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Abstract. There are minimal surfaces admitting a Bézier form. We
study the properties that the associated net of control points must sat-
isfy. We show that in the bicubical case all minimal surfaces are, up to
an affine transformation, pieces of the Enneper’s surface.

1 Introduction

The study of surfaces minimizing area with prescribed border (the so0
called Plateau problem) has been and still is a main topic in differential
geometry. Such kind of surfaces, characterized by the vanishing of the
mean curvature, are called minimal surfaces. It is a part of the differential
geometry where a lot of research has been done from its very beginning
with J. L. Lagrange in 1762.

The construction of curves and surfaces subject to certain constraints
(to minimize length, area, curvature or other geometric properties) has
been studied from the point of view of Graphics (see [4], [5), [6] or [7)). In
the case of the area of the surface, the interest comes from the fact that
in some real problems, minimal area means minimal cost of the mate-
rial used to build the surface. Moreover, the minimization of functionals
related with the mean curvature provides a method of efficient fairing.
In this paper we try to give a little account of the minimal surfaces that
admit a Bézier form. Up to our knowledge, the study of minimal Bézier
surfaces has not yet been done and there are some interesting questions
to be raised. Among them let us mention two:

— Can the control net of a minimal Bézier surface be characterized by
some minimal property related with areas?

— Is it possible to characterize which control nets are associated to
minimal Bézier surfaces?

Our attempts to answer the first question point out that the area of any
polyhedron having as vertices the control points do not minimize area
among all polihedra with the same border. We have followed here the
approach of (9] to study discrete minimal surfaces.

This note deals mainly with the second question. The two main results
are the following: First, we have characterized control nets of harmonic
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Bézier surfaces, and second; we have proved that any bicubical polyno-
mial minimal surface is, up to an affine transformation, a piece of a well
known minimal surface: the Enneper’s surface. o
The consequence of our results is that minimal surfaces are too rigid to
be useful as candidates for blendings between arbitrary surfaces. Only
for some configurations of the border control points we can assure that
a Bézier surface exists with minimal area.

The connection between the two topics, Bézier and minimal surfaces, is
not new. Let us recall some of them. First, Sergei Bernstein, who defined
the now called Bernstein polynomials, was a prolific rescarcher in the
realm of minimal surfaces at the beginning of the twentieth century. See
for instance [1] and [2]. One of its most celebrated results was to prove
that if a minimal surface is the graph of a differentiable function defined
on the whole R?, i.e, ®(u,v) = (u,v, f(u,v)), then it is a plane.
Second, the solutions to some Plateau problems, for example, the Ger-
gonne surface, resemble Bézier surfaces. (Look at Figure I)
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Figure L. Left. The Schwarz’s solution (1865) to the Gergonne’s
problem (1816): find the minimal surface dividing the cube into two
equal parts and joining the inverse diagonals of two opposed faces.
Right. A Bézier surface with a similar shape.

And third, both kind of surfaces share some crucial properties: A mauimn
surface is always included in the convex hull of its net of control points.
Analogously, a minimal surface is always included in the convex hull of
its border.

2 Definitions

n,

Definition 1. Given a net of control points in R®, {P;;}1Z,, the asso-
ciated Bézier surface, ® :[0,1] x [0,1) — R, is given by

R (u,v) = M M:W B (u)B](v)Pj. (1)

i=0 j=0
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Definition 2. A surface S'is minimal if its mean curvature vanishes.

Equivalently, S is a minimal surface iff for each point p € .S one can
choose a small neighbourhood, U, which has minimal area among other
patches V having the same boundary as U.

Ezample 1. The first non trivial cxample of minimal surface with poly-
nomial coordinate functions is the Enneper’s surface (Figure II): ® :
R? - R® defined by

3 3

R (u,v) := (u— b +urv— =

3 3

The control net for the portion of the Enneper’s surface defined by u,v €
—IH. :. is n.mf.nb —u%

+ e.:». s w»v.
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Figure II. Left: a picce of the Enncper’s surface (u,v € [-1,1]). Right:
Its control net as a Bézier surface.

3 Minimal surfaces with isothermal coordinates

Let us recall that a chart ® : U — S on a surface, S, is said to be
isothermal the map ® is a conformal map, i.e, if angles between curves
in the surface are equal to the angles between the corresponding curves
in the coordinate open subset U. It is easy to check that for an isothermal
chart the coefficients, E, F, G, of the first fundamental form satisfy E = G
and F =0.

Note that this implies that the two families of coordinate curves of the
chat ® are orthogonal because F = 0, and that the length of the coor-
dinate curve from ® (uo,v) to R(uo,vo + h) is equal to the length of
the coordinate curve from ® (uo, vo) to ®(uo + h, o).

A well known result of the theory of minimal surfaces is the following
(see [10]): if X is an isothermal map then ® is minimal iff AR = 0,
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where A is the usual Laplacian operator. The relation between the mean
curvature and the chart is due to the fact that for an isothermal map

Ruu + Roo = 24’ HN,

where A = E = G and N is the unitary normal vector of the surface
associated to the chart.

The conditions that a net of control points must satisfy in order to have
an isothermal associated Bézier surface are more difficult to handle (they
can be expressed as a system of quadratic equations) than the conditions
in order to be harmonic (in this case, the equations are linear). So, let
us study first that second condition.

We will compute the Laplacian of a Bézier surface (1).

2
AR (u,v) = A%.W. + Z22)R (u,v)
= n(n — 1) £ 5 BY%(u) B (1) A% P
+m(m — 1) 1270 725" BP (w)B] (1) A% P,
where A»P;j = Pit,j — 2Piy1,; + Pij, A%?Pyj = P, j42—2P; j11 + Pj.
We shall rewrite the last expression again as a Bézier surface of degrees
n and m. In order to do this, we will need the following relation

BI(t) = ks (h—i)n—i-1)BP®)

+2(i +1)(n — i — 1)BY4, (t) + (i + 1)(i + 2) B, 5 (t)).
Let us define, for i € ao.....al,»v
Gin = (n—i)(n—i—1), bin=20G+1)(n—i-1), cin=(i+1)(i+2),

and ain = bin = cin = 0 otherwise.
Therefore,

AR (u,v) = i, Tty B (u) B (v)
(n(n = 1)(@in AYP;j + bi1,n AP,y ; + ci—2.n A2°P;_3 ;)
+m(m —1)(ajm A"?Pij + bj—1,m A*2 P, j_1 + ¢j—2,m A% P; j_3)).
This expression can be seen as the Bézier surface associated to a net of
control points {Qi;}]7Zo. Thus, due to the fact that { B} (u)BJ" (v)}17%o
is a basis of polynomials, we get that ® is harmonic iff Q;; = 0 for all
.m._._ﬂ.vmagmum the discrete operators A*° and A%? by its definitions and
sorting terms we get that for any 3, j the following expression vanish:
n(n — 1)(Pis2,jtin + Pig1,5(bi-1,n — 2ain)
+ Pioy,j(Bi-1,n — 2¢i=2,n) + Piz2,jCi=2,n)
+m(m = 1)(Pij+28jm + Pij41(5j-1,m — 20jm)
+ Pij—1(bj-1.m — 2¢j-2,m) + Pi j—2¢j—2,m)
+P;i((@in — 2bi—1,n + Ci=2,a)n(n — 1)
+ (ajm = 2bj—1,m + Cj—2,m)m(m —1)).

In the case of a quadratic net (n = m) we can state the following theorem
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Theorem 1. Given a quadratic net of points in R®, {Pij}1j=0, the as-
mm.ama?k Bézier surface, ® : [0,1]x[0,1] = R®, is harmonic, 1.e, AR =0
0= Piyr;ain + Pry1,j(bim1n — 28in) + Pio1,j(bim1.n — 2¢i-2,n)
+Pi-2j¢i—an + P, j42am + Pijr1(bi-1,m — 2a5m)
+Pij-1(bj-1,m — 2¢j-3,m) + Pij_aci-3,m @
+Pij(ain — 2bi-1,n + Cim2in + ajm — 2bj-1,m + Cj—2,m)-

Let us study Equation (2) in the simplest cases: biquadratic and bicubical
Bézier patches.

3.1 Biquadratic harmonic Bézier patches

In the case n = m .= 2 from the equations in (2) it is possible to find
an expression of four of the control points in terms of the other five. In
fact, using Mathematica, we have obtained that the null space of the
coefficient matrix of (2) is of dimension four. Moreover, it is possible to
choose as free variables Points in the first and last column of the control
net.

Corollary 1. A biquadratic Bézier surface is harmonic iff
Por = }(2Poo + Poa — 2Py + P),
Piv = 3(Poo + Po2 + Pio + Pra),
Pn = 3(Poo + —2Pio + 2Py + Pn),
P13 = 3(=Poo + Pz + 2Pio — Pyo + Py).

A way of writing for example the equation involving the inner control
point, Py, is using a mask

3)

1 101
Pi==x0e0 (4)
4
101

Remark 1. In [6], the author presents a method to improve an initial
blending, Fy, through a sequence of blending surfaces minimizing some
fairing functionals. In section 3.3, the author suggests the following mod-
ification: instead of using the initial blending surface, to use a modified
surface obtained by averaging the inner control points. The averaging
method suggested there, after an analysis of its implementation, is given
Precisely by the mask (4). Therefore, the use of this mask can be now
justified from Equations (3): the inner point of a quadratic harmonic
Bézier surface must verify such a mask.

Remark 2. Note that mask (4) is a kind of dual of the mask associated
to the Laplace operator. It can be found in [4] that the mask

010
x1lel (5)

1
4 010
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is the discrete form of the Laplacian operator. Such a mask is used in the
cited reference to obtain control nets resembling minimal surfaces that
fit between given boundary polygons.

In general, the authors define in [4] the notion of permanence patches to
be those generated by masks of the form

11a Ba
7XBe8 (6)
afa

with 4a+48 = 1. Therefore, mask (4) is a particular case with a = 0.25,
whercas mask (5) corresponds to a = 0. Anyway, as it is said there, any
of such masks do not produce control nets of minimal surfaces.
In fact, let us recall that we are not trying to produce Coons nets. We
try to characterize control nets of minimal surfaces. We have found that
in the biquadratic case Eqgs. (3) must be satisfied. But in order to obtain
a minimal patch, we have to impose also the isothermal conditions. Itis
Just a matter of computation to show that any control net verifying Eqgs.
(3) aud the isothermal conditions is a piece of a plane.

3.2 Bicubical harmonic Bézier patches

In the case n = m = 3 from the equations in (2) it is possible to put half of
the control points in terms of the other eight. In fact, using Mathematica,
we have obtained that the null space of the coefficient matrix of (2) is
of dimension eight. Moreover, it is possible to choose as free variables
exactly the eight points in the first and last column of the control net.

Corollary 2. A bicubic Bézier surface is harmonic iff
Py = 1(4Poo + 2Po3 + 2P0 + Pia),
Py = 3(2Poo + Pos + 4P3o + 2Ps3),
P12 = 3(2Poo + 4Pos + Pso + 2Ps3),
Pys = §(Poo + 2Py + 2Py + 4Pyy),
Pio = 3(4Po0 — 4Py + 2Po; + 2P30 — 2P, + Ps3),
Pao = 5(2Po0 — 2Po1 + Po + 4Pso — 4Py + 2Py),
Pi3 = 3(2Pn — 4Po; + 4Po3 + P3y — 2P, + 2Py3),
Pa3 = }(Por — 2Po2 + 2Po3 + 2Ps; — 4P3; + 4P33).

Remark 3. This means that given the first and last columns of the control
net (eight control points in total), the other eight control points are fully
determined by the harmonic condition. In other words, any pair of two
opposcd borders of a harmonic Bézier surface determines the rest of
control points.

@

Remark 4. This fact is analogous to what happens in the Gergonne sur-
face: given two border lines, the inverse diagonals of two opposed faces
of a cube, the Gergonne surface is fully determined (See Figure I). In
our case, given two opposed lines of border control points, the harmonic
Bézier surface is fully determined.
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Remark:-5. The first four equations in (7) imply that the four inner con-
trol points are fully determined by the four corner points. So, there are
two different kind of masks depending if the point is an inner control
point or not:

2 4
0 1 -4
Q. Nvueulnw.x ﬁ
~

0

Py =

O =

X

NO O

® o 0 o

LIRS

o 0 00
|
)

The other points have similar masks,

Remark 6. Let us insist in the fact that harmonic chart nced not to be
minimal. We have obtained the conditions t6 be harmonic. In order to
be minimal, more conditions are needed. Let us split the control points
of a Bézier surface into two subsets: the inner points {Py)275™ ! and
the border points. It is not true that given an arbitrary z.mnlom border
points, there is a unique set of inner control points such that the Bézier
surface associated to the whole control net is of minimal area. What we
can say is that given just a few border control points, the rest of control
points are determined. In the next section we will find which bicubical
Bézier surfaces are minimal.

4 Bicubical minimal Bézier patches

We have seen before that the unique biquadratic minimal Bézier patch
is the plane. In the cubical case we know that at least there is another
minimal Bézier surface, the Enneper’s surface. What we want to deter-
mine is if this is the only possibility. In order to do that we need to
change the methods to attack the problem. The second great moment in
the theory of minimal surfaces was the introduction of the methods of
complex variable. Let us recall here the main results.

Let ¥ (u,v) be an isothermal minimal chart and let us define

(61,62,05) = Z00) _;0R(wv)

The functions (¢1, ¢2, ¢s) verify
#+e3+43=0. ©)

Lemma 1. ([10] Lemma 8.1) Let D be a domain in the complez z-plane,
9(2) an arbitrary meromorphic Junction in D and f(2) an analytic func-
tion in D having the property that at each point where g(z) has a pole of
order m, f(z) has a zero of order at least 2m. Then the functions

b= wE -9, ¢= |m3 +9%), ¢a=fg (10)

will va a:m:.:.n in D and satisfy (9). Conversely, every triple of analytic
Junctions in D satisfying (9) may be represented in the form (10), ezcept
for ¢y = ig2,pa = 0.
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Note that both functions can be computed by
3 b3
=¢ + =" 11
f=t .&., 9 @ P (11)

Note also that Equations (10) are not exactly those of Lemma 8.1 in [10].
There is an slight difference in the sign of ¢,. Anyway the statement is
equivalent.

Lemma 2. ([10] Lemma 8.2) Every simpl, ted minimal surface
in R® can be represented in the form

R(u,v) = (Re \.. " $1(2)dz, Re \o " $a(z)dz, Re \ " ga(2)dz) + Po, (12)

where the ¢y are defined by (10), the functions f and g having the prop-
erties stated in Lemma 1, the domain D being either the unit disk or the
entire plane, and the integral being taken along an arbitrary path from
the origin to the point z = u + iv.

So, a minimal surface is determined by the pair of complex functions f
and g. For example, the most obvious choice: f(z) = 1,g(z) = z, leads
to thc Enncper’s surface.

We are going to consider now the following problem: to determine all
bicubical polynomial minimal surfaces.

The number of possible choices of the two functions f and g in such a way
that the chart given by (12) is a polynomial of degree 3 is not reduced just
to f(2) = constant and g a degree 1 polynomial in z. Another possibility
is f(z) = (p(2))? and, g(z) = wmw‘ where p(2), q(z) are polynomials of
degree 1. Therefore, the problem we are interested in is not so obvious.

.H—-gnoaw.baer.p‘f.n ..L...Q-nl.l?w;\lku,..&
up to an affine transformation of R®, an affine reparametrization of the
general Enneper’s surface of degree 3, i.e, there are Hz € Aff(R?) and

H; € Aff(R?) such that
R(u,v) = Hs(RZ™™ 7" (Ha(n, v))),

for any (u,v) € U.

Proof. We can suppose that the chart is isothermal. On the contrary, a
well known result of the theory of minimal surfaces states that the chart
is a rcparamectrization of an isothcrmal chart.

All along the proof we will consider polynomial patches not in the Bern-
stein polynomial basis, but in the usual polynomial basis.

Let us consider a bicubical, polynomial, isothermal and harmonic chart

3 3 3
R(u,v) = AMU aijutt’, MU biju't?, M ciju'v’),
i,j=0 i,j=0 1,j=0

where a;j,b;j,¢ci; ER
Let us denote by 7} the vector (aij, bij, cij).
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Note first that thanks to a translation, we can suppose that W = 0.
As the chart is orthogonal (F = 0), then, by inspection on the higher
degree terms, it is possible to deduce the following relations

=0} = o3 = 05t = o3 = o5 =0,

MW=}, w=-3m, 3= ~338.

As the chart is isothermal, from the coefficients of y* in £ = @ and
F=0, respectively, we obtain

153811 = lIgdll, < o3, 068 >=o.
At this point the deduction splits into two cases:
Case A. 733 =0

In this case, and after Some computations, the chart is a piece of the plain
2 = 0. But the plane can be Parametrized using a polynomial chart of
degree 1, so, it cannot be considered as a proper solution of the problem.
Case B. 733 # 0
H“hnrmm case, thanks to a rotation and an uniformn scaling, we can suppose
that

a"e.o‘cv. 703 = Ao_ rcv.
Therefore, from the coefficient of v in F = 0 and E =G, we obtain

811 = —2byo, b11 = 2ag.

It can be proved that the isothermal conditions can be now reduced to
Just four equations involving the coordinates of the vectors #i;}. Neverthe-
less, it is easier at this point of the proof to introduce the use of complex
numbers.

Let us consider

Aﬁ_vﬁunﬁuv Lt mw = m%~

where

#1 = a10 — 2a02u + 3u? — 2bo2v — 3v® — i(ag; — by + 2(aoz — 3u)v),
2 = bio — 2bgyu + (2a02 — 6u)v — i(bor + 2a0ou — 3u? + 2bozv + 3v?),
$3 = €10 = 2c00u + €119 ~ i(coy + e+ 2coz0).

13
The chart R is isothermal iff Equation (9) is verified. o

ZoM: wg can compute the pair of complex functions, %ﬂ. .qirv_ according
to (11).

In our case, we obtain that \ﬂ is a constant function and that .q.ww isa
polynomial in z of degree 1. Indeed,
\ﬂ?v = 810 +bo1 +i(~ao1 + byo),

bmvﬁuv = €10-icg) +—(2cpp +icy; )z
910+bo1 +Hi(=ao1 +b19
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Let us denote the coefficient m by pe* € C, where p>0and t € [0, 2n].
Now, let us consider the chart

P(o,o) = ﬁw?i? +sin(t)v), w? sin(t)u + cos(t)0)).

Note that ¥ is also an isothermal chart. It is easy to check that the pair
of complex functions, \%. .e% associated to 7 are now

Pe=acc  P0)=-

Let us also denote @ in the form pe C, where 4> 0 and s € [0, 2x[,
and let T be the linear transformation of R® defined as the composition
of the uniform scaling with factor L and the spatial rotation with respect
to the 2-axis and angle —s. A well n:a!u property of the Enneper surface
says that the minimal surface defined by f(z) = a,9(z) = z is the image
by T of the Enneper surface. s]
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