Tema 3.- Límites

3.1.- Existencia.

Dada una función real de variable real f(x), vamos a preocuparnos de calcular cual es el límite de la función en un punto cerca del cual está siempre definida y cual es el límite cuando la variable se hace muy grande (o muy pequeña). Empecemos por este segundo caso.

Límite en
$$+\infty$$
.

El límite puede no existir. Si existe puede ser de tres tipos

$$\lim_{x \to +\infty} f(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = l$$

Vamos a estudiarlo en las gráficas.

Ejemplo Las funciones x^n con $n \ge 1$ tienden a $+\infty$.

Las funciones x^n con n < -1 tienden a 0.

Las funciones sen y cos no tienen límite.

La función exponencial con base a > 1 tiende a $+\infty$.

La función exponencial con base a < 1 tiende a 0.

La función logarítmica con base a > 1 tiende a $+\infty$.

La función logarítmica con base a < 1 tiende $-\infty$.

Límite en
$$-\infty$$
.

El límite puede no existir. Si existe puede ser de tres tipos

$$\lim_{x \to -\infty} f(x) = +\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = l$$

Vamos a estudiarlo en las gráficas.

Ejemplo Las funciones x^n con $n \ge 1$ tienden a $+\infty$ si n es par y a $-\infty$ si es impar.

Las funciones x^n con $n \leq -1$ tienden a 0.

Las funciones sen y cos no tienen límite.

La función exponencial con base a > 1 tiende a 0.

La función exponencial con base a < 1 tiende a $+\infty$.

La logarítmica no existe en los negativos.

Límites en $p \in \mathbb{R}$.

El límite por la derecha puede no existir. Si existe puede ser de tres tipos

$$\lim_{x \to p+} f(x) = +\infty$$

$$\lim_{x \to p+} f(x) = -\infty$$

$$\lim_{x \to p+} f(x) = l$$

El límite por la izquierda puede no existir. Si existe puede ser de tres tipos

$$\lim_{x \to p-} f(x) = +\infty$$

$$\lim_{x \to p^-} f(x) = -\infty$$

$$\lim_{x \to p^{-}} f(x) = l$$

Si ambos límites existen y son iguales, el valor común se representa lím $_{x\to p} f(x)$.

Ejemplo Las funciones 'normales' que están definidas en p, el valor del límite es f(p). Por ejemplo, son normales: los polinomios, las trigonométricas (si es la tangente en puntos que no sean $(2k+1)\pi/2$), la exponencial y el logaritmo. También lo son los cocientes de las anteriores con denominador $\neq 0$.

Estudiar 1/x cuando $x \to 0$.

Estudiar tg x cuando $x \to \pi/2$.

Estudiar una fracción algebraica en todo punto.

3.2.- Propiedades de los límites.

1.- Con la suma.

• Si las funciones tienden a números finitos, la suma (resta) tiende a la suma (resta).

$$\lim_{x\to p}(f\pm g)(x)=\lim_{x\to p}f(x)\pm \lim_{x\to p}g(x).$$

 \bullet Si una de las dos tiende a un infinito y la otra a un número finito l, la suma tiende al mismo infinito que la primera. Esto se suele recordar diciendo

$$\infty + l = \infty$$
.

• Si las dos funciones tienden al mismo tipo de infinito, la suma también. Esto se suele recordar diciendo

$$\infty + \infty = \infty$$
.

• Si las dos funciones tienden a infinito con distinto signo hay que analizar el caso particular. Indeterminación 1

$$\infty - \infty$$
.

• Si una función f(x) tiende a infinito, la función -f(x) tiende al infinito de signo contrario.

2.- Con el producto.

• Si las dos funciones tienden a números finitos, el producto tiende al producto.

$$\lim_{x \to p} (f \cdot g)(x) = \lim_{x \to p} f(x) \cdot \lim_{x \to p} g(x).$$

- Si una de las dos tiende a un infinito y la otra a un número finito l > 0 (o a $+\infty$), el producto tiende al mismo infinito que la primera.
- Si una de las dos tiende a un infinito y la otra a un número finito l < 0 (o a $-\infty$), el producto tiende al infinito de signo contrario a la primera.
 - Si una de las dos tiende a un infinito y la otra a 0, hay que analizar el caso particular. Indeterminación 2

$$0\cdot\infty$$
.

3.- Con el cociente f(x)/g(x)

• Si g(x) tiende a un número finito $q \neq 0$, el cociente tiende al cociente.

$$\lim_{x \to p} \left(\frac{f}{q}\right)(x) = \frac{\lim_{x \to p} f(x)}{\lim_{x \to p} q(x)}.$$

• Si f(x) está acotada y g(x) tiende a un ∞ el cociente tiende a 0.

Indeterminación 3

$$\infty/\infty$$
.

• Si Si f(x) tiene limite $\neq 0$ y g(x) tiende a 0, el cociente puede tender a un ∞ o no existir, dependiendo del signo de g(x) cerca de p.

Indeterminación 4

0/0.

4.- La exponencial $e^{f(x)}$.

• Si f(x) tiende a un número finito q, la exponencial tiende a e^q .

$$\lim_{x \to p} e^{f(x)} = e^{\lim_{x \to p} f(x)}.$$

• Si f(x) tiende a $+\infty$, la exponencial tiende a $+\infty$. Si f(x) tiende a $-\infty$, la exponencial tiende a 0.

5.- El logaritmo
$$\ln f(x)$$
.

• Si f(x) tiende a un número finito q > 0, el logaritmo tiende a $\ln q$.

$$\lim_{x \to p} \ln f(x) = \ln \lim_{x \to p} f(x).$$

• Si f(x) tiende a $+\infty$, el logaritmo tiende a $+\infty$. Si f(x) tiende a 0, el logaritmo tiende a $-\infty$.

6.- La exponencial
$$g(x)^{f(x)}$$
.

Usando que

$$g(x)^{f(x)} = e^{\ln g(x) \cdot f(x)}$$

sólo hay que hallar

$$\lim_{x \to p} f(x) \cdot \ln g(x).$$

<u>Indeterminación</u> 5 y 6 :

$$1^{\infty}$$
; ∞^0 .

Ejemplo Un límite que hay que recordar es:

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$