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Variational Problems on Graded Manifolds

J. MONTERDE AND J. MUNOZ MASQUE

ABSTRACT. A geometric formulation of the variational calculus on a fibred
graded manifold is presented, both for Berezinian Lagrangian densities and
for graded Lagrangian densities. We prove that to every Berezinian La-
grangian density of order r we can associate a class of equivalent graded
Lagrangian densities of order n + r with the same first variation (n be-
ing the odd dimension of the base manifold). The theory is applied to
several graded variational problems (scalar superfields, scalar supercurva-
ture, supergeodesics and supermechanics). A Hamiltonian formalism for
Berezinian Lagrangian densities in (1,1)-graded mechanics is developed.

Introduction

For the past fifteen years action principles have been avalaible, invariantly
formulated both in supergravity and supersymmetric gauge theories (see e.g.
[ANZ], [Mn], [CM]). The interest of such theories has nothing but increased at
the same time as the differential geometry of graded manifolds (or supermanifolds
in the russian author’s terminology) has developed extraordinarily ([Ko], [Le],
[Ma], [Lo]). It then seems interesting to develop a general theory of calculus of
variations for arbitrary graded submersions, which allow us both a Lagrangian
and Hamiltonian formulation of variational problems on graded fibred manifolds
in a fashion analogous to the Hamilton-Cartan theory in classical field theory.

Within the framework of graded manifolds two essentially different notions
of Lagrangian density may be given, according to the notions of integration
considered. For the first of them, a density is a graded differential m-form w on
a graded manifold (M,.A) of dimension (m,n) with coefficients in any graded
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552 J. MONTERDE AND J. MUNOZ MASQUE

jet-bundle J7(B/A) associated to a graded submerssion p : (N, B) — (M, A).
The action functional associates to each section s of p the integral on M of the
ordinary m-form ((j”s)*(w))™. Such densities will from this point on be called
Graded Lagrangian densities.

On the other hand, for the second notion a density is a global section & of the
Berezinian sheaf of the graded manifold (M, A) with coefficients in any J7 (B/A)
and the action functional associates to each section s of p the Berezin integral
[Be] of the section (3"s)*(£) € Ber(M,.A). Such densities will from this point on
be called Berezinian Lagrangian densities.

In theoretical physics all variational problems are formulated by means of the
second notion of density. In fact, physicists consider the Berezin integral to be
the standard theory in graded manifolds. But, at least from a mathematical
point of view, it is obvious that both Lagrangian and Hamiltonian formalisms
can better be developed within the framework of graded differential forms, where
a Cartan differential calculus which verifies the most important usual properties
is available.

This difficulty may be overcome in two stages. In the first instance, the Euler-
Lagrange equations are deduced for an arbitrary Graded Lagrangian density.
These equations are not standard: only a reduced group of them adopts the
traditional form of the Euler-Lagrange equations; contrarywise, others may be
interpreted as constraints on the Lagrangian. In the second instance, it is proved
that to every Berezinian Lagrangian density £ we can canonically associate an
equivalent class of Graded Lagrangian densities {w} so that £ and {w} define
the same “first variation” at every section s (and consequently, they have the
same critical sections). Furthermore, for the Graded Lagrangian densities which
come {rom Berezinian Lagrangian densities, the Euler-Lagrange equations are
expressed in the usual way as equations in the graded ring A of the graded
manifold (M,.A4): these are the graded Euler-Lagrange equations that could be
expected.

In this paper we complete some aspects of this theory that were not consid-
ered in [Mo], and we also include a brief résumé of it, basic to the understanding
of what follows. Afterwards the theory is applied to several graded variational
problems (scalar superfields, scalar supercurvature, supergeodesics and superme-
chanics) which are classics in the ungraded case. For those graded problems that
have already been dealt with by other methods, the theory leads to the same
results obtained by other authors, but it also allows the deduction of new re-
sults. Thus, for example, to every Berezinian Lagrangian density in (1, 1)-graded
mechanics a Poincaré-Cartan form can be associated, which allows us the devel-
opment of a Hamiltonian formalism that is consistent for such problems.

2. Preliminaries and notations

2.1. Graded jet bundles. We shall always work in the category of C® real
graded manifolds. Definitions and notations for this category have been taken
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from [Ko].

As is well known, for every graded submersion p : (N, B) — (M, A) we can
construct the graded r-jet bundle of local sections of p, which will be denoted by
(J7(B/A), A"). For the details see [HM1]. We shall also work with the inverse
limit of these bundles ([Mo]), (J*°(B/A) = limJ"(B/A), A® = lim A").

Let us recall some notations for graded coordinates. Usually, we shall work
with positive indices for even coordinates and negative indices for odd coordi-
nates: (z5;,—n < i < —1,1 < ¢ < m) for a graded manifold (M, .A) of graded
dimension (m, n). This is the notation used in DeWitt’s book for supermanifolds
[dW].

In some particular cases, however, we shall also use the notation (z;;1 < i <
m) for the even coordinates and (sy;1 < J < n) for the odd coordinates. This
is the standard notation in the standard setting; see e.g. [Ko], [Le], [Ma]. The
notions of graded fibred coordinates for a graded submersion and the correspond-
ing coordinate systems induced in J"(B/A) can be seen in [HM1], [HM?2] and
[Mo].

2.2. Graded infinitesimal contact transformations. The notion of
graded infinitesimal contact transformations of arbiirary order is introduced in
[HM3], and it is proved that for every graded vector field X on (N, B) a unique
infinitesimal contact transformation Xy on (J7(B/A), A") exists, projecting
onto X. Moreover, X — X,y is an injection of graded Lie algebras.

We note that X,y projects onto X(,y, for every n € IV; hence each graded
vector field X on (N, B) induces an infinitesimal contact transformation X(o0)
on (J°(B/A), A=) ([Mo).

2.3. Horizontal lifting. Given a graded vector field X on (M, A) there
exists a unique graded vector field X¥ on (J*°(B/A), A%), mapping A" into
A for every r € IN, such that

()" (XH f) = X((79) (1),

for every local section s of p.

X*H is called the total, formal or horizontal lifting of X. We note that X —
X is a A-linear injection of Lie algebras ([Mo]). A vector field X in A% is
called horizontal if vector fields X, ..., X; in (M, A) and functions f;,..., fi €
A exist such that X = fiX{' + -+ fiX{'. Wealsoset £-=(2-)¥,-n<
i<-1,1<i<m.

Let Q" = Q7. be the sheaf of A°-modules of graded differential forms of
degree r on (J*°(B/.A), A®°), and let Q" be the subsheaf of = Q! determined
by the linear forms w such that w(X#) = 0 for every X € Der(A). We have a
canonical decomposition

Q=(A"Q4 Q1) D Q",

and taking the r** exterior power, we obtain: Q" = @, ,,_, Of, where Qf =
Qk @ 4 A*(QY) is the sheaf of (k+£)—forms k times horizontal and £ times vertical.
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Let us denote by d : @7 — Q%! the graded exterior differential. There exist
unique IR-linear operators

D:Qf—0f,,, 0:9f-aft!
defined for every k, £ € IV, such that dw = Dw + 8w for every w € Qf.

2.4. The splitting produced by a section. As is well known ([Ba]), the
structure morphism A — C§7, f — f, always admits a global seetion ¢ : C§f —
A. Once a section ¢ has been fixed, we have a bi-graduation of each Qi,

of = @ e
pte=k
defined as follows: The structure morphism induces a homomorphism of sheaves
of A-modules
ko 1 Q4 — A®cg Qr,
where the tensor product is taken with respect to ¢, and ¢ induces a splitting of
the exact sequence

0— kerk, — Q4 —*A@C;QMHO

Hence,
Q= P (A®cg ) @ Al(kerx,).
pta=k
We set :
Qf , = (A®cg Q) ® Al(ker x,) ® A(QY).

2.5. Two kinds of integration. Let (M, A) be a graded manifold of dimen-
sion (m,n). Assume the underlying manifold M is oriented. For every graded
m-form w on (M, A) with compact support we set:

fune=h
(M, A) M

where @ is the image of w in the canonical homomorphism Q73 (M) — Q™(M).
Moreover, for every section £ € Ber(M, A) of the Berezinian sheaf of (M,.A)
with compact support, we denote by

£

Ber

the integral of £ (over M) in the sense of Berezin.
We recall ((HM4], [Mo]) the following construction of Ber(M, A).
Let P*(A) be the sheaf of differential operators on A of order < k. We have,

Ber(M, A) = Q% @4 P"(A)/ K.,

where K, is the subsheaf of right A-modules of the operators P such that for
every f € A(U) with compact support, there exists an ordinary (m — 1)-form
with compact support w € Q™ !(U) which satisfies dw = P(f), U being an
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arbitrary open subset of M. We denote by [P] the coset of a differential operator
P e QF @4 P*(A) in the Berezinian sheaf. Then,

a a
i A oo Nl Bt g
[ e A T ®3;c_1 o 031'_.1

]

is a basis of Ber(IR™"). Moreover, we have:

Consequently, for every graded function f = 3, faz=f € C°(R™) ® A(R")
with compact support, we have:

j dxlA---Adxm.f: fodi]/\”'/\dim.
Rm|n nRm™
a a
Ber[d.‘ﬂlf\'-'/\dxm® 61:—_-1-0---0 ax_n]f

:(—1)(;)L fa2,. n)dE1 A AdEm.

This shows that f( M, A) integrates on the first component of f, while fBer inte-
grates on the last component of f.

2.6.- Ber® (M, A). (cf. [Mo]) Given a section P of Q7 @4 P"(A), we call
the differential operator P¥ : A= — Q2 uniquely determined by

i) = (PH() = PG™(s)" (/)
for every f € A™ and every local section s of p, the horizontal lifting of p .
Let PH"(A°) be the right A®-module generated by the horizontal liftings

PH in P*(A*), and let K,H(A*) be the right A®-module generated by the
horizontal liftings of elements of K.

We set:
Ber®™ (M, A) = PH"(A®)/Kn H(A®).
Locally
PO R R A e
dz_, a7

is a basis of Ber™ (M, A).

Given a section s of p : (N, B) — (M, A) and a differential operator P : A —
Q2 of order < n, we define (j%°s)*(P) : A — Q7% as follows: (j%s)*(P)(f) =
(%5 (P(f)).

It follows from the very definitions that

LEMMA 2.1. For every section s of p we have (% s)* (K, H(A®)) C K.
Accordingly, there exists a unique morphism
(7°s)* : Ber™ (M, A) — Ber(M, A)
such that (7°°5)"[P] = [(7°°5)"(P)]-
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Moreover, there exists a unique isomorphism of A*-modules
¢ : Ber(M, A) @4 A — Ber™(M, A)

such that ¢([P] @ 1) = [PH]. Consequentely, we can define the Lie derivative
of a section £ = [P# o f] with respect to a vector field X on A%, vertical over
(M, A), by imposing that

Lx(&) = (-)PIXI[PH o X (£)]

for homogeneous P and X.

3. Graded Lagrangian densities

Assume M is an oriented differentiable manifold.
Every global section w of the sheaf Q2, = Q% ® 4 A™ gives rise to a functional
I* defined by the formula
I¥(s) = /
(M

on the space of the sections of p : (N,B) — (M, .A) for the which the above
integral converges.

(7°s) w
A)

Given a section s, we can define a linear functional called the first variation
of IL* at s,
8§ LY : Der(B/A) — R

as follows:
0= [ 79" (Exiey)
(M,A)

where Der.(B/A) is the ideal of vector fields with compact support.
A section s is said to be a graded critical section for the functional IL¥ if
6, L% = 0; i.e., if the first variation of IL* vanishes at s.

DEFINITION. Two m-forms w,w’ in %, are said to be equivalent if §, L% =
6, L% for every section s of p.

REMARK. Note that L*~%' = IL* — L*"; hence w is equivalent to w’ (in short,
w ~ w') if and only if 8, L% =0 for every section.

NoTATION. Let us denote by A the set of m-forms w in Q¥ such that
8, LY = 0 for every section s. That is, the elements of A define trivial vari-
ational problems in the sense that all the sections are critical. Note that A is
just a real vector space.

We are basically interested in the quotient space QF (J%)/N.

ProposiTiON 3.1. Let v be a volume form on the underlying base manifold
M, and let ¢ : C3; — A be a global section of the structure morphism. Each
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m-form w in Q9, is equivalent to a form of the type Lo*(v) where L is a graded
function in A%

ProoF. By means of o, we have a decomposition w = )

ptg=m Wp,g» Where
g,q is a section of the sheaf Qg]q. Hence, for every X € Der.(B/A) and every

section s, we have ((7*°5)"(Lx(,,,wp,¢))~ = 0, whenever ¢ > 0.
Consequently, w is equivalent to uﬂ,_u, thus finishing the proof. O
According to the above proposition, in order to deduce the Euler-Lagrange

W

equations for a graded Lagrangian density we can confine ourselves to the La-
grangians of the type Lo*(r), or in local coordinates

Ldzq A ---Adzy,.

THEOREM 3.1. Assume L is of order r globally; that is, L faclors through
Poos + J%(BJA) — J"(BJA). Let (z,%),—n < j S m,j # O—m < i <
my,i £ 0, be a fibred graded coordinate system for the submersion p : (N,B) —
(M, A), and let us denote by (y.,) the induced graded coordinate system in
J®(B/A), where o stands for a multiindez & = (at,a”) € N™ x {0,1}",
with |a| = |at| + |a~|, lat]| = of + -+, and |a~| is the number of ones in
o .

With the above notations, a section s is critical for the graded Lagrangian
density Ldzy A - - A dzy, if and only if it salisfies the following equations:

e i

o (et ()]

lat+]=0 6y2°+-0')

for every i, o~ such that —my <i<m;,1#0,0 < |o~| < min{r,n}.

For the proof of this theorem see [Mo], Th. 4.2.

REMARKS.

(1) The number of the above equations is (m; + n1) Z?;’L{""] (7). That is,
(my+n1)2" ifn < r,and (my+n1) Y 5o (:) if » < n. Note that in the
case r < n the number of equations depends on the order of the problem.

(2) For a= = 0, we obtain m; + n; “standard” Euler-Lagrange equations
for the even coordinates:

2r \* 25f Ia"‘[d d =10
o (S (55))]

Nevertheless, the rest of equations for |@~| > 0 have no counterpart in
the ungraded theory.

(3) In the case r < n, the equations corresponding to the indices &~ of length
|a~| = r can be explicitly written down as follows:

[(JTS)* (6 ?L )] =0, -n<i<my,i#Qla7|=r,
Y0,a-)
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thus showing that in this case the above equations can be understood as
previous constraints on the Lagrangian density (for r = 1 see [HM2]).

EXAMPLES.

(1) (1,1)-Graded Mechanics. Assume (M,.A) = R with coordinates (2, s),
[t| =0, |s| =1, and p : (N, B) — (M, A) is the canonical projection of
RU' % (Q, C) onto its first factor. We denote by (g;),—n1 < i < my,i#0,
the graded coordinates in @.

Then, the above equations become

r s o
[cffs)*Z(—l)*j%( o )} ~o,

k=0 6qz*m
[(J-er)ﬁ E(_l)kik ( dL ):|~ =8
= dtk aqu,l)

These are 2(m; + n1) equations.
(2) Assume n =0, i.e., A = C§7. Then, the equations are:

2o | 5 et EE [ BE ~=
l(f )(;a;ﬂ( i (m))] 0'

4. Berezinian Lagrangian densities

Again, let us assume that M is oriented. Every global section & of Ber™ (M, A)
gives rise to a functional I defined by the formula

L(s) = (7°s)*¢  (cf. Lemma 2.1)

Ber
on the space of the sections of p: (N, B) — (M, A) for which the above integral
converges.
Given a section s, we can define a linear functional, called the first variation
of L at s,
6, IL° : Dere(B/A) — R

as follows
LI = [ 679 Cxt)

A section s is said to be a Berezinian critical section for the functional L¢ if
8§, L¢ =0.

CoMPARISON THEOREM. Let & = [P] be a global section of Ber™ (M, A). We
have:

S, = 8, LFM for every section s.
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Consequently, we can associate in a canonical way to each Berezinian Lagrangian
density £ = [P] a coset of equivalent Graded Lagrangian densities P(1) + A in
QL (I®)/N.

Proor. Wehave P = PHof! for some P; in % ®4 P" () and some functions
f¥in A%, Hence for every X € Der(B/.A) we have:

BEX) = [ (26 (Cxew P o 7
= (_.]_)IP.'1!X| /M' ((jws)*P'H(X(oo)fi))h‘
= [ (G Exe(PHUN

=f (78)° Lx .oy (P(1) = 6, LPD(X). O
(M,A)

REMARKS.
(1) Locally, if € = [dz1 A -~ AdZp @ 2~ 0 -+ 0 78=].f then P(1) =
(dzy A+ Adzm)L, with

R SRS AT NE
dzy...dz_;’ : e oy
The above formula shows that the order of the Graded Lagrangian density
associated to an r-order Berezinian Lagrangian density is r+n. In other
words, the mapping { = [P] — P(1) + A increases in general by n the
order of the variational problem. Consequently, although we start with
considering first order Berezinian Lagrangian densities exclusively, the
associated Graded Lagrangian densities can be of higher order (actually,
of order < n+1). This fact also explains the role of higher order Graded
Lagrangians in the theory.
(2) The mapping Ber® (M, A) — Q% /N is neither injective nor surjective.
It remains as an open problem to characterize its image.

COROLLARY 4.1. Let £ be a Berezinian Lagrangian density. Assume that
E=[dzy A Adzy, ® E'f‘: 0---0 d;f_“]._)", locally, for some graded function

f e A". Then, a section s is critical for the Berezinian densily & if and only if
it satisfies the following equations:

ae o [ 3 ¢ yicen @ [ 5L
(i*"s) (Zen"’“—a(ay;)):o,

lal=0

where I{a,i) = |at| + (1 + |g:])|e™]), for —ny < i < my,4 # 0, where we have
used the same notations as in Theorem j.1.

For the proof see [Mo], Th. 6.3.
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REMARKS.

(1) Unlike the Euler-Lagrange equations of a Graded Lagrangian density, we
note that the above equations are equations in the graded ring A of the
base manifold.

(2) Also note that these equations are the standard graded Euler-Lagrange
equations that one could expect in the graded setting.

(3) The number of these equations is m; + n;, but each of them gives rise to
2" scalar equations.

5. Scalars superfields

The graded manifold R'* = (IR, C*°(R) ® ARR) plays the role of the scalars
in the graded setting. Actually, if (M, .A) is an arbitrary graded manifold we
have

Mor((M, A), Rl]l) =T(M, A),
where Mor((M, A), (N, B)) stands for the set of morphisms of the graded mani-
fold (M, A) to the graded manifold (N, B) (cf. [SV]).

Let p : (M, A) x R'' — (M, A) be the canonical projection onto the first
factor. There is a natural bijection between the sections of p and the graded
functions on M; i.e., I'(p) = I'(M, A).

Let us assume (M, A) is endowed with a non-singular graded symmetric metric
g of degree zero. This forces the odd dimension of (M, A) to be even; ie,
dim(M, A) = (m,2n). The metric g induces a pseudo-Riemannian metric g on
the underlying manifold M.

A Tocal basis (Xy, ..o, X, Y1, Fioos Yo, Yo b 1G] = G 275 = 1, of
graded vector fields is graded-orthonormal for g if the matrix of g in this basis is
as follows

B TR gD 0
0 =l 00 0
0 0 h 0 0
0 0 ISR 0
0 0 i PR | LS AR
where Id, stands for the r x r identity matrixand J; = -+ = J, = (E _(,l) .

Note that (m+,m™) coincides with the signature of §, so that m = m* +m™.
Let us put ((—=1)™ Ber(G))? = |G|.
Locally, graded-orthonormal bases always exist.

ProposITION 5.1. Let (Xi,Yy,Ys) be a graded orthonormal basis for g with
dual basis (w;,ny,7s) on the graded manifold (M, A). Assume M is oriented
and &y A - AGy, belongs to the orientation of M. The cosel defined by

w1',\"'A‘-‘J’ﬂq@‘-‘f‘l‘]}_,l"-:"""-:‘yﬂ‘:'}‘;'n
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in the Berezinian sheaf does not depend on the graded orthonormal basis chosen,
thus defining a global section &, of Ber(M,.A) which will be called the Berezinian
volume element associated lo g.

If {z;},—2n < i < m,i # 0, is an arbitrary graded coordinate system such
that dZ; A --- A di,,, belongs to the orientation of M, then

a ]
Eg—[dﬂ?l!\"‘Adxm®5‘;_—;0"‘Oazg“

where G is the matrix of g with respect to (5’—’;,_). (cf. [Ma], chapter 4, Lemma
7.7)

Assume n > 1. We can define a unique global section L of the sheaf A!
of graded functions on the 1-jet bundle of local section of the projection p, by
imposing the following two conditions:

(1) L is quadratic with respect to the graded vector bundle structure
JH(M, A), R'1) — (M, A) x R

(2) '(Im, £)*(L) = 1*(df,df) for every local section f of A, where g°
stands for the contravariant metric induced by ¢ = g» on the graded
cotangent bundle of (M, A).

THEOREM 5.1. With the above notations, the Euler-Lagrange equation of the
Berezintan Lagrangian density £;.L is given by

A(f) =0,

where A(f) = div(grad f), the gradient of a graded funclion being defined as
usual, and the divergence (with respect {0 £,) of an arbitrary graded vector field
X by means of the formula

Lx (&) = &;.div(X).
(Recall that the odd dimension of (M, A) is even; cf. [HM3], 2.4; [Le] 2.4.6.)
ProoF. Let us choice {y,z},]y| = 0,]z] = 1 as coordinates for R!!!, and
{zi} —2n < i< m,i # 0 as coordinates for (M, A4).

After corollary 4.1, the Euler-Lagrange equations for a Berezinian Lagrangian

density
d
---0 I
da‘.'_1 N dz__gﬂ ’

[dz1 A+ - Adzm ®
where F € A!, are
OF ~d OF < d 8F _
_y_gd_z.:ay‘ ; dz; Oy;
-1

AR AT A d 8F
e e g
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In this case

=|GIL = ~IG| E (~)illeil (gogs 4 wizg + (=115 + (-1 ziz;).
ij=—2n
Thus, the equations are reduced to

i & 0E i( 1yiest 4 L

d.a”.‘;, ayk B d.‘!:g 62;,

An easy computation shows that

aI’ |kl - ki

=il > oy +=) and Zy Yi.
Ye i=—2n i=-2n

Then, the two variational equations are

Y (0=l + w)IG) =0, S il el 2 S (" ulGN) = 0.
k=-2n k=-2n

Note that the second equation is the even part of the first one, then the
variational equations are reduced to the first equation. Now, let us check that
this equation is, up to factors, the expression in local coordinates of the graded
Laplacian.

If f € A, then grad(f) is the graded vector field on (M,.A) defined by
g(grad(f), Z) = df(Z) for every graded vector field on (M,A), Z. 1t is easy
to check that

: tetist gie OF 0
s} = g_)zn( 1) ;o

If Z is a graded vector field on (M, .A) the divergence of Z, divZ € A is

defined by

Loty =&;.div e,
where &, is the Berezinian volume element associated to g and Lz is the Lie
derivative of the Berezinian sheaf (see [HM3]). It is just a matter of computation
to show that if Z = Z¢ -2~ 3.7 then

£ E . a i
divz = tGl Z )I -I(IZI+1)a_Zi (|G|Z ) :

i=-2n
Now, it is easy to check that the Euler-Lagrange equations are A(f) =0. O

REMARK. In the graded coordinates introduced above, A(f) takes the fol-
lowing local expression

D=5 3 (' g (75 s10).
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EXAMPLE. Let (M, A) be R with coordinates (z;), —4 < i < 4, i # 0,
and with the metric ¢ of matrix

g ekl s
ez 0.0
0 =0 ey 0 0
G =0 0 e
0 =14 -0
B ()
0 01000 =2
M e E

with € =1, i = 1,...,4. Assume f = fo + fiz—i + fijz—i%_j + ... is the
expansion of f € C(R*) ® A(JR*). Then, Af = 0 if and only if the following
equations hold
Afo = =2(fi2 + faa),
A,fl = —2f13a, Afz = —2f234, &fa = —2f12s, é.f4 = —2f124,
Aflz = A.f34 = —f1234, ‘&fij =0 for (irj) # (1r2)r(3s 4);
Afr=0foralli<j<k,
Afr23 =0,
where A is the ungraded Laplacian associated to the standard metric § =

4 2
Zi:l E"d"_‘i +

COMPARISON REMARK. This is the first of a series of remarks showing, for
each application of this theory, that the choice of graded Lagrangian densities
instead of Berezinian ones leads us to very different results. The use of graded
Lagrangian densities will not produce true graded equations where even and
odd parts of the problem interact, but the classical equations of the underlying
manifold plus equations affecting only the odd part.

In the case of scalar fields, after theorem 3.1, the Euler-Lagrange equations
for a graded Lagrangian density Fdz; A --- A dz,,, where F' € A%, are

s (-5 22
[jl(lM; (3F z::lgf:)] =0,

[J (1p, )" (5F)] =, [jl(ly,f)‘(a—z‘_)] =0,i=-2n,...,—1.

In the same situation of the previous example, the variational equations now
are Afp=0and fy =0,i=1,...,4. Thus, the critical sections are given by
harmonic functions of the underlying manifold plus arbitrary terms of degree
greater than one in the odd coordinates. Nothing new appears.

=0,
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6. The second order Berezinian Lagrangian density
defined by the Scalar Supercurvature

Let (M, A) be a graded manifold of dimension (m, 2n). We can construct a
graded fibre bundle p : (N,B) — (M, A) in such a way that the sections of p
over every open subset I/ of M coincide with the non-singular graded symmetric
metrics of degree zero and signature (m*, m~) on (U, Ay). Actually, (N, B) can
be obtained as a (not vector) subbundle of S*T*(M, A).

Assume n > 1. We can define a unique graded function R on J?(B/A) by
imposing the following two conditions:

(1) Risan affine function with respect to the affine bundle structure J?(B/A)
— JY(B/A).

(2) For each metric g in (N, B), the pull-back (j%¢)*(R) coincides with the
scalar supercurvature of g.

Note that the scalar supercurvature contains some terms with five factors,

which are of the form
gt gtk gou 99 095k
o Oy
But all the factors of these terms can not be of degree 1.

Moreover, let us assume the underlying differentiable manifold M is oriented,
and let £ be the Berezinian volume element associated to a metric g in N
(see proposition 5.1). Then, there exists a unique section ¢ of Ber?(M,A) C
Ber®™ (M, A) such that

(7*9)"(€) = &-

THEOREM 6.1. A graded meiric g of the above bundle (N, B) 1s a Berezintan
critical section for the second order Berezinian Lagrangian densily £.R if and
only if Ricci(g) = 0 (ef. [ANZ]).

Proor. This result can be obtained from the equations of the corollary 4.1
by a brute force computation for this particular case. Nevertheless, it is better
to proceed directly using the method explained in the general case.

We also note that we treat £.R as a second order density; in other words, we
shall not consider the Palatini method.

First let us recall the local expression of the Scalar Supercurvature. Christoffel
symbols are defined by

1 rillxE E T T i+
Lije = E[gi.j.k + (=1)lilizrl gy o — (—1)ldlasitadg, o = (—1)l=illalr,, ..
The components of the curvature tensor field
Rl = —Th, + (-1)=l=rh, =

Pl (_l)fr'{”m‘lrf&,j + (=1)l=sl(zmlH=il)

ij,k
£ m|+zs ¢
x L Th - (=1)l=xlzmlHlzid4lz0pe P
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The components of the Ricci tensor field
Rij = (‘UIE*J(II"HI)REH = —(—1)"*'[‘:‘-,& 3 (_1)I=J=|(Imii+|=;'|+1)p‘¥j;k
And the curvature scalar field R = R;;g.

NOTE. As usual, the subindex , k denotes partial differentiation with respect
to z. And the subindex ; k denotes covariant differentiation with respect to zj.

By the Comparison Theorem the Berezinian Lagrangian £,.R has the same
critical sections than the graded Lagrangian

d d

de_, Sae dz_,

(IG|.R)dz A - - - A dz™.

Instead of compute the Euler-Lagrange equations for the graded Lagrangian
density, we will borrow the deduction of the equations showed in [Mo].

We will denote by g;; the fibre coordinates. The jet coordinates are denoted
by gijy. Note that |gi;| = (=1)!=1=:] and |g;; 4| = (~1)leslH=l+h71,

The first step is to compute the exterior derivative:

d d
d:t_] OE{RlGD)—d(ﬁ#—_‘ o oﬁﬁi:(RlG'l))

d(
=L_4 o0l _s d(RIG]).

=,

By the same reasonings of [Wi] page 115, we know that d(R.|G|) =
o z ji Vi g ke
= |Gl(-1)!" ([—(—1)1 MdrEef +drye*]: — (RY - §gJR)dg.—j) :

Let V* = [——(-l)J”"'dI‘ﬁjgj" + dI‘ijgjk]. Due to the definition of covariant
differentiation and to the formula Ij; = (In|G]); it is easy to see that |G|V} =
(IG]V*);. Thus
oo Lot (IGI-DVi™)e g o0 La (IGI(-1)"1V):.

@x_

The sum goes for indexes form —2n to m, but the terms with a negative in-
dex vanish due to a repetition of the derivation with respect such coordinate.
Therefore we get

m

d 4
YL s o0L s —(IGIV))dzy A~ Adzp,
= ir_, =_, dz;

and this form does not contribute to the variational equations.
The term that will give rise to the variational equations is

La o "OE.T‘— (](}’|(—1)|""'1(RiJi = %gin)) dgij Adey A - Adzy,.
Thus, the Euler-Lagrange equation is

iyd" oL P
E (_I)I(T.J)E$=_(RJ _EQJR):O:
ij,

0<ly|<2
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for all i,j = —2n,...,m, i,7 # 0, where I(v,ij) = |[y*|+ |y~ |(|2:il + |zj] + 1).
Note that R — 1giR = 0 for all 4,j = —2n,...,m, i,j # 0 implies R =
0. O

7. Supergeodesics

Let (M, A) be a graded manifold of dimension (m, 2n) endowed with a non-
singular, graded symmetric metric g of degree zero, and let us denote by (t, s),
[t| = 0,]s| = 1, the standard graded coordinates in R/,

We define below a Berezinian Lagrangian density on the graded fibred mani-
fold given by the projection p : R x (M, A) — R onto the first factor.

We recall that ‘j—t = (%)H is a derivation mapping A" into A"!. In particular,
we shall consider &; from A into A®. Then, (%)" = 4 — Z; is a derivation from
A® into A, vertical over C°°(R) @ A(IR).

Since Derce(myga(m)(-A°, A') = Der(A)®.4 A', we can define a graded func-
tion L in A' by setting

=3 (G &)

Note that |L| = 0, because |g| = 0. Locally, we have
1 ERENE ENEH | g
i 5(.._1)I dlzltzillzil g, gi gl

REMARK. Unlike the previous cases (see sections 5,6), we can not define L
by preseribing its values along the holonomic sections, because the degree of L
(which is 2) is greater than the odd dimension of the base manifold (which is 1!).

THEOREM 7.1. A curvey : R — (M, A) is a Berezinian critical section for
the Berezinian density [dt®@%:].L if and only if y satisfies the following equations:

(27)" (2 + 2i2iTE) =0, —2n <k <m,k+#0,

where l"f_,- are the graded Christoffel symbols of g in the graded coordinale system
{z;}, —2n <k <m,k#0.

Proor. We have

oL e _ = o
25— = (=D)"gyyal + (~1)liediolgal,
t
d (0L _  \sd(lssl+heal+1)Hes1 098 i
dt (azf) elril T

dg

F(=1)lwilHaslHzal(zil+HzsD) 3: zixl + (=)l gy el
j

aL : 1005 5 i
GL o pylmiltleslHzlle;) O i
26“ (-1) Bz, 2P,
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L T U O : ;
Hence, the equation = (Ef) = 0 can be written as:

j i (09 I=.llz;1 95k loxl(lzd +1z51) 0033
: i _nil=ille; — (—1\l==l(l=il+]=5]) i P
2ugie + 2,2 (am_,- s dz; t=4 Oz %

and we can conclude taking into account the following formulas ([dW])

Ogi 199k Az Ogii
! o 228 L |::,|]z,|_] fziile ](I”ll"‘lr’ﬂl)_’
Whoy = GHL 4 (1)l 2t _(_yye il

COROLLARY 7.1. The equations in the above theorem for a curve v : R —
(M, A) are equivalent to
VT =0,
where T' = 7,(%) : A — C®(R) @ A(R) is the derivation given by T(f) =
(7" (f)), for every graded function f in A.

The proof is straightforward and thus it is omitted,

ComparisoN REMARK. The Euler-Lagrange equations for the graded La-
grangian density Ldt are

(60" k4 i) =0, <2<k <m0

For k < 0 the equations are reduced to a trivial identity due to the fact that zt+
ziz] I‘,’-‘J- is an odd function. For k& > 0 the equations are the classical equations
of the geodesics of the underlying manifold with the underlying metric. Thus,
with this approach, graded geodesics are just the geodesics of the underlying
manifold. This is an ungraded result coming out from a graded problem.

8. SuperMechanics

Let us consider variational problems on the fibred manifold p : IRl x(M,A) —
R, g > 1, where p stands for the canonical projection. Of course, the most
interesting case is ¢ = 1, to which we shall confine ourselves after giving the
notion of regularity.

Let (;51,...,8,) be the standard coordinates in 117, and let (z:),-n<i<
m,i# 0, be a graded coordinate system in (M, A).

The Euler-Lagrange equations for a first order Berezinian Lagrange density

d d
[dt®E0.'-OE].L!

L being a graded function in A, are the following:

o (-4 ()i (@)
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Developing, we obtain:

2

L : ; s ;
(529 (x:',m; + terms involving derivatives of order | 2 with respect to )
i i

=

Therefore, in order to be able to write down the above system in the form

(7%7)" (k) = Faly" (2:), (519)" (21))

we must impose the matrix (a—f;a%f
lem is said to be regular. Hence, the Euler-Lagrange equations of a regular
Lagrangian are equivalent to a system of ungraded ordinary differential equa-
tions.

Let us assume that L is homogeneous. If |L| = 0, the regularity condition

means

) to be non-singular. In this case, the prob-

;L e G o At
t A ——— h ] d et
de (6:{‘6::‘,) #0, for h>0,i>0, and det (63{‘63}) #0,
or h<0,i<0.

Note that the second matrix is skew-symmetric, thus forcing n to be even.
If |L| = 1, then m = n necessarily and we must have
G .
det (a—r:‘a—x:‘) #0, for h>0,i<0.

;From now onwards, we assume g = 1.

THEOREM 8.1. Let @ = (d::.-—zidt-zids)%‘,-+[;dt be the Poincaré-Cartan
form associated with the Graded Lagrangian densily Ldt. Let © be the 1-form
on JA(IR™W, (M, A)) defined by © = L¢_Bo.

A curve v: R — (M, A) is a Berezinian critical section for the Berezinian
Lagrangian density [dt ® 4-].L if and only if:

(7%7)" (ixd©) =0
for every vector field X on J(IR', (M, A)) vertical over R,

ProoF. A simple (but rather long) computation shows the following identity:

()" (ixd0) = (77" (X(z)2 + (~)=1X (@)L, D)

8L d (8L s B
— s P et Lt ol SRR AT |"'|],__
= (32:,- di (azg) A (62‘})) i

REMARK. It follows from the above formula that in the statement of the
theorem we can assume that the vector field X is vertical over R x (M, A).

In order to develop a true Hamiltonian formalism we should first specify the
appropiate fibre bundle on which the Poincaré-Cartan form is defined.

where
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First of all, note that from the very definition of © we obtain,

6 = (dz! — x;,dt)g—; + (=)= Ndz; — zidt — :c;ds}% (%I) ot
Hence © only depends on the coordinates ¢, s, z;, z, 2%, 2%,, that is, © does
not depend on zi,.
Let JUI(RMW, (M, A)) C JHRMO, JY(RY', (M, A))) be the sub-bundle de-
fined by s; = 0.
Then, there exists a canonical submersion over B!,

7 JARM (M, A)) — JVY(RMW, (M, A))

defined as follows. FEach morphism f : R!* — (M, A) induces a family f; :
R — (M, A),t € R, and, taking jets, j'(f;) : R — J!(R°!, (M, A)). By
composing j'(f;)* with the structure morphism A(IR) — IR we obtain [51(f)]* :
AJ‘(B“",(M,A)) — IR.

Let [jl(f)]' 5 AJ‘(IR““.(M,A)) = CW(R) be the homomorphism bl(f)}*(a)(t)
= [7*(f1)]*(a), and let

G'(H]: R — TRV, (M, A))

be the corresponding morphism. It is easy to see that the mapping j4!(f) =
i ([7* f]) takes values in J' (IRH!, (M, A)), and also that

35 Mor(RMY, (M, A)) — DIV (R, (M, A))/ R

is a differential operator of second order. Consequently, j1'! must factor through
J2(IR'', (M, A)), thus providing the desired submersion.

iFrom the previous local expression for ©, we can conclude that © is =
projectable. We also denote by © its projection.

THEOREM 8.2. Let © be the graded 1-form associated io the Berezinian La-
grangian density [dt ® %].L introduced in the above theorem.
(1) For every Berezinian critical section v we have

(7*19)"(ixd®) = 0

for every vector field X on JY(IRM!, (M, A)) vertical over IR,
(11) Conversely, assume that L is regular and that 7: R' — JUI(RYL (M, A))
s a seclion such that,
7" (ixd©) =0
for every vector field X on JYY(IR'M,(M,.A)) vertical over IR!'. Then, there
erists a unique Berezinian critical section v such that

7 =3i"0)

PRoOOF. The first part of the statement follows taking into account that the
formula in the proof of the previous theorem remains true for j':v.
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For the second part, we just use the following equations and the fact that L
is regular:

3 2
7 (i 2_d0) = (- l=ly ((dx, i -'b",d-‘?)aa 17 ) k!

ehdzi
" (ia_dB) = (—1)lI(+l=ilyar ((dx" -z d:)———azL -+
B%f o
i ool GEE
_1yl=il e — —_—— =
(=D)=il(dz; — x}dt — x'ds) dsamf'az‘;) i |

COMPARISON REMARK. The problem of the previous paragraph (the geode-
sics) is a particular case of this section. Thus, the reasons given there for the
choice of Berezinian Lagrangian densities instead of graded ones will be also valid
here.

In the general case, the Euler-Lagrange equations for the graded Lagrangian
density Ldt, L being a graded function in .A?, are the following;

oo (-4 ()] =o. [or 2] o

where —n < i < m,i # 0. Again, these last equations show that the odd part
goes separately from the even part.
An study of the regularity conditions for this approach was done in [Mul].
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