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Poisson-Nijenhuis Structures and
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Abstract: We express the compatibility conditions that a Poisson bivector and a Nijenhuis

tensor must fulfil in order to be a Poisson-Nijenhuis structure by means of a graded Lie

bracket. This bracket is a generalization of Schouten and Frélicher-Nijenhuis graded Lie

brackets defined on multivector fields and on vector valued differential forms respectively.
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1. Introduction

A Poisson-Nijenhuis structure on a differentiable manifold is a pair formed by a
Poisson bivector and a Nijenhuis tensor that satisfly certain compatibility conditions.
Such kind of structures has been studied in [5] and they have its origin in previous
works by Magri in the theory of completely integrable Hamiltonian systems. The
condition that a bivector must fulfil in order to be a Poisson bivector can be expressed
by means of a suitable graded Lie bracket: the Schouten-Nijenhuis bracket. We
have the same situation with the Nijenhuis tensor: there is a graded Lie bracket,
the Frolicher-Nijenhuis bracket, that allows us to write the condition that a vector
valued differential 1-form must fulfil in order to be a Nijenhuis tensor (see [9] and
[10] for their definitions and properties).

In this paper, we express the compatibility conditions between both tensor fields,
the Poisson bivector and the Nijenhuis tensor, by means of a graded Lie bracket
defined by A.M. Vinogradov ([3], [11]). This graded Lie bracket is not defined on
tensor fields but on graded differential operators on the algebra of differential forms,
and in a certain sense, it is a generalization of the other two.

Let us denote by P and N the Poisson bivector and the Nijenhuis tensor, and
let ip and iy denote their associated temsorial graded differential operators. We
show that the compatibility conditions are precisely the vanishing conditions of the
higher order part of the Vinogradov bracket of ip and iy. Moreover, we characterize
the Poisson-Nijenhuis structures for which the bracket vanishes. In fact, we show
that this bracket vanishes if and only if the trace of the recursion operator, i.e., the
Nijenhuis tensor N, is a Casimir function for the Poisson bivector P.
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Both ip and the bracket of ip and iy are graded differential operators of order
2. 5o, a first step is to obtain a decomposition of the graded differential operators
of order 2 and degree —1 or —2 analogous to that of Frélicher and Nijenhuis for
the derivations on the algebra of differential forms. This is done in Section 3. The
application of this decomposition to the Poisson-Nijenhuis structures is presented in
Section 4. In Section 5, we present a characterization of Poisson-Nijenhuis struc-
tures just by a single condition on the commutator of the sum of the differentials
associated to the Poisson bivector and to the Nijenhuis tensor with itself. This al-
lows to define a differential bicomplex for Poisson-Nijenhuis manifolds. Finally we
apply this approach to bihamiltonian manifolds and give new proofs, following these
techniques, of some already known facts.

2. Poisson-Nijenhuis Structures
Let M be an n-dimensional differentiable manifold. Let D,(M) = 30, Di(M) be

the exterior algebra of multivector fields on M. The m&.aﬁmm.zﬂnu.rmm bracket,
denoted by [, |sn, gives a graded Lie algebra structure on D.(M).

A bivector P is called a Poisson bivector on M if [P, Plsy = 0. The pair (M, P),
where P is a Poisson bivector, is called a Poisson manifold. Let us denote by P the
linear mapping from T*M to TM, defined by P as follows:

a(PB) = P(a,p) for all @,5 € T*M.

Let (M) = 37, 2°(M) be the exterior algebra of differential forms on M and
let QIM;TM) = 30, (M;TM) be the space of vector valued forms endowed
with the Frdlicher-Nijenhuis bracket, denoted by [, |pn-

Let N be a vector valued 1-form. We shall denote by N and N* the linear mappings
defined by N from T'M to itself, and from T* M to itself, respeciively. A vector valued
I-form, NV, is called a Nijenhuis tensorif [N, Ny = 0.

The following tensor fields defined by means of a bivector P and a vector valued 1-
form N will be needed for the definition of the notion of Poisson-Nijenhuis structure:

N P(a,B) a(NPf) = P(N*a,j)
PN(a,8) = a(PN"8)= P(a,N"5)

When these two tensor fields PN and N P are equal, then PN = N P is a bivector
and the following map

C(PN)a,f) = Lpa(N"f)-Lps(N"a)+ N Lpg(a)
—N*Lp.(f) + dP(N"a, 8) - N*dP(a, 8)
defines a 1-form valued bivector, C{F, N).

Definition 1. ([5]) A Poisson-Nijenhuis strueture on M is a pair (P, V), where P is
a Poisson bivector and ¥ is a Nijenhuis tensor, such that the following compatibility
conditions hold

(i) NP is a bivector.

(ii) The 1-form-valued bivector C'(P, N) vanishes.
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It was shown in [5] that when these two conditions hold, the tensor field NP is a
Poisson bivector and [P, N P]sy = 0.

3. Decompositions of Differential Operators of Low Order

The aim of this section is to obtain a decomposition of differential operators of low
order in terms of basic operators in a way analogous to that of Frolicher-Nijenhuis,
[4], for the derivations of the algebra of differential forms.

When dealing with graded objects, we will denote by |a] the degree of a homoge-
neons element a. In order to simplify the notations related to signs, we adopt the
notation that the symhbol of a graded object used as exponent of (—1) denotes the
degree of that object, mod 2. Unless otherwise stated, linear will mean I-linear.

A linear operator D : (M) — QM) is said to be of degree r if D(a) €
Qlel+r{ A1), for all a € NII(M).

Let F, G be two graded maps of QM) into itself. The graded commutator [F, G]
of the two graded maps F, G is defined by [F,G]= Fo G — (=1)"%Go F.

A differential form a € 215{M) can be interpreted as the graded map of degree
lel, B e A S, for all 3 € Q(M).

Let Diff (M) be the set of all differential operators of degree 7, and let Diff (M)
be the graded algebra of all differential operators acting on ({M), endowed with the
bracket defined by the graded commutator.

A linear graded operator D : (M) — (M) is said to be differential of order
< kif, [... [Py o), 01] ..., a] = 0, for all ag, ey, .. 0 € M),

Let us denote by D the set of all differential operators of order < k and degree

. The following properties are satisfied ([6]),
DDy C DY 5 (DR DIl C DR

A graded operator D is called tensorialif, [D, f|{a) = D(fa)- fD(a) =0, for all
FeN M) and « € M)

The differential operators are local operators, i.e., if @ = 8 in a neighborhood of
p € M, then (Da)(p) = (D#)(p). This fact implies that any differential operator is
totally determined by its action on differential forms of degree less than or equal to
its order. If D is of order k, then, for each decomposable form o of degree > k + 1,
D{e) can be expressed in terms of D acting on products of £ forms of degree 1,
where £ < k. This result follows by writing explicitly the definition of the order of a
differential operator with a; the factors of the decomposable form (see [6]).

Let us mention some operators that will be needed later,

(i) A differential form « € Q( M), as an operator, # — a A f, f € (M) is the
unique differential operator of order zero, and degree |a| on Q(M).
{ii) If Z=X;A...A Xy, then we define the differential operator iz by

i2(8) = ix,(-.-ix,(8)-..), B € QM).

If Z is a k-multivector field, then we define iz by its linear extension. The
differential operator iz € D", Moreover, every differential operator of this
type is of the form iz with £ a k-multivector field.
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(iii) f K = a® Z with o € 0I°{(M) and Z € Dg(M) we define the differential
operator iy € l._u_“,.n_..»i by
ik(0) = (a@Z2)(f) = aniz(h)
If K € {AT*M & ATM), we define i by its linear extension.

{iv) The exterior derivative, d, is a differential o
3 perator of order 1 and degree 1. If
K € T(AT"M ® AT M), we denote by Ly the commutator [ix, d]

3.1. Decomposition of Operators of Order 1 and Degree p

It is easy to verify that
D} = Der, (M) & D}

where Der,Q(M) is the Lie algebra of derivati f d

oretil i giint alge ivations of degree p on (M) and the
D =(D- D(1)) + D(1) € Der, (M) & D}

where 1 denotes the constant function 1(m) =1 for all m € M. Therefore,
Der,f M) = {D € D] with D(1) = 0}

Le., .,mnq?wﬁmnsm are exactly differential operators of order 1 vanishing on constants.

1t is well known, [4], that any derivation D € Der,Q(M) can be uniquely written

as _.__m sum of a derivation that commutes with the exterior derivative and a tensorial
derivation,

D=Ly +ig, for Q e W (M;TM), L e 0P (M;TM)

3.2. Decomposition of Operators of Order 2 and Degree -1

In _”_u..mw subsection we will present an analysis of these operators to obtain a decom-
position of them as a sum of basic operators of the same type defined by means of
some fields. As usual we shall start with the class of tensorial operators.

Lemma 3.1. Let D € D7 be a tensorial operator, then there are uni
) {ds
X € X(M) and C € T(A*TM @ T*M) such that D = iy + ic. i e

Proof. The map Dlgiay : QUM) — C®(M) is C=(M)-l i
! g (M) M) C®=(M) is C*(M)-linear because D
tensorial, then it defines a vector field X, Now, the operator D — iy is a ”Hmazm
operator of order 2 and degree —1 that acts trivially on 1°(M) and on Q'(M). The
map,

C:Q (M) x QM) x X(M) — C=(M)
, (a,4,Y) = CleY)=((D—ix)(anB))Y)
is ﬁ_.n”om.__.:.msow: thus it defines a (2,1) temsor field € that satisfies ielmpang =
D —ix|g2(my. Therefore, the operators ic and D — iy agree when acting on E_u_.mu
because they agree on Q'( M) and 03 M), n_q

s Now, we will study _,_uo_ first class of nontensorial basic operators given by operators
efined by means of a bivector. Let P be a bivector, and let ip be the operator of
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order 2 and degree —2 defined by P. The commutator of the exterior derivative with
the differential operator ip,

Lp = [ip,d]

is an example of a nontensorial operator of order 2 and degree —1. Nevertheless, not
all operators of order 2 and degree —1 can be written as a sum of a tensorial operator
and an operator of the type Lp with P a bivector. It is necessary to introduce a
new basic operator. To do this, we need to use a Riemannian metric. Let g be
a Riemannian metric on M, then g determines an isomorphism, that we will also
denote by g, between TM and T*M by (¢(X))(Y) = g(X,Y). We call gradf the
vector field obtained by g='(df), where g~! is the inverse of the isomorphism g.

The codifferential & associated to the Riemannian metric, see e.g. [12], is an oper-
ator of order 2 and degree —1. This operator will allow us to define a new class of
basic operators.

Let K be a vector valued I-form, then the operator ix € Df is a derivation of
degree 0. Let us denote by §x the commutator [ig, &), which is an operator of order
2 and degree —1. We can now state the following

Proposition 3.2, Let g be a Riemannian metric on M and D € D7 1; then, there
are unique fields U € T(ATM),K € T(TM @ T*M),X € X(M),C € T(A*TM ©®
T=M) such that
D =Ly + &g +ix +ic.

Proof. First, we are going to get the nontensorial part of the differential operator.
Let f € C™(M), then the operator [D, f] is a differential operator of order 1 and
degree —1, so it is a derivation of degree —1, and there exists a vector field Hy such
that [D, f] = in,. Note that the tensorial part of [ does nol appear in (D, fl-

Now, we shall prove that the mapping H : C*°(M) — X(M), f +~ Hy where Hy
is the unique vector field such that [D, f] = in,, is a derivation. Indeed,

ing(a) = [D,fg)(a) = D(fga)- faD(e) = gD, [)(«) + fID,g](e)
(gin, + fin,)e)
where the following identity for operators of order 2, obtained from the condition
(LD, f1, ], ] = 0, has been used D(fga) = fD(ga) + gD(fa) — faD(e).

We can associate a tensor field @ € [(TM ®T M) to every derivation from C*(M)
into A’(M) in the following way:

Given a € Q!(M), we define the mapping T : C*(M) — C(M) by Tu(f) =
a(Hy). Thus, Ty is a derivation on C°°(M) because Hy is, therefore T, is a vector
field. Now, the mapping, T : (M) — X'(M) defined by T(a) = Ty, is C=(M)-
linear, so it determines a tensor field Q € [(T M @T M), defined by Q(a, 8) = a(Ts).

We will split the tensor @ into its skew-symmetric and symmetric parts, @ =
Qs +Qy, where @, € T(A?TM) and @, € T(S?*TM). Now, let us take as the bivector
U the skew-symmetric part of @, @a; let us define the tensor field K € T(TM&T* M)
by a(K(X)) = @,(g(X),a), for all X € X(M) and all a € Q}(M).
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Next we show that the operator ! — Ly — éx € D! is tensorial. Let f and h be
two differentiable functions, then

[D - Ly - bk, fl(dh) = [D, fl(dh) ~ [Lu, fI(dk) ~ [6x, SI(dR)

ity (dh) + iu(df A dh) - igraas(K'dh) = 0

because iz, (dk) = Q(df,dh), iy(df A dh) = Qa(df,dh) and, by the definition of
the tensor field K, we have that fyras(Kdh) = @,(df,dR).

Now, the result follows by application of lemma 3.1 to the tensorial operator
D—-Ly-bx. (n]

Remark. This decomposition depends on the Riemannian metric g. The intro-
duction of this tensor, initially external to the problem, has been necessary in order
to obtain the decomposition of all operators of degree —1 and order 2. This metric
is not needed for the operators studied in the next section, but we have introduced
it for the sake of completeness.

4. The Vinogradov Bracket of a Poisson Bivector and a Nijenhuis
Tensor

1t is well known that a Poisson bivector, P, is a bivector such that the Schouten-
Nijenhuis bracket, [P, P]sy vanishes and a Nijenhuis tensor, N, is a vector valued
differential 1-form such that the Frolicher-Nijenhuis bracket, [V, N|px vanishes, or
equivalently, the Nijenhuis torsion of N is equal to zero. In this section we will first
recall ihe notion of what we have called Vinogradov bracket, and second we will use
it to obtain a characterization of the Poisson-Nijenhuis structures. In particular,
we will show that the vanishing of the higher order part of the Vinogradov bracket
of the operators defined by a Poisson tensor, P and a Nijenhuis tensor, N, gives
the compatibility conditions that (P, N') must satisfy in order to define a Poisson-
Nijenhuis structure.

Whereas the Schouten and Frélicher-Nijenhuis brackets are defined on certain
kinds of tensor fields, the Vinogradov bracket is defined on differential operators.
However, when the operators are those defined by means of suitable tensor fields,
then the Vinogradev bracket is related with the previous brackets (see [3], [11] for
details).

Let F be a differential operator on Q(M). The Lievization of F is defined by
Lp=Fod-(-1)fdo F=[Fd].

Definition 2. Let F, (@ be two differential operators on (M ). The L-commutator
of F, is defined as

[F,Gl. = [LF,G] + La, where A = -wT:q_.ﬂB_

Let N (M) = %ﬂ with the grading N*(M) = %&ﬂ

Theorem 4.1. (Vinogradov unification theorem) The quotient N'(M) equip-
ped with the bracket operation, | , v, induced from the L-commulalor is a graded
Lie algebra, and the compositions:

D.(M) — Diff (M) — N(M) ; Q(M;TM)— Diff (M) — N(M)
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are imbeddings of graded Lie algebras, considering D.(M) equipped with the Schouten-
Nijenhuis bracket, and QM ;T M) with the Fralicher-Nijenhuis bracket.

So, in a certain sense, the Vinogradov bracket is a generalization of both graded
Lie brackets.

Now, let us consider the following situation: Let P be a Poisson tensor, and let
ip € D3* be the operator that it defines. Analogously, let N be a Nijenhuis tensor,
and consider iy € DY In order to simplify notations let us recall that the Lievization
of ig, Liy = ix,d], with K € T(AT*M @ ATM) has been previously denoted by
Lk-

.__M.H_,,n relation between the Vinogradov bracket and the Poisson-Nijenhuis structures
is given by the next theorem.

Theorem 4.2. Let P be a Poisson bivector and let N be a Nijenhuis tensor,

(i) The tensor fields PN and NF coincide if and only if [ix,ip)e = ix +ic. In
this case the vector field X is given by X (f) = P(dN*df), where f is & smooth
function, and the tensor field C is nothing but C{(F, N), defined in Section 2.

(ii) The pair (P, N') is a Poisson-Nijenhuis structure (i.e, NP= PN, and C(P,N)
= 0) if and only if [in,ip]. € D7, i.e., it is an insertion operator, ix, for some
vector field X. In this case X = n.-wm.?_ e N)*

Proof. The operator [iy,ip]. is an operator of order 2 and degree -1. Let us
decompose it as a sum of basic operators as in Proposition 3.2. To do this, we first
must compute the tensor field Q that determines the nontensorial part. Let f and
| be differentiable functions, then, by the definition of @,

Q(df,dh) = [[in, ipls, fl(dR) = |W52.&.¢3 ~ P(df,N"dk))

This tensor field is symmetric, thus, the operator [in,ip]. can be written, once a
Riemannian metric on the manifold is given, in the form [in,ipl. = 0k + ix + ic,
where K & T(TM @T*M) is the tensor field defined by a(K(Y)) = Q.(g(Y), ), for
all Y € X(M) and all x € Q'(M).

(i) Obviously NP = PN if and only if the symmetric tensor field @ vanishes.
Thus, in this case, the operator [ix, ip]. is just a tensorial operator now independent
of the Riemannian metric used to decompose it. We are going to determine this
tensorial operator. An easy computation shows that [in,ipl.(df) = P(dN"df) for
all f € €°(M), then the vector field X is determined by X (f) = P(dN"df). Now,
D = [iy,ip). — ix is a tensorial operator without part of order 1. To get the part of
order 2, let us compute its action on differential 2-forms. Computations show that

D(df adk) = ([Lnyir) - wh.ﬁ__a.._»_z..._.?,. dh) — X(f) dh+ X(h) df
N*dP{df,dh) + ip(dN"df A dh) — ip(df A N"dh)
—-dP(df,N*dh) — P(AN*df)dh + P(dN*dh)df

N*dP(df, dh) — ipgp(dN"df) + ipag(dN"dR) — d P(d f,N"dh)
and this expression agrees with ig(pay(df A dR).

n
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(i) Now, by the second compatibility condition of the Poisson-Nijenhuis structure,
the tensor field C(P, N) vanishes, and we have that

[inip). = ix e DL

Conversely, if the operator iy, ip]. is an operator of order 1 and degree —1, i.e.,
it is of the type ix, where X is a vector field, then the tensor fields K and C must
be equal to zero. K = 0 implies Q = 0, which is equivalent to the first compatibility
condition. By (i), the tensor field C is equal to C'(P, N). Thus, (P, N) is a Poisson-
Nijenhuis structure,

Let us determine the vector field X in this case. Let m € M such that there
exists a neighborhood, V, of m where the rank of P is constant and equal to
2p. Let ?quv_u 2p < n, be local adapted coordinates for the Poisson bivector
P. Let us compute the trace of the linear mapping C(a), o € '(M), defined by
(C(e))(B,Y) = (C(P,N)(a, )(Y), for § € D(M) and ¥ € X(M). For a = dz?

we have that, after some computations,

g

tr C(de?) -~

2p
3 (C(P, N)(dz?, dz'))(

i=1

2 i 0 _ ;9
= Y Lpan((N"dz)(5)) - (AN"d2?)(Pds', )

=i @H..
= P(dtrN,dz’) - 2d=7(X)

By linearity, for all @ € 1'(M), we have that trC(a) = —2a{X) - P(a,dtrN).
Now, as (P, V) is a Poisson-Nijenhuis structure we have that C(P, N) = 0, and then

X = |wuu?_ trN) in the coordinate open set where the adapted coordinates are
defined.

The subset W = {m € M such that there exists V' neighborhood of m where the

rank of P is constant} is dense. By continuity, we have that X = —3P(dtrN) in
M. (m]

Remark. Theorem 4.2 shows that a Poisson-Nijenhuis structure is a pair (P, N)
such that [ip,iply = 0, [in,in]y = 0 and such that the operator [iy,ip|y, which
is a priori of order 2, actually is of order 1, but not necessarily equal to zero. Note
that [ix,ip). has no Lievization term (see proof of Theorem 4.2), thus the condition
"[in,1p)s is of order 1" is equivalent to "[iy, ip]y is of order 17,

Next, we will characterize the Poisson-Nijenhuis structures such that not only the
bracket [ix,ip]y is an operator of order 1, but is actually zero.

Remark. In particular, [iy,ipl. = 0 if and only if the trace of ¥ is a Casimir
function for the Poisson tensor P. If, in addition, P is everywhere nondegenerated,
then [ip, ip]. = 0 if and only if the trace of ¥ is a constant function.

An example of Poisson-Nijenhuis structure such that [iy, ip]. = 0 with trace of N
a nonconstant Casimir function is the following:

Example. Let {z!,z% y',5%} be a system of local coordinates on RY. Let

PoissoN-NUENHUIS STRUCTURES AND THE VINOGRADOV BRACKET 73

us consider the Poisson bivector, P = 22 A 525 and the Nijenhuis tensor N =

M d'e 8 where f is a nonconstant smooth function. It is easy to prove that
o o8 i Nijenhui ture and that the trace of the Nijenhuis

the pair (P, V) is a Poisson-Nijenhuis struc

tensor is a nonconstant Casimir function.

Some examples of Poisson-Nijenhuis structures with [in, ip]. not equal to zero can
be found at the end of Section 6.

5. A Differential Bicomplex for Poisson-Nijenhuis Manifolds

It is well known that given a Nijenhuis tensor, N,itis jnmmm_u_a_.ﬁo.nmmhm a n.on__.w:_
complex on the module of differential forms where its differential is the ._2:..»:2_
of degree 1, Lx : R¥(M) — Q¥+1(M). It is also well known, see (2], [6], that given a
Poisson bivector, P, it is possible to define a chain complex en the Eomﬁ—m of differen-
tial forms, which is called the canonical complex associated to the Poisson structure,
where its differential is the operator of degree —1, £p : (M) — zmu_cu.b‘

In the previous sections, we have studied Poisson-Nijenhuis structures in terms of
the Vinogradov bracket. Qur aim in this section is to study them in terms of the
two differentials Ly and Lp. :

First let us recall the following property of the Vinogradov bracket.

Proposition 5.1. ([3]) Given F and G graded differential operators, then

Lifa. = [LF, Lg).

An easy application of this proposition gives the following alternative characteri-
zation of Poisson-Nijenhuis structures.

Proposition 5.2. Let P be a Poisson bivector and let N be a Emas_“_o_:.w, uaz.mo._..
then (P, N) is a Poisson-Nijenhuis structure if and only if [Lw,Lp) € DY, e, it is
a Lie derivative with respect to a vector field X, Lx. In this case X = —zP(dtrN).

Remark. The bracket [Cy, £p] is just the graded commutator of the two differen-
tials, this is, Ly o Lp + Lpo Ln.

iti = [[En, 1 is a Poisson-
Proof. By Proposition 5.1, we have [Cn, Lp] = [[in, iP]., d). If (P, N)is a
Nijenhuis structure then, by Theorem 4.2, [in,ip]. € ;! and then [Ly,Lp) € DY.

Conversely, let us suppose that [£x,Lp] € Df. Let us recall that [in,ipl. =
fx +ic + iy for some tensor fields K,C, X as in Proposition 3.2. Therefore, :..m
operator [6g + ir,d], which is a priori of order 2, must be of order 1. zod_._. we will
prove that this condition implies that the tensor fields K and C must vanish.

The technique is similar to the proof of Theorem 4.2, first, we «nnm:co the E”.n__m..
of the operator [6x + ic,d] by taking its commutator with a differentiable function.
Once we have an operator of order 1, we will apply the decomposition of Subsection
3.1

Let f be a differentiable function and consider [[§x + ic,d], f]. By rwﬂaﬂwgmw.
it belongs to DY, this is, it is just the multiplication by a smooth function. This
function is determined by the action of the operator on the constant funetion 1, and
then the operator [[§x + iz, d]. f] — [[4x + ic,d], f(1) is equal to zero.
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But, initially this operator belongs to DY. Then, if we compute the action of
([éx + iy d], f] = [[6x + ic.d], f](1) on another smooth function i, we have

0 = ([léx +ic,d], f] - [[8x + ic,d], FUL))(R)
= fx(hdf)+ bx(fdh) — fox(dh) — hég(df)
= —8§(hKdf) = 8(fKdh) + fE(KdR) + hé(Kdf)
= g Wdf, Kdh) + g~ '(dh, Kdf)

where the following property of the divergence operator, §(fdh) = fé(dh)-
—g~'(df,dh), has been used. This implies that the tensor field K must be skew-
symmetric, but, by definition, it is symmetric. {Recall that K(Y;a) = @.(g(¥),«)
where @, € [(S?TM)). Thus, the tensor K vanishes.

Now, if we compute the action of the same operator on an exact 1-form, dh, we
have

0 = ([lic,d], ] = [lic, d], FALN(dh) = ic(df Adh) = C(df,dh; ).

Therefore, the tensor field € must be equal to zero.
Consequently, [in,ip). = ix for some vector field and then, by Theorem 4.2,
(P, N) is a Poisson-Nijenhuis structure. o

The next step is to glue together, in a single condition, the four conditions that a
vector valued differential 1-form, N, and a bivector field, P, must fulfil in order to
be a Poisson-Nijenhuis structure. This can be done by studying the sum of the two
operators Ly and Lp.

Theorem 5.3. Let N be a vector valued differential 1-form and let P be a bivector
field, then (P, N) is a Poisson-Nijenhuis structure if and only if [En+Lp, En+Lp] €
DY, ie., it is a Lie derivative with respect to a vector field X, Lx. In this case
X = —3P(dtrN).

Proof. First, let us compute
[En + Ley Ly + L]

[Cxy £N] + [Lpy LP) + 2L, Lp)
LivNey — £pP1sy T+ 2L, LP)-

[}

We get the desired result as a consequence of Proposition 5.2, the definition and
properties of the Schouten-Nijenhuis and the Frolicher-Nijenhuis brackets and the
fact that the operators Ly, ey a0d Lip.p)s, belongs to D and to D3?, respectively.

o

Let us express this result in algebraic terms. It is natural in our context to try to
introduce a double complex like in [2]. In fact, the trivial case of Poisson-Nijenhuis
manifold where the Nijenhuis tensor is given by the identity map of the tangent
bundle, N = Id, is the case studied in [2]. To do that, let us define C5(M) =
QI-%(M) for all k,{ € Z. Given a vector valued differential 1-form, N, and a
bivector field, P, let us consider the horizontal operator £y : C*H( M) — CRIFI( M)
and the vertical operator Lp : C5¢(M) — CHH(M).
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With this data, only a subeclass of Poisson-Nijenhuis manifolds will provide us with
a differential bicomplex.

Corollary 5.4. Let N be a vector valued differential 1-form and let P be a bivector
field, then (C**(M), Ly, Lp) is a differential bicomplez if and only if (P,N) isa
Poisson-Nijenhuis manifold and P{d trN) = 0.

Proof. The definition and properties of the Frilicher-Nijenhuis and the Schouten-
Nijenhuis brackets give us the following relations,

1 1 1 1
Ly oLy = SN LN = L Npns  £P 0 Lp = 5[LP. L] = =3 Lip Py

and Ly o Lp + Lpo Ly = [Cn, Lp)-

Obviously, if (P, N) is a Poisson-Nijenhuis structure and P(dtrN) = 0 then
(C**(M), Cx, Lp)is a differential bicomplex.

Conversely, if (C**(M), Ly, Lp) is a differential bicomplex then [£x, Ln] = 0, ie.,
N is a Nijenhuis tensor, [Cp, £p] = 0, i.e., P is a Poisson tensor and [ExnsLp] =0,
i.e. (P,N)is a Poisson-Nijenhuis structure with P(dtrN) = 0. o

In order to associate a differential bicomplex to any Poisson-Nijenhuis manifold,
it is necessary to reduce the algebra (M) in the following way: Let (P,N) be a
Poisson-Nijenhuis structure with X = —1P(dtrN). Let Qx(M) be the algebra of
differential forms invariant by X, i.e., a € Qx(M) if and only if Lxa = 0, and let
chi(M) = QH(M) for all kL€ Z.

Corollary 5.5. Let (F,N) be a Poisson-Nijenhis structure, then the differentials
L and Lp can be restricted to Qx (M), and _..hMoA._s.hz.h__eu is a differential
bicomplez.

Proof. First let us note that, by application of the graded Jacobi identity, we have
[lCn, Lol £x] =0,  [[£n,Lp], L] = 0.
Now, let a € §2§(M), we are going to show that Lya € QM) and Lpa €
k(M)
LxCyo = (LxLy—ELnLx)a=[Lx,Lxle = [[Cn,Lp],Ln]a=0.
LxLpa = (LxLp-Lplx)a=[Lx,Lpla=[LNn,Lp],Lpla=0.

So, the differentials Lx,Lp can be restricted to Qx(M), and then the triplet
.“nwn.._TE,._.hz. Lp) is a differential bicomplex, because now [Ex, Lp]layan =0. O

6. Bihamiltonian Manifolds

If P, @ are Poisson bivectors on M and [P,Q]sy = 0 then, (M, F,Q) is called a
bihamiltonian manifold. It is well known that in this case (P, PQ~"') is a Poisson-
Nijenhuis structure on M ([7]). In this section we will prove this fact using the
previous techniques.

First let us define some differentiable forms that will be used later. Let P and
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@ be bivectors on a manifold M and assume that @ is invertible as a mapping
Q:T*M — TM. We can define two 2-forms, @ and &, as follows:

AX,Y)=Q(Q1Xx,Q71Y) = (Q1X)Y), #(X.Y)=P(Q'X,Q'Y).

Let PQ~" be the vector valued |-form defined by the composition of the mappings
P and Q1. Note that (PQ~')* = Q~'P is the composition of the same mappings
in the reverse order.

Lemma 8.1. Let P, Q be bivectors such that Q is invertible, and let ! and & be
the 2-forms defined above, then

(i)  [2,ip] = ipg-r — P(R2).

(i) [0,Lp] = Lpg-1 + dP(Q) - [ip,d9].

(1ii) —quh.oL_ = =2&,

(iv) [@,Lpg-1] = 2d® — [ipg-1,dQ2].

Proof. It is easy to check that both sides of part (i) coincide acting on 0- and 1-
forms. To prove (i) consider the commutator of the left hand side of (i) with the

exterior derivative and then apply the graded Jacobi identity. For (iii), note that
the 2-form ipg-19 is equal to 2&. A straightforward computation shows (iv):

(2, Lpg-1] [ [ipg-1,d]] = [Q,ipg-1],d] + [ipg-:., [(L,d]]
248 — [ipg-1,49). a

Let us recall the following equivalence between the Schouten-Nijenhuis brackets
of ) and P + () and the closedness of the 2-forms {) and @, respectively: Condition
[@,Qlsw = 0 is equivalent to d2 = 0 and condition [P+ Q,P + Qlsy = 0 is
equivalent to d® = 0.

Proposition 8.2. [If P, @ are Poisson hiveclors then

[Lpg-1,Lp] = —[dP(R),L¢] € DY.
Moreover if [P,Q)sy = 0 then (P, PQ~") is a Poisson-Nijenhuis structure.
Proaof. The result follows applying Lemma 6.1.

(CrgiCpl = [9,Lr)Lr) — [AP(R),Lel = 2 [Cp, Lol - [P(R), £r)

I

1
~ 3190 L] ~ [AP(R), £p] = ~(dP(D), Lr] € Y.
Finally, let us prove that PQ~" iz a Nijenhuis tensor. Applying the graded Jacobi
identity and Lemma 6.1 (ii) and (iv), we have
[Lpg-1, [ Lp]] = [Lpg-1, dP(R)]
[, [Cpg-1, Lr]) - [Cpg-1,dP(R)).

Applying twice again Lemma 6.1 (ii) and the fact that [dP(f2),dP(2)] = 0 and
[2,dP(£2)] = 0, we have

]

Hh_—uﬂl: h.ﬂ.ol.“_

]

[, [dP(R), Le]] - ([, L), AP(S2)]
—2([, Lp), AP(R)] € DR

[Cpg-1:Lpg-1]
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This last differential operator belongs to DZ, but _hwolrhmﬁ.u—_ is a deriva-
tion of degree two, then both operators must be equal to zero. This implies that
[PQ-', PQ~"]pN =0, i.e., that PQ~1 is a Nijenhuis tensor. o

Remark. For this kind of Poisson-Nijenhuis structures it is easy to check that
tr PQ-1 = 2P(R), thus [Lx. Lp] = L_papia)) = LpP(a)ex-

Example. Let us consider the two particle Calogero system as in [8]. Let
{21, 32,1, p2} be a system of coordinates on Y — {0}. It can be shown that the
following tensor fields are Poisson tensors,

a a a a

©= "o o o,
g 1 L SR U )
P= o N pt BUE S s Qe
GovEy I e e
+_w_»w.”n A ﬂ+~?|9&@|§>@.ﬂ+waﬁ.¢|ﬁ> o
hlm-r)

where, A = dzi, + (p — p2)? and Q12 =

We have that [P,Q]sy = 0, and that @ is invertible, then (P, PQ™") is a Poisson-
Nijenhuis structure. The function K = p; +p; is the total momentum of the system.
Computations show that tr PQ™! = 2(p; + p2) = 2K and [ip,ipg-1]v = ix, where,

a a a a
X e i) S TR S
X =PdK = pg=+ P+ 2000 - g,

Example. Finally, let us study an example of two compatible Poisson struc-
tures on [R* taken from [1] with [ip,in]. # 0. Let {z',2%,3",4°} be a system of
coordinates on IR*. Let us consider the following two Poisson bivectors,

fi) d a [i]
P = ooy o g
a a 2 8 a a a
9 2 oyt Bl "ot 02 M oyt

We have that [P, Q]sy = 0, and that @ is invertible, then (P, PQ~") is a Poisson-
Nijenhuis structure.

For this Poisson-Nijenhuis structure we have that tr PQ™) = 2(2 = z')e= and
[ip,ipg-1]v = ix, where

Il
)
1
o)
T
-
-+
™

ol =a
X(f)=-e ﬂa__..zuu_w ETek
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