Programa

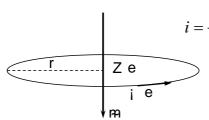
Lección 10 El campo magnético y la materia

- 10.1 Introducción
- 10.2 El átomo como un dipolo magnético
- 10.3 Imanación M y corrientes de imanación
- 10.4 La intensidad del campo magnético H.
- 10.5 Susceptibilidad y permeabilidad magnética.
- 10.6 Condiciones de frontera para los campos B y H.
- 10.7 Campo molecular dentro de la materia
- 10.8 Diamagnetismo , paramagnetismo y ferromagnetismo
- 10.9 Ecuaciones de Maxwell en presencia de medios materiales. Recopilación.
- 10.10 Los campos microscopicos
- 10.11 Sistemas de Unidades.

Programa

Lección 10 El campo magnético y la materia

BIBLIOGRAFÍA


Griffiths Lección 4 y 6
Marshall Lección 6

Wangness Lecciones 9, 10, 20 y 25

Reizt-Mildford-Christy Lecciones 9 y 10

- En un medio dieléctrico, cuando hay un E aplicado, aparece una densidad de dipolos eléctricos por unidad de volumen, P (vector polarización)
- En un medio magnético, cuando hay un B aplicado, aparece una densidad de dipolos magnéticos por unidad de volumen, M (vector magnetización o imanación).
- El fenómeno asociado con M es más complicado, M puede apuntar en la dirección de B (paramagnetismo) o en la opuesta (diamagnetismo). En materiales ferromagnéticos, M es paralelo a B y muy grande.
- Los electrones son el origen de las propiedades magnéticas de la materia.
- Todo electrón es un pequeño imán debido a su momento angular. La suma de momentos angulares de spin es una de las contribuciones a M. Otra contribución a M proviene del momento angular orbital.
- Los núcleos no contribuyen significativamente al momento magnético del átomo

•Un modelo semiclásico nos puede hacer entender la física. Un electrón moviéndose alrededor de un núcleo en una órbita circular de radio r lo podemos visualizar como una corriente y le podemos asociar un momento magnético orbital

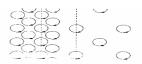
$$i = \frac{dQ}{dt} = -\frac{ev}{2\pi r}$$

$$\vec{m} = -\frac{e}{2m_e} \sum_{i=1}^{Z} \vec{L}_{i}$$

$$\vec{n} = -\frac{e}{2m_e} \sum_{i=1}^{Z} \vec{L}_{i}$$

$$\vec{n} = -\frac{e}{2m_e} \sum_{i=1}^{Z} \vec{L}_{i}$$

Momento magnético μ de algunas <u>partículas elementales</u>


Partícula elemental	Símbolo	μ / (JT ^{- 1})
Electrón	μ	$-9,284.764.12(80) \times 10^{-24}$
Protón	μ	$1,410.606.71(12)\times 10^{-26}$
Neutrón	μ _N	$-0,966.236.45(24)\times 10^{-26}$

Momento magnético de diversos complejos metálicos, comparados con el momento magnético de espín.

Metal de transición	μ _{eff} / (<i>M</i> . <i>B</i> .)	μ _{es} / (<i>M.B.</i>)
<u>Vanadio</u> (IV)	1.7-1.8	1.73
Cromo(III)	3.8	3.87
Hierro(III) (espín alto)	5.9	5.92
Manganeso(II) (espín alto)	5.9	5.92
Hierro(II) (espín alto)	5.1-5.5	4.90
Hierro(II) (espín bajo)	0	0
Cobalto(II) (espín alto)	4.1-5.2	3.87
<u>Níquel</u> (II)	2.8-3.6	2.83
<u>Cobre</u> (II)	1.8-2.1	1.73

$$\vec{M} = \lim_{\Delta \nu \to 0} \frac{1}{\Delta \nu} \sum_{i} \vec{m}_{i}$$

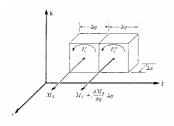


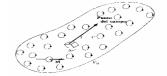
Fig. 9.3 Sustitución de elementos de volumen de material magnetizado por corrientes circulantes de intensidados // a //

$$\vec{M}(x, y, z) + \frac{\partial \vec{M}}{\partial y} \Delta y + \text{términos de orden superior}$$

$$M_x \Delta x \Delta y \Delta z = I_c' \Delta y \Delta z$$

$$\left(M_x + \frac{\partial M_x}{\partial y} \Delta y\right) \Delta x \Delta y \Delta z = I_c'' \Delta y \Delta z$$

$$I_c' - I_c'' = -\frac{\partial M_x}{\partial y} \Delta x \Delta y$$


$$\left(I_{c}\right)_{arriba} = \frac{\partial M_{y}}{\partial x} \Delta x \Delta y$$

$$(J_M)_z = \frac{\partial M_y}{\partial x} - \frac{\partial M_x}{\partial y}$$

$$\vec{J} = \nabla \; x \, \vec{M}$$

Campo magnético producido por un medio imanado

$$\Delta \vec{m} = \vec{M}(x', y', z') \Delta v'$$

$$\vec{A}(x, y, z) = \frac{\mu_0}{4\pi} \int_{v_0} \frac{\vec{M}(x', y', z')x\vec{R}}{R^3} dv' = \frac{\mu_0}{4\pi} \int_{v_0} \vec{M}(x', y', z')x\nabla' \left(\frac{1}{\vec{R}}\right) dv'$$

$$\vec{A}(x, y, z) = \frac{\mu_0}{4\pi} \int_{v_0} \frac{\nabla' \vec{M}(x', y', z')}{\vec{R}} dv' + \frac{\mu_0}{4\pi} \int_{s_0} \frac{\vec{M}(x', y', z')x\vec{n}}{\vec{R}} dS'$$

$$\vec{K}_m = \vec{M}x\vec{n}$$

$$\vec{A}(x, y, z) = \frac{\mu_0}{4 \pi} \int_{v_0}^{\infty} \frac{\vec{J}_M}{\vec{R}} dv' + \frac{\mu_0}{4 \pi} \int_{s_0}^{\infty} \frac{\vec{K}_M}{\vec{R}} dS'$$

$$\vec{B}(\vec{r}) = \nabla x \vec{A} = \frac{\mu_0}{4\pi} \int_{v_0} \nabla x \left[\vec{M} x \frac{\vec{R}}{R^3} \right] dv'$$

Campo magnético producido por un medio imanado

$$\nabla x (\vec{F} \times \vec{G}) = (\nabla \vec{G}) \vec{F} - (\nabla \vec{F}) \vec{G} + (\vec{G} \nabla) \vec{F} - (\vec{F} \nabla) \vec{G}$$

$$\vec{F} = \vec{M} \quad y \quad \vec{G} = \frac{\vec{R}}{R^3}$$

$$\nabla x \left[\vec{M} x \frac{\vec{R}}{R^3} \right] = \vec{M} \nabla \left[\frac{\vec{R}}{R^3} \right] - \left(\vec{M} \nabla \right) \frac{\vec{R}}{R^3}$$

$$\vec{B}(\vec{r}) = \vec{B}_I(\vec{r}) + \vec{B}_{II}(\vec{r})$$

$$\vec{B}_{I}(\vec{r}) = \frac{\mu_0}{4 \pi} \int_{v_0} \vec{M} \nabla \left[\frac{\vec{R}}{R^3} \right] dv'$$

$$\vec{B}_{II}(\vec{r}) = -\frac{\mu_0}{4 \pi} \int_{\nu_0} \left(\vec{M} \nabla \left[\frac{\vec{R}}{R^3} \right] d\nu' \right)$$

Campo magnético producido por un medio imanado

$$\begin{split} \vec{B}_I(\vec{r}) &= \frac{\mu_0}{4\pi} \int_{v_0} \vec{M} \nabla \left[\frac{\vec{R}}{R^3} \right] dv' \\ \vec{B}_I(\vec{r}) &= \frac{\mu_0}{4\pi} \int_{v_0} \vec{M} \, 4\pi \delta(\vec{R}) dv' = \mu_0 \vec{M}(\vec{r}) \\ \vec{B}_B(\vec{r}) &= -\frac{\mu_0}{4\pi} \int_{v_0} (\vec{M} \nabla \left[\frac{\vec{R}}{R^3} \right] dv' \end{split}$$

$$\nabla \left[\vec{M} \left[\frac{\vec{R}}{R^3} \right] \right] = \left(\vec{M} \nabla \left[\frac{\vec{R}}{R^3} \right] + \vec{M} x \nabla x \left[\frac{\vec{R}}{R^3} \right]$$

$$\nabla x \left[\frac{\vec{R}}{R^3} \right] = -\nabla x \nabla \left[\frac{1}{\vec{R}} \right]$$

$$\vec{B}_{II}(\vec{r}) = -\mu_0 \nabla \left[\frac{1}{4 \pi} \int_{v_0} \vec{M} \left[\frac{\vec{R}}{R^3} \right] dv' \right] = -\mu_0 \nabla \phi(\vec{r})$$

$$\phi(\vec{r}) = \frac{1}{4\pi} \int_{v_0} \vec{M} \left[\frac{\vec{R}}{R^3} \right] dv'$$

$$\vec{B}(\vec{r}) = -\mu_0 \nabla \phi(\vec{r}) + \mu_0 \vec{M}(\vec{r})$$

Potencial escalar magnético

$$\phi(\vec{r}) = \frac{1}{4\pi} \int_{v_0} \vec{M} \left[\frac{\vec{R}}{R^3} \right] dv'$$

$$\vec{M} \left[\frac{\vec{R}}{R^3} \right] = \vec{M} \nabla' \left[\frac{1}{\vec{R}} \right] = \nabla' \left[\frac{\vec{M}}{\vec{R}} \right] - \left[\frac{1}{\vec{R}} \right] \nabla' \vec{M}$$

$$\phi(\vec{r}) = \frac{1}{4 \pi} \int_{S_0} \left[\frac{\vec{M} \vec{n}}{\vec{R}} \right] dS' - \frac{1}{4 \pi} \int_{V_0} \left[\frac{\nabla' \vec{M}}{\vec{R}} \right] dv'$$

Densidad de "monopolo magnético"

$$\rho_{\scriptscriptstyle M}(\vec{r}\,) = -\nabla' \vec{M}(\vec{r}\,') \qquad \qquad \sigma_{\scriptscriptstyle M}(\vec{r}\,) = \vec{M}(\vec{r}\,') \vec{n}$$

$$\int_{v_0} -\nabla' \vec{M} \left(\vec{r}' \right) dv' + \int_{S_0} \vec{M} \left(\vec{r}' \right) \vec{n} dS' = 0$$

$$\phi(\vec{r}) = \frac{1}{4\pi} \int_{v_0} \left[\frac{\rho_M}{\vec{R}} \right] dv' + \frac{1}{4\pi} \int_{S_0} \left[\frac{\sigma_M}{\vec{R}} \right] dS'$$

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int_{v_0} \rho_M \left[\frac{\vec{R}}{R^3} \right] dv' + \frac{\mu_0}{4\pi} \int_{s_0} \sigma_M \left[\frac{\vec{R}}{R^3} \right] dS' + \mu_0 \vec{M}$$

Intensidad del campo magnético H

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int\limits_{v_0} \left[\frac{\vec{J} x \vec{R}}{R^3} \right] dv' - \mu_0 \nabla \phi_M(\vec{r}) + \mu_0 \vec{M}(\vec{r})$$

$$\phi(\vec{r}) = \frac{1}{4\pi} \int_{v_0} \left[\frac{\rho_M}{\vec{R}} \right] dv' + \frac{1}{4\pi} \int_{S_0} \left[\frac{\sigma_M}{\vec{R}} \right] dS'$$

$$\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$$

$$\vec{H}(\vec{r}) = \frac{1}{4 \pi} \int_{v_0} \left[\frac{\vec{J} x \vec{R}}{R^3} \right] dv' - \nabla \phi_M(\vec{r})$$

Ecuaciones del campo magnético

$$\nabla \vec{B} = 0$$

$$\nabla x \vec{B} = \mu_0 \vec{J}$$

$$\nabla x \vec{B} = \mu_0 (\vec{J} + \vec{J}_M)$$

$$\nabla x \left(\frac{1}{\mu_0} \vec{B} - \vec{M} \right) = \vec{J}$$

$$\nabla x \vec{H} = \vec{J}$$

$$\nabla x \vec{H} d\vec{S} = \oint \vec{H} d\vec{l} = \int_S \vec{J} \vec{n} dS$$

$$\oint \vec{H} d\vec{l} = \int_S \vec{J} \vec{n} dS = I$$

Susceptibilidad y permeabilidad

$$\vec{M} = \chi_{\scriptscriptstyle m} \vec{H}$$
 $|\chi_{\scriptscriptstyle m}| << 1 \,$ materiales $\,$ para y diamagneticos

Materiales diamagneticos: decrecen ligeramente el campo magnético en su vecindad:Vidrio, cobre. No tienen momento magnetico permanente

Materiales paramagneticos aumentan ligeramente el campo magnético en su vecindad:Oxigeno, titanio. Tienen momento magnetico permanente

Materiales ferromagneticos aumentan mucho el campo magnetico en su vecindad:Hierro, cobalto, niquel. Tienen momento magnetico permanente

$$\vec{B} = \mu \vec{H} \qquad \qquad \mu = \mu_0 (1 + \chi_m) \qquad \qquad \mu_r = \frac{\mu}{\mu_0} = 1 + \chi_m$$

$$\vec{B} = \mu (\vec{H} + \vec{M}) \qquad \qquad \mu_m = \frac{\Delta B}{\Delta H}$$

Material	68.6	ética de algunos mate ira ambiente* Xm	χ _{m, masa} , m ³ /kg
Aluminio		2.1×10^{-5}	0.77/×::10 ⁻¹
Bióxido de carb	ono (1 atm)	-1.19×10^{-8}	-0.60×10^{-1}
Bismuto 🤼	13-97 -	-16.4×10^{-3}	-1.68×10^{-1}
Cloruro de gado	linio (GdCl ₃)	603.0×10^{-5}	133.3×10^{-1}
Cobre	17 17	-0.98×10^{-5}	$-0.11 \times 10^{-}$
Diamante		-2.2×10^{-5}	$-0.62 \times 10^{-}$
Hidrógeno (1 at	m)	-0.22×10^{-8}	$-2.48 \times 10^{-}$
Magnesio	· -	1.2×10^{-5}	$0.68 \times 10^{-}$
Mercurio		-2.8×10^{-5}	$-0.21 \times 10^{\circ}$
Nitrógeno (1 atr	m)	-0.67×10^{-8}	$-0.54 \times 10^{-}$
Oro 6		$= 3.5 \times 10^{-5}$	$-0.18 \times 10^{-}$
Oxígeno (1 atm)	1	193.5×10^{-8}	$135.4 \times 10^{-}$
Plata		-2.4×10^{-5}	$-0.23 \times 10^{-}$
Sodio	表: C	0.84×10^{-5}	0.87×10^{-1}
Titanio			$4.01 \times 10^{-}$

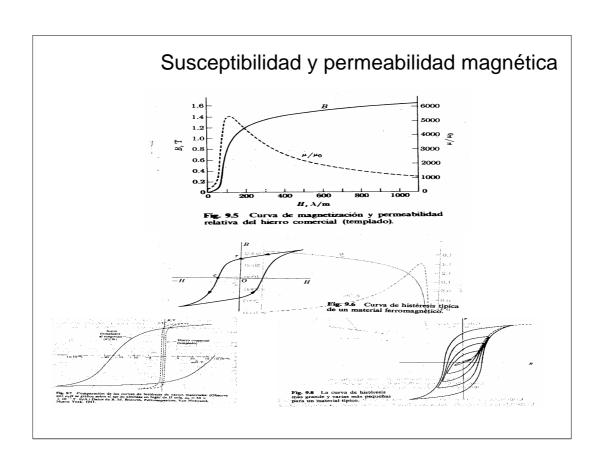

^{*} Datos obtenidos del Handbook of Chemistry and Physics, 58.º ed., CRC Press, Inc., Cleveland, Ohio. Prácticamente todas las fuentes de datos dan susceptibilidades magnéticas en unidades gaussianas (cgs); si els usperindice (1) se usa para indicar outoit la constante en el sistema gaussiano, entônes $\chi_n = 4\pi\chi^{(n)} \times 10^{-3} \chi_n^{(0)}$ in the sum of the constant of the sum of the constant of th

Tabla 9.2 Propiedades de algunos materiales ferromagnéticos a temperatura ambiente*

 M_s = magnetización de saturación, H_s = intensidad magnética necesaria para la saturación, H_c = coercitividad, B_r = remanencia

Material	Composición, %	$\mu_0 M_s$, T	H_s , A/m	K _m , máxima
Hierro (templado)	2.15	1.6 × 10 ⁵	5,500
Cobalto	4	1.79	7.0×10^{5}	
Níquel		0.61	5.5×10^{5}	
ALEACIONES			H_c , A/m	
Hierro-silicio	96 Fe, 3 Si	2.02	56	8,000
Permalloy	55 Fe, 45 Ni	1.60	5.6	50,000
Mumetal	5 Cu, 2 Cr,	0.75	1.2	150,000
	77 Ni, 16 Fe			
Permendur	50 Co, 50 Fe	2.40	159	6,000
Mn ferrita	MnFe ₂ O ₄	0.49		2,500
Ni ferrita	NiFe ₂ O ₄	0.32		2,500
		B_r , T		
Acero al cobalto	52 Fe, 36 Co, 4 W, 6 Cr, 0.8 C	0.97	19×10^3	
Alnico V	51 Fe, 8 Al, 14 Ni 24 Co, 3 Cu	1.25	49×10^3	

^{*} Datos del American Institute of Physics Handbook, 3.ª ed., McGraw-Hill, Nueva York, 1972.

Condiciones en la frontera de separación entre dos medios magnéticos

 $\left(\vec{B}_2 - \vec{B}_1\right)\vec{n}_2 = 0$

$$B_{2n} - B_{1n} = 0$$

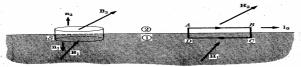


Fig. 9.10 Las condiciones en la frontera sobre los vectores de campo en una zona interfacial entre dos medios se pueden obtener anticando la lev de Gauss en S. e integrando H di alrededor

$$\left(\vec{H}_2 - \vec{H}_1\right)\vec{I}_0 = \vec{j}\left(\vec{n}_2 x \vec{I}_0\right) = \vec{j} x \vec{n}_2 \ \vec{I}_0$$

$$(H_2 - H_1)_n = \vec{j} \times \vec{n}_2$$

$$\vec{n}_2 \left(\vec{H}_2 - \vec{H}_1 \right) = \vec{j}$$

$$\int_{S} \nabla \vec{B} dv = 0 = \int_{S} \vec{B} d\vec{S} - \int_{S} \vec{B} d\vec{S} = \Phi(S_2) - \Phi(S_1)$$

$$\int_{v} \nabla \vec{H} dv = \int_{S_2} \vec{H} d\vec{S} - \int_{S_1} \vec{H} d\vec{S} = \int_{v} \rho_M dv$$

Campo molecular dentro de la materia imanada

$$\vec{H}(\vec{r}) = \frac{1}{4\pi} \int_{v_0} \left[\frac{\vec{J} x \vec{R}}{R^3} \right] dv' + \frac{1}{4\pi} \int_{v_0} \rho_M \left[\frac{\vec{R}}{R^3} \right] dv' + \frac{\mu_0}{4\pi} \int_{S_0} \sigma_M \left[\frac{\vec{R}}{R^3} \right] dS' + \mu_0 \vec{M}$$

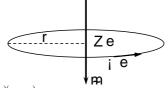
$$\vec{H}_m = \vec{H} + \vec{H}_s + \vec{H}'$$

Hm Campo molecular o local

H campo macroscopico

Hs Contribucion de la desnidad superficial sobre la superficie de la cavidad

H' Contribucion de los dipolos en el interior de la cavidad Supongamos el caso de imanación constante


$$\vec{H}_s = \frac{1}{3}\vec{M}$$

$$\vec{H}' = \frac{1}{4\pi} \sum_{i} \left(\frac{3(\vec{m}_{i}\vec{r}_{i})\vec{r}_{i}}{r_{i}^{5}} - \frac{\vec{m}_{i}}{r_{i}^{3}} \right)$$

$$\vec{H}_m = \vec{H} + \frac{1}{3}\vec{M}$$

$$\vec{B}_{\scriptscriptstyle m} = \mu_{\scriptscriptstyle 0} \vec{H}_{\scriptscriptstyle m}$$

El diamagnetismo

$$\pm q\omega B_m = m_e(\omega - \omega_0)(\omega + \omega_0)$$

$$\Delta \omega = \pm \frac{q}{2m_e} B_m$$

$$\frac{q}{2m_e}B_m$$
 frecuencia de Larmor

$$\varepsilon = \pi R^{2} \frac{dB_{m}}{dt} \Delta n = \pi R^{2} \frac{dn}{dt} \Delta B_{n}$$

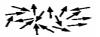
$$\varepsilon = \pi R^2 \frac{dB_m}{dt} \Delta n = \pi R^2 \frac{dn}{dt} \Delta B_m \qquad \qquad \frac{1}{2} m_e R^2 \left(\omega^2 - \omega_0^2 \right) = q \pi R^2 \frac{dn}{dt} \Delta B_m \qquad \qquad \frac{dn}{dt} = \frac{\left(\omega + \omega_0 \right)}{4\pi}$$

$$\frac{dn}{dt} = \frac{(\omega + \omega_0)}{4\pi}$$

$$\Delta \omega = \pm \frac{q}{2m_e} B_m$$

$$\Delta \vec{m} = -\frac{q}{2\pi} \pi R^2 \frac{q}{2m_e} B_m = -\frac{q^2}{4m_e} R^2 \mu_0 H_m$$

$$\vec{M} = \frac{Nq^2 \mu_0}{4m_e} H_m \sum_i R_i^2$$


$$\chi_m = -\frac{Nq^2 \mu_0}{4m_e} \sum_i H$$

$$\chi_m = -\frac{Nq^2 \mu_0}{4m_e} \sum_i R_i^2 \cos^2 \theta_i$$

Todos los átomos contienen electrones que se mueven libremente y cuando se aplica un campo magnético exterior se induce un corriente superpuesta cuyo efecto magnético es opuesto al campo aplicado.

Otra forma de explicar el diamagnetismo es a partir de la configuración electrónica de los átomos o de los sistemas moleculares. De esta forma, el comportamiento diamagnético lo presentan sistemas moleculares que contengan todos sus electrones apareados y los sistemas atómicos o iónicos que contengan orbitales completamente llenos. Es decir los espines de los electrones del último nivel se encontrarán apareados. El diamagnetismo se presenta en todos los sistemas aromáticos (por ejemplo, el benceno y sus derivados) en los que aparece un anillo de 4n + 2 electrones B conjugados.

Diamagnetismo, paramagnetismo y ferromagnetismo El paramagnetismo

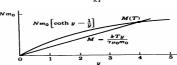
$$z = \frac{m_0 \mu_0 H_m}{kT}$$

$$\left| \vec{M} \right| = N m_0 \left[\cot g h z - \frac{1}{z} \right]$$

$$\vec{M} = \frac{N m_0^2}{3kT} \mu_0 \vec{H}_m$$

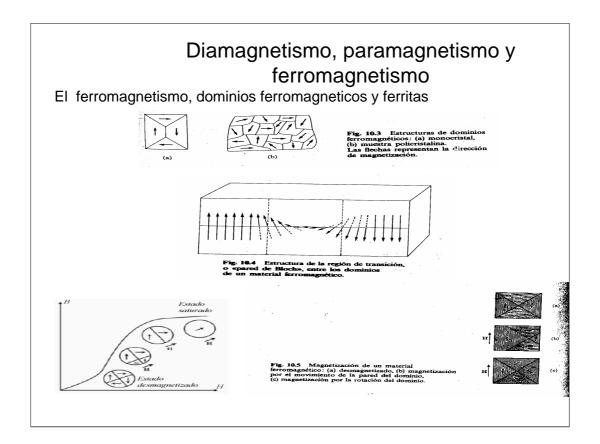
$$\chi_m = \frac{N m_0^2 \mu_0}{3kT}$$

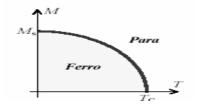
Diamagnetismo, paramagnetismo y


ferromagnetismo
El ferromagnetismo, dominios ferromagneticos y ferritas

$$\vec{H}_m = \gamma \vec{M}$$
 $M > 0.7Nm_0$

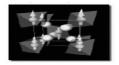
$$z = \frac{m_0 \mu_0 H_m}{kT} > 3$$




$$\left| \vec{M} \right| = Nm_0 \left[\cot ghz - \frac{1}{z} \right]$$

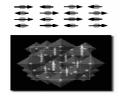
$$M = \frac{kTz}{\gamma \mu_0 m_0}$$

Diamagnetismo, paramagnetismo y ferromagnetismo El ferromagnetismo, dominios ferromagneticos y ferritas


Materiales ferromagneticos. Temperatura de Curie

Material Fe Co Ni Gd Dy	T _C (K) 1043 1388 627 293 85	Material Cu ₂ MnIn EuO EuS MnAs MnBi	T _C (K) 500 77 16.5 318 670 2.2
CrBr ₃ Au ₂ MnAl	37 200	GdCl ₃ Fe ₂ B MnB	2.2 1015 578

Antiferromagnetismo



Temperatura de Neel

Compuesto	$T_N[K]$	Compuesto	$T_N[K]$
	INIK		
CoCl ₂	25	MnO	122
CoF ₂	38	MnSe	173
CoO	291	MnTe	310-323
Cr	475	NiCl ₂	50
Cr_2O_3	307	NiF ₂	78-83
FeCl ₂	70	NiFeO	180
FeF_2	79-90	NiO	533-650
FeO	198	TiCl ₃	100
FeMn	490	UCu _s	15
a-Fe ₂ O ₃	953	V_2O_3	170

Ferrimagnetismo

Ecuaciones de Maxwell en presencia de medios materiales: Recopilación

$$\nabla \vec{E} = \frac{1}{\varepsilon_0} \left(\rho - \nabla \vec{P} \right) \qquad \boxed{\nabla \vec{B} = 0} \qquad \boxed{\nabla x \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0}$$

$$\nabla x \vec{B} - \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \mu_0 \left(\vec{J} (\vec{r}, t) + \nabla x \vec{M} (\vec{r}, t) + \frac{\partial \vec{P}}{\partial t} \right)$$

$$\nabla \left(\varepsilon_0 \vec{E} + \vec{P} \right) = \rho \qquad \qquad \vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

$$\nabla x \left(\frac{\vec{B}}{\mu_0} - \vec{M} \right) - \frac{\partial}{\partial t} \left(\varepsilon_0 \vec{E} + \vec{P} \right) = \vec{J} \qquad \qquad \vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$$

$$\boxed{\nabla \vec{D} = \rho} \qquad \qquad \int_{S} \vec{D} \, d\vec{S} = q$$

$$\boxed{\nabla x \vec{H} - \frac{\partial \vec{D}}{\partial t} = \vec{J}} \qquad \qquad \int_{C} \vec{H} \, d\vec{l} = i(C)$$

Los campos microscópicos

$$\nabla \vec{e} = \frac{\rho_{mic}}{\varepsilon_0} \qquad \qquad \nabla \vec{b} = 0$$

$$\nabla x \vec{e} + \frac{\partial \vec{b}}{\partial t} = 0 \qquad \qquad \nabla x \vec{b} - \frac{1}{c^2} \frac{\partial \vec{e}}{\partial t} = \mu_0 \vec{J}_{mic}$$

$$\vec{E}(\vec{r}, t) = \langle \vec{e}(\vec{r}, t) \rangle$$

$$\langle \nabla \vec{b}(\vec{r}, t) \rangle = \nabla \vec{B} = 0$$

$$\langle \nabla x \vec{e} + \frac{\partial \vec{b}}{\partial t} \rangle = \nabla x \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$

$$\nabla \vec{E} = \frac{\langle \rho_{mic} \rangle}{\varepsilon_0} \qquad \qquad \nabla x \vec{B} - \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} = \mu_0 \langle \vec{J}_{mic} \rangle$$

Los campos microscópicos

Contribución de las cargas y corrientes a los campos macroscópicos

$$\langle \rho_{mic} \rangle = \rho(\vec{r}, t) - \nabla \vec{P}(\vec{r}, t) + \nabla [\nabla Q(\vec{r}, t)] + \cdots$$

$$\langle \rho_{mic} \rangle = \rho(\vec{r}, t) - \nabla \vec{P}(\vec{r}, t)$$

$$\vec{P}(\vec{r},t) = \left\langle \sum_{n} \vec{p}_{n} \delta(\vec{r} - \vec{r}_{n}) - \nabla Q \delta(\vec{r} - \vec{r}_{n}) + \cdots \right\rangle$$

$$\left\langle \vec{J}_{mic}\right\rangle = \vec{J}(\vec{r},t) + \nabla x \vec{M}(\vec{r},t) + \frac{\partial \vec{P}}{\partial t}$$

Sistemas de Unidades

$$\vec{F} = K_e \frac{q \ q'}{R^2}$$

$$\frac{d\vec{F}}{dl} = 2K_m \frac{II'}{R}$$

$$\Delta \Psi - \frac{K_m}{K_e} \frac{\partial^2 \Psi}{\partial t^2} = 0$$

$$\Delta \Psi - \frac{K_m}{K_e} \frac{\partial^2 \Psi}{\partial t^2} = 0 \qquad \Delta \Psi - \varepsilon_0 \mu_0 \frac{\partial^2 \Psi}{\partial t^2} = 0$$

$$\frac{K_{m}}{K_{e}} = \varepsilon_{0} \mu_{0}$$

$$\frac{K_{e}}{K_{m}} = c^{2}$$

Sistemas de Unidades

CANTIDAD	MKSA	GAUSSIANO
Capacitancia	С	$4\pi\epsilon_0C$
Carga	q	$(4\pi\epsilon_0)^{1/2}q$
Densidad de carga	ρ , (σ, λ)	$(4\pi\epsilon_0)^{1/2}\rho$, (σ,λ)
Conductividad	σ	$4\pi\epsilon_0\sigma$
Corriente	I	$(4\pi\epsilon_0)^{1/2}I$
Densidad de corriente	J, (K)	$(4\pi\epsilon_0)^{1/2}$ J, (K)
Constante dieléctrica	ĸ _e	€
Momento dipolar (eléctrico)	P	$(4\pi\epsilon_0)^{1/2}$ p
Momento dipolar (magnético)	m	$(4\pi/\mu_0)^{1/2}$ m
Desplazamiento	D	$(\epsilon_0/4\pi)^{1/2}\mathbf{D}$
Campo eléctrico	E	$(4\pi\epsilon_0)^{-1/2}$ E
Inductancia	L	$(4\pi\epsilon_0)^{-1}L$
Campo magnético	H	$(4\pi\mu_0)^{-1/2}H$
Flujo magnético	Φ	$(\mu_0/4\pi)^{1/2}\Phi$
Inducción magnética	В	$(\mu_0/4\pi)^{1/2}$ B
Magnetización	M	$(4\pi/\mu_0)^{1/2}$ M
Permeabilidad	μ	(1) $\kappa_m \mu_0$, entonce (2) $\kappa_m \rightarrow \mu$
Permeabilidad (relativa)	κ _m	μ
Capacidad inductiva específica	€	(1) $\kappa_e \epsilon_0$, entonces (2) $\kappa_e \rightarrow \epsilon$
Polarización	P	$(4\pi\epsilon_0)^{1/2}\mathbf{P}$
Resistencia	R	$(4\pi\epsilon_0)^{-1}R$
Resistividad	ρ	$(4\pi\epsilon_0)^{-1}\rho$
Potencial escalar	φ	$(4\pi\epsilon_0)^{-1/2}\phi$
Velocidad de la luz	$(\mu_0\epsilon_0)^{-1/2}$	c
Susceptibilidad	χ_{r} (χ_{rr})	$4\pi\chi_{e},(\chi_{m})$
Potencial vectorial	A	$(\mu_0/4\pi)^{1/2}A$

Sistemas de Unidades

Tabla 23-2	Tabla de	conversión	nara valores	numáricos

CANTIDAD	MKSA.	GAUSSIANO
Longitud	l metro (m)	10 ² centímetros(cm)
Masa	l kilogramo	10 ³ gramos
Tiempo -	l segundo	1 segundo
Fuerza	l newton	10 ⁵ dinas
Trabajo, energía	l joule	10 ⁷ ergs
Potencia	l watt	10 ⁷ ergs/segundo
Capacitancia (C)	l farad	9×10^{11} estatfarads
Carga (q)	l coulomb	3×10^9 estatcoulombs
Densidad de carga (p)	l coulomb/m³	3×10 ³ estatcoulombs/cm ³
Conductividad (\sigma)	l (ohm-m) ⁻¹	$9 \times 10^9 \text{ (estatohm-cm)}^{-1}$
Corriente (I)	1 ampere	3×10^9 estatamperes = 10^{-1} abamperes
Densidad de corriente (J)	l ampere/m ²	3×10 ⁵ estatamperes/cm ²
Desplazamiento (D)	1 coulomb/m ²	$12\pi \times 10^5$ estatvolts/cm
Campo eléctrico (E)	l volt/m	$\frac{1}{3} \times 10^{-4}$ statvolt/cm
Inductancia (L)	l henry	$\frac{1}{8} \times 10^{-11}$ estathenrys
Campo magnético (H)	l ampere/m	$4\pi \times 10^{-3}$ oersted
Flujo magnético (Φ)	1 weber	10 ⁸ maxwells
Inducción magnética (B)	$1 \text{ weber/m}^2 = 1 \text{ tesla}$	10 ⁴ gauss
Magnetización (M)	I ampere/m	10 ⁻³ oersted
Polarización (P)	I coulomb/m ²	3×10 ⁵ statvelt/cm
Potencial (φ)	l volt	1 estatvolts
Resistencia (R)	l ohm	$\frac{1}{2} \times 10^{-11}$ estatohms