On the side of function spaces, we fix on the family of Banach function
spaces (or Kéthe function spaces, see Bennett and Sharpley! for a complete
reference).

In the set of nonnegative measurable functions on {2 —actually equiva-
lence classes of functions and denoted by M*—, equipped with the usual
pointwise order, Banach function spaces can be expressed by means of a
function norm p satisfying, for f,g € M™:



(1) p(f) = 0 and p(f) = 0iff f =0, plaf) = ap(f) for a > 0 and

p
p(f +9) < p(f) + p(g)-

(2) f < gin M* implies p(f) < p(g).

(3) 0 < fn T f in M™ implies p(fn) T p(f).
(4) p(E) < oo implies p(xg) < oo.

(5) u(E) < oo implies [ fdu < Crp(f).

The definition of p is extended to M (the class of all scalar measurable
functions on Q) by p(f) = p(|f|) and ta Banach function space F is given
by the functions of M such that p(f) < oo, taking the notation of || f||x
for p(f).

Since we are assuming p(€2) < oo from 4 and 5 we have that

L>(n) C E C L'(p).

A “dual” norm is defined by || f||" = sup{ [, | fgldp : g € MT,p(g) < 1}.
It shares the properties of || - || g (i.e., it is a function norm) and defines
in M the called associate space E’ by

E'={feM:|flle:=f]" < oo}

The Holder inequality reads in this case

/Q Foldu < 1 Flelglle

and the second “dual” norm (i.e., the dual norm of ||-||") is found to coincide
with || - ||g. In other words, E” := (E') = E.
Two additional properties to be used latter on are the following:
Property (J), i.e. if for every function f € E and every partition 7 € Dq
we have that

Ja fdp
HAZ@ A) xalle < |flle-

E’ has an absolutely continuous norm, i.e. if limy g ||fxallzr = 0 for
all f € F'.

The notion of absolute continuity of the norm of F is important since the
topological dual space of E, E*, is exactly the associate space E’ whenever
FE has absolutely continuous norm. The notation F, is used for the set of
functions f of E with absolutely continuous norm, and F is said to have
absolutely continuous norm when F = E,. Another subspace of E is of
great interest, Ej, the closure of the set of simple functions in E. The
inclusion {0} C E, C Ej C E holds.

Note that if E has property (J) then also E’ does, but this is not the
case for E having absolutely continuous norm (for instance E = L1).



Inside this wide family of scalar function spaces, there is an interesting
class, playing a crucial role in the theory of interpolation of operators. It
is the family of rearrangement invariant Banach function spaces.

For every measurable function f, the distribution function uy is given
by

V) = p(fw € Q: [fw)| > A, A0,

Two measurable functions are said to be equimeasurable when their respec-
tive distribution functions coincide. The decreasing rearrangement of f is
the right-continuous inverse of pf, that is,

PO =ifA>0: 0\ <t} t>0.

It is easy to see that f and f* are always equimeasurable, and we have the
Hardy-Littlewood inequality

/Qlfg\duéfo f*(t)g*(t)dt.

The notion of resonant measure spaces arises at this point. However,
as it is out of our scope, we just mention that these measure spaces are
characterized by either nonatomicity, or if atomic, then completely atomic
with all the atoms having the same measure. Keeping in mind that in our
situation we have a finite nonatomic measure space then (see Bennett and
Sharpley!) for every t € [0, ()] there exists a measurable set E; so that

dy = *(s)ds.
[ s /Of(s)s

Hardy-Littlewood inequality motivates the definition of the maximal
function of f*

OEEY O

also called the second rearrangement of f.

A Banach function space F is said rearrangement invariant when every
two equimeasurable functions have always the same norm ||-||g. In this
case, the notion of fundamental function of E,

eet) = lIxalle, pA) =t t€0,u(Q)]

is of rather interest. It is a continuous (except perhaps at the origin)
increasing function such that “’ET(t) is decreasing and holding the relation

pe)er (t) =t,  tc[0,u(Q)]



Now, the notion of absolute continuity of the norm of E (also seen as
E, = E) can be reformulated as ¢ (07) = 0.

In a rearrangement invariant Banach function space E, one can take
its fundamental function and define the Lorentz spaces M (E) and A(E),
whose norms are given by

I fllaeey = sup [ (t)pr(t)
0<t<p(2)

w(€2)
1Fllace) = / F(s)dp(s)
n(€2)

— || loepn(07) + / £*(5)6(s)ds

We have to mention that it is needed ¢ g to be concave, in order to have a
good definition for A(F), and that it is always possible after a convenient
renorming in E. Therefore ¢ is well defined as the nonnegative decreasing
function such that

pr(t) :soE(0+)+/0 bp(s)ds.

Lorentz spaces A(E) and M(E) are rearrangement invariant spaces with
fundamental function ¢ g (when it is chosen to be concave) and the inclusion
A(E) C E C M(E) is anorm-one embedding. The study of duality of those
spaces lead to

AB)* = M(E*)  M(BE)* = A(E*)

when ¢ (0T) = 0.

Finally recall the vector-valued Banach function spaces, also called
Ko6the-Bochner function spaces. A Banach function space F and an ar-
bitrary Banach space X give rise to the Kothe-Bochner function space
E(X), defined as the set of measurable functions f : @ — X such that the
nonnegative functions ||f||x : & — [0,00) are in the lattice E. Besides,

Iflleco = IHflx 5.

2. Vector measures with variation in a Banach function
space

This section contains the definition of the vector space in the general case,
some useful preliminary results, and the main theorems (concerning the
Radon-Nikodym property, the compatibility with historical definitions —
see Dinculeanu”, UhI'® and Gretsky and UhI'®—, the description of the



dual of Koéthe-Bochner function spaces and descriptions in terms of the
space of cone absolutely summing operators).

Definition 2.1. Let E be a Banach function space and X an arbitrary Ba-
nach space, we define the space Vg (2, X, i, X) —denoted also as Vg (X)—
as the space of all finitely additive vector measures F' : 3 — X for which
the supremum

sup{)_ [aal [[E(A)]: 7€ Do, || Y aaxaller <1}

Aem Aem

is bounded. This supremum is called the E-variation of F' and it is denoted
by [F|g.

Remark 2.1. The following basic properties are true:

() I E(A)] < |Flslxalls for all A€,

(ii) If F € Vg(X) then it has bounded variation.

(iii) If E’ has absolutely continuous norm then F € Vg(X) implies
F<p.

In particular if F' € Vg(X) then F is a countably additive vector mea-
sure.

(iV) If £1 C E5 then VE1 (X) C VE2 (X)

In particular Vi~ (X) C Vg(X) C Vi1 (X).

Remark 2.2. A simple argument allows us to replace |F(A)| by
|F|(A)| in the previous definition. [F|g = sup{)_ .., |aal[F[(A) :
2 aer @axaller <1}

Now we can give a characterization for vector measures of bounded
FE-variation in terms of the function space FE.

Lemma 2.1. Let E' have norm absolutely continuous. The following as-
sertions are equivalent:

(1) Fe VE(X),
(2) There exists ¢ > 0, ¢ € E such that

|F|(A) = / od, AeX.
A
Moreover ||¢||g = |F|E-

Proof: For F € Vg(X), the set function |F| is a p-continuous positive
measure. The Radon-Nikodym theorem provides a nonnegative function



¢ € L' representing |F|. Taking into account the duality of norms in F
and F’

lelle = sup{ [ e¥dp s [[¥]ler < 1}

and approximating the supremum with the use of simple functions in E’,
we just have to replace ¢ with |F| to get that

lelle = sup{ Y laal [F|(A) : | Y aaxaller <1} = |F|s.

Aerm Aen
When ¢ is as described in 2, the fact that F' € Vg(X) is an immediate
corollary of the Remark 2.2. O

Proposition 2.1. (Vg(X), |- |g) is a Banach space.

Proof: Norm properties of |- |g are easy to check. For the completeness,
let {F},}22, C Vg(X) be a Cauchy sequence. For every A € X, the sequence
{F,(A)}5%, C X is also Cauchy (hence convergent) since

[1En(A) = Fn(A)lx < lIxaller|Fn = Fonlg,  m,neN

The set function F' defined as F'(A) := lim, F,,(A) for A € ¥ is finitely
additive.

Assuming {F,,} not convergent in Vg(X), we can find an g¢ > 0
such that for every kK € N there is a np > k and a simple function
Sk =D Aem, a® x a suct that ||s|z <1 for which

g0 < Y lalil[[Fn (4) — F(A)||x.
A€y,
Now let us take k := n(%) (from the Cauchy’s condition of {F},},, with

% > 0). Fix an integer ny > k and a simple function s = ), aaxa

with [|s||gr < 1. For any m > nj we have

€0 < Laen loal |Fo, (A) = F(A)|x
< Yaex l@al [Fa, (A) = Fn(A)llx + X acy laal [Fn(A) — F(A)|x
< |Fnk - leE‘ + ZAew |04A| HFm(A) - F(A)HX
<G+ Xaer laal [Fn(A) — F(A) x-

Therefore
€
S loal | Fn(4) — F(A) ] > 22
Aem

for every m > k, which leads to a contradiction.
Finally F € Vg(X) since |F|g < |F — F,|g + |Fu|g < oo. O



Proposition 2.2. Let E be a Banach function space satisfying property
(J). The space Vg(X) can be reformulated with the equivalent expression
of E-variation

F(A)
sup X
13 Tl

Proof: Tt is plain that for 7 € Dq and the simple function s =
> Aer @aXa, with |[s|[zr <1, we have that

Y laalllFA)x = Jo(Eaex loalxa)(E ac LX) dp
Aem

F(A
<N Caen BN xAllE

which proves an inequality. The reverse inequality is obtained by means
of the duality between norms in F and E’. Let us take arbitrary = € Dq.
Then

F(A ||F(A
I A v alle = sup{ fo(C acr G x)gdn : lgllm <1}
Aer

d
= sup{Y 4, (LAEE) F(A)1x « lgller <1}
= sup{ e [0allFA)lx ¢ | S aer vaxaller < 1}

where, for the last step, the inequality

IS (e aller < llghe <1
Aem

has been used, and was available since E’ € (J) from the hypothesis on E.
O

Proposition 2.3. Let E be a Banach function space and let X be a Banach
space. Then E(X) C Vg(X).

Proof: The operator Ag : E(X) — Vg(X) given by the (indefinite)
Bochner integral f — f( ) fdp is the isometric inclusion since for every

(Bochner)-integrable function f, we have that |[Ag(f f() [ 1l xdp.
Assuming || f||lx € FE, we conclude that Ag(f) € VE( ) and Ae(f)le =
I fllx e = Ifllzcx)- O

Theorem 2.1. Let E' have absolutely continuous norm and let X be a
Banach space. Then E(X) = Vg(X) if and only if X € (RNP).



Proof: Assume that X € (RNP). As long as any vector measure F' €
Ve(X) is p-continuous and of bounded total variation, our assumption
provides a function f € L'(X) such that F(A) = [, fdu. Since |F|(-) =
Joy Iflxdpe it follows that f € E(X).

For the converse assume that Ag : E(X) — Vg(X) given by f —
f(') fdu is surjective. We shall prove that every bounded linear operator
T : L' — X is representable by some function g € L>°(X) (characterizing
therefore the (RN P) for X).

For this purpose we shall deal with the Lebesgue measure space
([0,1],m). Let T : L' — X be bounded and linear operator. Let us
define the measure G : ¥ — X by G(A) := T(xa) for every measur-
able set A. Since ||G(A)||x < ||T||m(A). This shows that G € V>°(X),
ie. [|Gllvesx) = supy IS < |7 < o0, Since V(X)) = Vi (X) C
VE(X) and the surjection Vg(X) = E(X) we have a function g € F(X) C
L'(X) such that G(A) = [, gdp for any measurable set A. The Lebesgue
Differentiation Theorem yields

e Gt t + Al x
= = lim ——————— = <
ool = |[im 5 [ ats)ds| = im FEEREERIX <y
for almost all ¢ € [0, 1]. Therefore g € L°°( ) and T(¢) = [, pgdp for all
@ € L'. Hence X € (RNP). O

Vector measures and linear operators defined on the set of sim-
ple functions have always been connected by Fpr(A) = T(xa) and
Tr(D o per @axA) = Y acr @aF(A). The space of all linear bounded oper-
ators from a Banach function space F to an arbitrary Banach space X can
be found isometric (or only isomorphic) to a space of vector measures with
weak E-variation (see Gretsky”, Gretsky and Uhl!® and Gregori®). Now
that we are restricted to the space Vg(X), we show the ideal operator which
is in correspondence with this vector measure space: the cone absolutely
summing operators.

Definition 2.2. (see Schaefer'*) Let E be a Banach lattice and B a Banach
space. A linear operator from F to B is said to be cone absolutely summing
(c.a.s.) if there is a constant C' > 0 such that for every k € N and every

family eq, es, ..., e, € E of positive elements we have
ZHT er)lls <C  sup Z| €i,e
lle* Iz~ <1

Denoting by Al(E,B) the set of such operators, its norm is given by the
infimum of such constants C holding the previous inequality and it denoted
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by [[T|c.q.s.-

Remark 2.3. If F is a Banach function space and ey, es, ..., e, positive
elements then

lle*llg=<13=

k
sup Z| ene) = 1 el
=1

Proposition 2.4. (see Schaefer'*) T € AY(E, X) if and only if there exists
o1 € E', ¢ > 0 such that

() < /Q \Flordu.

Moreover |T||c.a.s. = ||oT| 5 -

Theorem 2.2. Let E be a Banach function space with absolutely continu-
ous norm and X a Banach space. Then A(E, X) = Vg (X)

Proof: If T € AY(E,X), the measure Fr : ¥ — X associated to T
belongs to Vg/ (X)), because if A € ¥ then Proposition 2.4 gives || Fr(A)|| <
fA ¢rdu for all A € ¥ and some ¢r € E' and then

sup{)_ [aal|F(A)] = || Y aaxalle <1}

Aem Aem

< supl [ (X leabeaords | 3 aaxale < 1)

Aem Aen
= ||¢T||E” - ”T”c.a.s.

Conversely, since the norm in A'(E, X) coincides with

n n
||TH(/(15 = Sup{z ||T<Pz||X ne Na H Z@z”E S 1a L1y Pn Z O}

i=1 =1

Applying Lemma 2.1 we have that, for every function f simple function,

ITe()lx < / |Flopdy

where ¢ represents |F|.
Therefore, for ¢1,...,on >0, ¢; € Ep, = E we have

N N N
S IT(enlix <3 [ oupdn= [ (3 enlein < Fle | S ol
n=1 n=1 Q n=1 n=1

and then HTF||(:.a.s. S HFHE/ =
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Theorem 2.3. Let X be a Banach space and E be a Banach function space
with absolutely continuous norm. Then Vg (X*) = (E(X))*.

Proof: Let F € Vg/(X*). Define @ : E(X) — K using

N

N
F(Z TnXa,) = Z<F(An)vxn>

n=1

Recall that simple functions are dense in E(X) because of the assumption
and let s = 25:1 ZnXa, be a simple function in E(X),

@ (s) IZ ) &n)| < Z [[2nlx [E](A / Is()lx pdp

where the function ¢ is the one of Lemma 2.1. Applying now Holder’s
inequality and density of simple functions, we get | ®r|| < ||¢||zr = |F|g-

In order to see the surjectivity, let us consider the measure Fg : ¥ — X*
induced by an element ® of (E(X))*. Let || > .. aaxdlle <1,

Do leallFa(A)lx- = supp, i | S acq Pl@azaxa)l
Aem

= SUpP|p, <1 [P acr ¥aTaxA)]
< @l SUD|1z 4] <1 l ZAEW anAXA”E(X)
= |||l

Then Fg € Vg:/(X™*) and also the isometry is proved.

3. Variation in rearrangement invariant function spaces

Rearrangement invariant Banach function spaces (r.i. spaces for short) sat-
isfy property (J) (see Bennett and Sharpley!). This family of spaces is very
important in the theory of interpolation of operators. A part of the the-
ory of rearrangement invariant function spaces —the one concerning the
Lorentz spaces A(FE) an M(F) associated to every rearrangement invari-
ant function space E— is going to be transferred to the setting of vector
measures.

Definition 3.1. (see Blasco and Gregori®) Let (Q, X, 1) be a measure space
and let us denote the interval I = (0, u(2)]. Let X be an arbitrary Banach
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space. For every finitely additive set function F' : ¥ — X we define the
function

wr(t)= sup |F|(A),tel
(A<t

Proposition 3.1. (see Blasco and Gregori®) For an arbitrary vector
mesure F, the following properties are true:

(1) wp is nondecreasing and subadditive.

(2) If p is resonant then the function wp is continuous and concave.
(8) Let F be of finite total variation. Then F < p iff w(0F) =0

(4) If F = fdu for some f € L'(u) then wp(t) = tf**(t) for allt € I.

Now we are presenting a bigger measure space for Vg(X), in a simi-
lar way as the Lebesgue—Marcinkiewicz LP*° —also referred as weak-LP—
contains LP.

Definition 3.2. The space Vg o (€2, X, ) —denoted also as Vg o (X)—is
the space of all finitely additive vector measures F': 3 — X for which

[F(A) < Cllxalle

for every mesurable set A and some constant C' > 0 independent of A. The
infimum of those constants C' is the norm, denoted by |F| g, co-

Remark 3.1. (i) If E' is a r.i. space then Vg o (X) is given by all finitely
additive vector measures F' of bounded variation such that

wF(t) < C@E/(t) Vtel.

(ii) If £’ has absolutely continuous norm then F' € Vg o (X) implies
F < pand F' is countably additive.

Definition 3.3. The space Vg o (Q, X, ) —denoted also as Vg o (X)—is
the space of all finitely additive vector measures F': 3 — X for which

IE(A) < Clixaller

for every mesurable set A and some constant C' > 0 independent of A. The
infimum of those constants C' is the norm, denoted by || F||g,cc-

Theorem 3.1. Let E be a r.i. space such that E has norm absolutely
continuous. Then Vg «(X) = L(A(E), X).

Proof: Clearly if T € L(A(E), X) then Fr(A) = T(xa) defines a finitely
additive measure in Vgr oo(X) and || Fr||g,c0 < ||T]-
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Conversely, given F' € Vg o(X) and defining Tr in the natural way,
we have that if f is a positive simple function f = Y | a;xa, where
A; C Ay... C A, then we can write

T3 aoa)] = ek (4] < 3l Fla)

n(Q) n
< CZOWE e / > @ix o (8)dp s (s)

=1
_c / (8)dor(s) = C| flace)

For a general real-valued simple function write f = f™ — f~ where
fT,f~ are non-negative simple functions and ||f*|acey, [|f 7 [lae) <
[ fllacm)- Since Tr(f) =Tr(f*) = Tr(f~) we get [[Tr(f) < 2[fllacm).-

Now a density argument finish the result because simple functions are
dense in A(F) due to the absolutely continuous norm of E. 0

The Lebesgue-Marcinkiewicz space LP'*>° is nothing but the Lorentz
space M (LP). The following result shows that these new vector measure
spaces are very related to the ones defined in the precedent section with
the additional ingredient of Lorentz spaces.

Theorem 3.2. Let E be a r.i. space such that E' has norm absolutely
continuous and X a Banach space. Then Vg oo(X) = V(g (X).

Proof: From Remark 2.2 one gets |F|(A) < |F|yg)llxaller. Hence the
inclusion Vs (g)(X) € VE,00(X) holds.

Conversely if F' € Vg oo (X) then using the Radon-Nikodym theorem,
we get ¢ € L'(u) such that |F|(A) = [, ¢du for all A € ¥. From 4 in
Propostion 3.1 we get that wg(t ) = t¢**(t). Hence ¢ € M(FE), because
op(t)p*™(t) = “"ET(t)wF(t) =< mwp(t) < C. This shows the corre-
sponding isometry. O

Part 2 in the Proposition 3.1 allows us to give the following definition:

Definition 3.4. In a resonant measure space (2, X, 1) where the function
wp is defined for every vector measure F', we define the function Wg on the
interval I as the nonnegative, decreasing function such that for t € I

wWr :(.4.)FjL tFS S.
(1) <o>+/0w<>d

Now we are introducing certain space contained in Vg (X), in a similar
way as the Lorentz space LP! is contained in LP.
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Definition 3.5. The space Vg 1(€, %, u) —denoted also as Vg 1(X)— is
the space of all p-continuous vector measures I’ : ¥ — X for which

()
Flp. = / Wr(s)dpr(s) < oo
0

Theorem 3.3. Let E be a r.i. space and X a Banach space. Then
VE1(X) = V) (X).

Proof: If F is p-continuous and of bounded variation then we have
wr(t) = fot Wr(s)ds. Assuming that ¢ represents the variation of |F| then

fg Wr(s)ds = fg ¢*(s)ds for all t > 0. Therefore ¢* = Wp. Hence ¢ € A(E)
(or equivalently F' € Vj(gy(X)) if and only if F' € Vi 1(X). O
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