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Abstract: We give a characterization of graded symplectic forms by studying the module of
derivations of a graded sheal. When the graded sheaf is the sheaf of differentiable forms on the
underlying manifold M, we find canonical liftings from metrics on TM to odd symplectic forms,
and from symplectic forms on M and metrics on TM to even symplectic forms. These graded
symplectic forms give rise to canonical Poisson brackets on the graded manifold.
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Introduction

Recently some papers studying extensions of Poisson brackets on the algebra of
differentiable functions on a manifold M, to Poisson brackets on different algebras
have appeared. The algebras involved are, mainly, the Cartan algebra, i.e., the algebra
of differential forms on the manifold, A(M ), or the algebra of multivectors, V(M). See
for example [11,2, 8].

In classical mechanics, the first examples of Poisson brackets are those defined by
means of a symplectic form. Similarly, it would be convenient to find out if it is possible
to define a kind of ohjects related with the new algebra in such a way that they play
the role of symplectic structures and then to associate a Poisson bracket to them.

The pairs (M, A(M)) and (M,V(N)) are typical examples of graded manifolds in
the sense of Kostant [7]. Then, it seems natural to look for Poisson brackets on bigger
algebras using the definitions and methods of the theory of graded manifolds.

The purpose of the present work is twofold. First, to give a characterization of
graded symplectic structures using an intrinsic representation of graded vector fields,
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and second, to apply this characterization in order to build new Poisson brackets.

Graded symplectic forms are already defined in [7], and the author shows there that
such graded structures define a unique symplectic structure on the underlying manifold.
This is the first step towards a full characterization of graded symplectic forms.

A second step can be found in [5]. The authors study the problem of constructing
graded symplectic forms from a given symplectic form on the underlying manifold.
They find a non-explicit method to build exact graded symplectic structures on a
graded manifold from a given exact symplectic structure on the underlying manifold.
The general case has been solved in [16]. There the author finds an explicit description
of even graded symplectic forms which can be seen as complementary of the present
work.

In [13] we give a characterization of the derivations of the algebra of local sections
of an exterior bundle. This result can be applied to the theory of graded manifolds
via Batchelor’s theorem. This theorem asserts that the graded sheaf of any graded
manifold is isomorphic to the sheaf of local sections of an exterior bundle, I'( -, AF), for
a suitable vector bundle over the underlying manifold, £. We have thus a manageable
representation of graded vector fields that will allow us to characterize graded forms.

Given a linear connection on F, we associate, in a unique way, to any graded sym-
plectic form a set of fields defined on some bundles over M. Among them we find,
for the case of an even symplectic form, the underlying symplectic form and a metric
on the dual vector bundle E*; and for the case of an odd symplectic form, a linear
isomorphism between the tangent bundle of the underlying manifold and the bundle
E. These three fields are independent of the linear connection. Moreover, we show that
any closed graded 2-form induces a homomorphism, independent of the linear connec-
tion, between T'M @ E* and T* M @ F, and that the closed graded 2-form is symplectic
if and only if it induces an isomorphism.

As an application of this characterization we construct three kinds of graded sym-
plectic forms, all of them independent of the linear connection, and study their Poisson
bracket.

First, for any Riemannian manifold there is an associated odd symplectic form of
the graded manifold (M, '(AT*M)).

Second, if in addition we have a symplectic form on M, we obtain a canonical
lifting to an even symplectic form, in such a way that the graded Poisson bracket
associated to the even symplectic form is an extension of the initial Poisson bracket.
When the underlying manifold is of dimension 2, we show a relation between the graded
symplectic form and the Gauss curvature. All these constructions are natural.

And third, following these methods, we prove a known fact: the Schouten-Nijenhuis
bracket is the Poisson bracket of an odd symplectic form.

Finally let me say a word about the role that graded symplectic forms play in graded
(or super) mechanics. It is well-known the relation that exists between Lagrangian and
Hamiltonian mechanics, and that symplectic structures are a basic geometric tool for
the Hamiltonian formulation of mechanics. A similar relation must be true for super-
or graded mechanics, and an unavoidable step in the way from Lagrangian problems
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to Hamiltonian ones, in the setting of graded manifolds, is the concept of graded
symplectic form.

A deduction of the variational equations for graded and Berezinian Lagrangian den-
sities has been recently presented in [15]. In [14] some significant examples are fully
developed. On the other hand, in [17] and [14] there are particular examples of graded
Hamilton equations. We hope that the characterization of graded symplectic forms will
make easier to translate Lagrangian problems to Hamiltonian ones.

1. Definitions

For the definition of graded manifolds we will follow [7].

Let « : £ — M™ be a real vector bundle where the dimension of M is m and the
fibre dimension is n, and let 7 : AK — M be the exterior bundle of E.

Let I'( -, AE) be the sheaf of exterior R-algebras of local smooth sections of AE (all
objects are C*°). The pair (M,I'(-,AF)) is a graded manifold of graded dimension
(m,n). Batchelor’s theorem [1] asserts that any graded manifold is isomorphic, but not
canonically, to a graded manifold (M,I'(-,AE)) for a suitable E. Thus we will focus
our attention on such kind of graded manifolds.

If s € T(AE) is homogeneous, say of degree p, then we will write |s| = p.If s € T(AE),
we denote by s(,) the component of s of degree p; thus s = E:zo 8(p)-

The map & : [(AE)} — C*(M) defined by k(s) = sp is called the natural morphism
of the graded manifold (M,T(-,AFE)).

A linear endomorphism D : I'(AE) — I'(AE) is said to be homogeneous of degree
DI |D(s(s)] = p+ D).

A homogeneous linear homomorphism D : I'(AE) — [(AF) is called a derivation of
degree |D| if, for homogeneous sq1,s9 € I'(AE),

D(s152) = (Dsy)sz + (=1)IPlstlg, (Ds,).

We fix the following terminology: when we refer to the Zz-grading, we shall talk
of even or odd objects if they are of degree 0 or 1, respectively. We shall reserve the
expression object of degree ... for the Z-grading.

Every homogeneous derivation is determined by its action on the elements of degree
0 and 1. Thus all derivations of degree less than —1 are zero. A linear endomorphism
of I'(AE) is called a derivation if its homogeneous parts are derivations.

Let M, N be graded I'(A E)-modules. A morphism & : M — A is called of degree
8] if S(x(,)) is of degree |S| + p, and is called a T'(AE)-endomorphism if S(sx) =
(=1)llels8(z), s € D(AE),z € M.

Two classes of derivations on I'(AE). Let T'M — M be the tangent bundle over
M and I'(TM ® AE) the I'(A E)-module of smooth sections of TM @A L. We can define
in(TM ®AE) a Z- and a Z;-grading. Every ¥ € I(T'M @ AE) can be expressed as a
finite sum of decomposable homogeneous sections X @ s(,) where s(,, is a homogeneous
section of I'(AE) of degree p, and X € T(TM).
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Let ¥ be a linear connection in E. If ¥ = X ® 5(p)» We define the endomorphism
Vg :T(AE) > I(AE) by Vgu = s(,)Vxu, where u e [(AE),and if ¥ e [(TM ® AE),
we define Vy by linear extension.

Vy is a derivation and we call it the proper derivation associated to ¥ through V.
If ¥ is a homogeneous element, in whatever grading, then Vg is a derivation of degree
|9l

Now, we shall define another type of derivations, the algebraic ones.

Let m: E* — M be the dual bundle of E, and let I'( E* ® AE) be the I'(AE)-module
of smooth sections of £* @ AE. We define in I'(E* @ AE) a Z- and a Z;-grading.

Fvery ® € I'(£* ® AFE) can be expressed as a finite sum of decomposable homoge-
neous sections & ® s(,) where () is a homogeneous section of T'(AE) of degree p, and
a e I'(E¥).

If @ = a ® ), we define the endomorphism ig : [(AE) — T(AE) by ipu = s(,iau,
where u € T'(AE), and where i, is the interior multiplication; and if ® € I'(£* @ AE),
we define ig by linear extension.

igp is a derivation that acts trivially on the smooth functions on M, and we call
it the algebraic derivalion associaled to ®. If @ is a homogeneous element, in either
grading, then ig is a derivation of degree |®|— 1 (modulo 2 if we are dealing with the
Zo-grading).

Characterization of the derivations on I'(AE). The graded vector fields of a
graded manifold are defined as the derivation of the sheaf of algebras, like vector fields
of a differentiable manifold are the derivations of the sheal of algebras of differentiable
functions, Therefore, the graded vector fields of the graded manifold (M,T(-,AE))
are the derivations on I'(AF). With the help of a linear connection on F, we can
characterize the graded vector fields on (M, I'(-,AE)).

The following characterization can bhe found in [13] and is analogous to that of
Frélicher-Nijenhuis [4].

Proposition 1.1. Let D be a derivation on U'(AE), and let V be a connection in E.
Then, there are unique fields V € T(TM 2 AE) and ® € T(E* ® AE) such that

D=i3+Vy.
If V' is another connection in F, then we can express the derivation Vy in terms of
V!, For Vx — V' is an algebraic derivation, so there exists A(X) € I'(£* ® E) such
5 24

that VX = V"x +iA(X)'
Let us recall the following concept.

Exterior covariant derivative. Let ' be a real vector bundle on M and let ¥V be a
connection on F' and denote by d¥ the exterior covariant derivative

d7 : T(A*(T*M) @ F) — D(AM (T"M) g F),
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given by

P
(dvﬂ))(_Xg, v 1Xk} = E(_‘]}‘VX;(@(XOV D, “.»Xk))
1=0
+ S (D)HS(X, X, Xoy -+, Xy oy Xy o3 Xi)s
i<
where ® € T(A¥(T*M) @ F).

As an example of application of proposition 1.1 let us apply it to a well known
derivation. When E = T*M, the sheaf is that of differentiable forms on M and we
shall denote it by A(M). When E = T'M, the sheaf is that of polivectors on M and
we shall denote it by V(M). If X is a vector field, the Lie derivative with respect to
X, Lx is a derivation both on A(M) and on V(M).

Lemma 1.2. Let V be a linear connection on TM, then,
(1) as derivations of A(M), Lx =Vx +iwxi79(x,.)
(2) as derivations of V(M), Lx = Vx —igex41v(x,.)»

where TV € T(A*T*M ® TM) is the torsion of V.

Proof. (1) If f € C®(M), then Lx(f)= Vx (/). Let a be a 1-form. (Lx — Vx)(a) is
a l-form. Let Z be a vector field on M, then

(£x - Vx)@)Z = X (a(2)) - (X, Z)) - X (a(2)) + «(Vx Z)
=a(VzX +TY(X, 2))
= idVX+TV(X,~ }(a)Z.
(2) Simply note that (Cx — Vx)(Y)=[X,Y]-VxY =-VyX -TY(X,Y). O

2. Graded forms on (M,T'(AE))

Graded forms are I'(AE)-multilinear alternating homomorphisms from the module
of graded vector fields into '(AE). A graded p-form, p € N, is then a p-multilinear
alternating homomorphism.

To study graded p-forms it is convenient to define a Z-grading for them.

Definition. A praded p-form A is said to be of degree k& € M if for all Dy,..., D, €
Der(T'(AEY)))

P
A(Dy, .., Dp) = D IDi| + k.

i=1

Remark. We will denote by A{ D) the action of the graded form on the derivation, but
having in mind that the action is on the right, i.e., in the notation of 7], it is (D, A).
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The natural morphism & : I'(AE) — C°°(M) can be extended to an algebra ho-
momorphism, that will also be called k, that sends graded p-forms to differentiable
p-forms on M. (See [7, page 257]). I A is a graded p-form, then kA is the differentiable

p-form defined by
(RAN K ysr 0 Xp) = MVt 2 ’vxi’)}[ﬂ] € C™(M).

Note that this definition does not depend on the connection due to the following ar-
gument: The action of a graded form of algebraic derivations of degree 0 gives rise to
elements of I'(AE) of degree greater than 0. Indeed, if @ € T(E*) and Ds,...,D; €
Der(T'(AE))) then A(ia, D2,..., Dy) € I'(AE). For a homogenous algebraic derivation
of degree 0, ing+, where a ® v € I'(E* ® E) we have that

A(i&@nr, Dg, rany Dp) = A(E‘a, Dz, vany Dp}’r.

Thus (A(ia@q, Dg, ey DP]](EI] =0.
Obviously, if A is a graded p-form of degree & > 0 then &) = 0.

Definition. The graded differential of a graded p-form, A, is the graded p + 1-form,
d%), defined by
p+l _ : b
(d9X)(D1,.--, Dpga) = Y (-1) -1 Dy(X(Dy, ..., Diy- -, Dpya))
i=1
+ E{_l}d&"’\([Dka D.!L Dlv ras ,E,- ey 5}1' -'7Dp+l)v
k<t

where j; = Ei=1 |Dy| and dy ¢ = |Dilip-1 + |Delje-1 + | Dil|De] + k + £.
In particular, for a graded 1-form, A,

(d9X)(D1, Dz) = Dy(A(D2)) = ()PPl Dy(A(D1)) = A([Dy, D2))-

Note that the graded differential preserves the Z-grading defined previously, i.e., if
) is a graded p-form of degree k, then d9) is a graded p + 1-form of the same degree
k.

[s is easy to check that the graded differential commutes with x, therefore k is
a cochain complex morphism. A fundamental result, [7, Theorem 4.7], states that x
induces an isomorphism in cohomology. As a corellary that will be used frequently we
have

Corollary 2.1. Every closed graded p-form of degree k> 0 is exact.
3. Characterization of the graded 1-forms on (M,['(AE))
Graded 1-forms are I'( A E)-linear homomorphisms from the module of graded vector

fields into I'(AE). By Proposition 1.1 we have that a graded vector field, i.e., a deriva-
tion D, is uniquely determined by two objects: ¥ e I(TM @ AF) and ® e ['(E*® AE).
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Moreover, the maps from Der(I'(AE)) into I(TM ® AE) and I'(E* @ AE) defined by
D — ¥ and D — ®, respectively, are I'(AE)-homomorphisms of I'(AE)-modules. In-
deed, if s € T(AE), sVy = Vyp and sig = i,0. Thus, a graded 1-form is completely
determined by its action on the sets of derivations {V x }, where X is a vector field and
{ix} where a € I'( £7).

Proposition 3.1. Let V be a linear connection on E. If A is a graded 1-form of
degree k, then A is uniquely determined by two fields L € T(E ® A*'E) and K €
I(T*M @ A*E).

Proof. I and K are uniquely defined by

MVx)=: K(X;-) e T(A*E), for all vector fields X,
A(ia) =: L{e; - ) € T(A*1E), forallac [(£*). O

Let us denote by A& k) the graded I-form defined by L € I'(E @ A*-'E) and
K € I(T*M & A*E).
Note. If k = 0 then A is just defined by K € I'(T*M), that is, by a differential 1-form

on M, indeed, K = KA.
Given (L, K), AFL K) is not, in general, independent of V. But we have the following

Proposition 3.2. Let K € [(T*M®AE), then the graded 1-form Ag] x) i independent
of the linear connection V, and we will denote it by A k) -

Proof. For a given V, ).{VG,K] is defined by

A(%'K)(V'x) = K{(X;-)eT(AE) and }«{%‘K](ia) =10;
Let V' he another linear connection, then we have Vx = V'y + fA{X]- In order to check

that )«{V(;_ K) = Afg ky it is enough to check that they agree acting on the derivations ¥ x

and i,. Indeed

Mok (Vx) = Moy (Tx +iagx))
= A(%J,K)(Vj‘i} =K(X;)= '\{?J,K)(VX]' O

Closed graded 1-forms. Let A =AY ., be a closed graded 1-form of degree k > 0,
where L € T(E @ A*-'E) and K € ll(T"M@A"'E). By Corollary 2.1 we know that
there exists a graded 0-form, s € I'(AE), such that A = d%s. Since A is of degree £,
s € I(A*E). d%s is the graded 1-form defined by

dSs(Vyx) = Vxs e I(AFE),
d%s(i,) = ias € T(A*1E).
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Then, according with Proposition 3.1, A = )‘F;d%}' Therefore, L = s € T(A¥E) ¢
INE@A*1'E)and K =d"seI(T*M ® AFE).
Then, we get the following

Proposition 3.3. Let A = A&.K be a graded 1-form of degree k > 0, where L €
I'(E® A*1E) and K € I(T*M © A*E). Then X is closed if and only if L € T(A*E)
and K =dVL. If X = J\{%J{] is of degree 0, where K € T(T*M), then it is closed if and
only if kA = K s closed.

Remark. This can be also proved without using the fact that the natural morphism, &,
induces an isomorphism in cohomology. Indeed, if we write directly (d°A)(Vx,Vy) =
0, (d%A)(Vx,ig) = 0 and (d%X)(ia,ig) = 0 we obtain the same result.

The two fields L and K of the previous proposition are not unique. In order to
choose a representative of the equivalence class we need to define the following map.
Let ¢ : ['(E® AE) — I'(AE) defined by

k
1 ; Ta
@(L)(en,...,q4) = ¢ E (=1Y " L{as; 1,00y &y e ooy 0),
=1

if Le'(E@A*'E).

Let us define I'*( E ® AE) as the kernel of . Note that I'*(E® E) = I'(S?E).

Let A = AY, ;. be a graded 1-form of degree k > 0, where L € ['(E @ A*1E)
and K € T(T*M ® AFE). Let us define L = L — p(L) € T*(E@ A*'E), and K =
K- d_vcp(L_) € I'(T*M ® A*E). Then dG,\EFLI K = dc)‘&;,ﬁ‘:} if and only if L, = L,
and K; = K3. We get then the following

Proposition 3.4. Fach class of the quotient of graded forms modulo closed forms is
uniguely determined by two fields L e I*(E® AE) and K e I'(T*M @ AE).

4. Characterization of graded symplectic forms on (M,T'(AE))

As we have done for graded 1-forms, we can characterize graded 2-forms by means
of some tensors.

Proposition 4.1. Let V be a fized connection on E. If w is a graded 2-form of degree
k, then w is uniquely determined by three fields I € T(S2E @ A*=2E), K e T(T*M &
E®A*1E), and J € T(A*T*M ® A*E).

Proof. L, K and J are uniquely defined by
w(Vx,Vy)=J(X,Y;-) eT(A*E),
w(Vyx,ig) = K(X;B; ) e T(A*1E),
W(ia,sig) = L(a,8; ) € [‘{.&*‘23).
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Note that since w(ia,ig) = w(ig,ia) we have L(a,f3;-) = L(f,a; -), and that since
w(Vx,Vy) = -w(Vy,Vx) we have J(X,Y;.)=-J(V,X;-). O

Let us denote by w&rK,J) the graded 2-form of degree k defined by L, K and J.

The next lemma will be useful to characterize symplectic forms. We need first the
following definitions. Let RV € T(A2T*M @ E*® E) be the curvature of the connection
Vv, defined by

[Vx,Vy]=tgy(xy) + Vix,y)-

Given L € I'*(E ® A¥~'E), we denote by Lo RV the element of T(A?T*M ® AXE)
defined by

k
LoR¥(X,Y;m,...,00) = D (1) L(RY(X,Y)o; 01,- ., @iy - - -, 6)-

=1

And we denote by L* the element of I'(S2E ® A*~2[) defined by

L*(a,B; -) = L(s B, - ) + L(Bs a, - ).
Note that if L* = 0 then L = (L) = 0 because I is in the kernel of .

Lemma 4.2. Let w = ""'ELKJ] be a graded 2-form of degree k > 0. Then w is closed
if and only if there exist L € T*(E® A*~'E), and K € [(T*M @ A*E) such that
L=1*°, K=d'L-K, J=d"K-LoR".
(If k = 1 then L = 0 because T*(E) = 0.)
Proof. If w is closed, then, by Corollary 2.1, it is exact. Let A = AELR] be a graded
1-form of degree k such that d®)\ = w. By Proposition 3.4, we can suposse that L €
I*(E® A*1E), and K € I(T*M ® A*E).
Now, it is just a matter of computation to find the three tensors that define the
graded 2-form d% ).
L(a,B; -) = d°A(ias i5) = L*(a, B; - ).
K(X;8;-) = d°MVx,ig) = Vx(L(B;-)) = igK(X;-) - L(VxB; -)
= (dVL)(X;B; -) - K(X;8,-).
‘I(Xr Y; - ) = dGA(Vx,Vy)
= Vx(K(Y; ) - Vy(K(X; ) - K([X,Y]; -) - A(irv(x,v))
=K -LsR)(X,Y;-). O

Note. K =0 implies that d¥L =0 and K = 0.
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Definition. A closed graded 2-form is said to be a symplectic form if it is non-singular,
i.e., if the (A E)-linear map DerI'(AE) — Q'(M,T'(AE)), D — i(D)w, is an isomor-
phism.

Theorem 4.3. Let V be a given lincar connection on E and lel w be a closed graded
2-form on (M,T(AE)). Then w 1s uniquely determined by the following fields

& € A2(M), closed,

K = Zn: Kie X“:I‘(T"M @ AFE)

k=1 k=1
L=) L,e) I*(EeA'E).
k=2 k=1

The fields &, Ky and Ly are independent of the connection V.
Moreover, let p: TM @ E* — T*M & E defined by

p(X)=&(X, )+ Ki(X;-), pla) = —Ki(-5a) + La(a, -).

Then, w 1s symplectic if and only if p is an isomorphism.

Proof. Let us decompose w as the sum of its homogeneous parts 3}, wy), where
w(k) is a graded 2-form of degree k.

w(o) is uniquely determined by @ := kw, and @ is closed because the graded differ-
ential commutes with x.

For the rest of the w(;) apply Lemma 4.2.

Ly is defined by w(y)(iasig) = La(e, B), thus Ly is obviously independent of V.

K, is defined by um(vx,s"g} = K1(X;/3). If V' is another linear connection, then
Vx = V' +i4x) where A(X) e I'(E*@ E), then

wy(Vix +iaex)is) = wa)(Vxs i)
because w;(ia,i5) = 0 for all @, 3 € '(E*). Therefore K; does not depend on V.
w is symplectic if and only if for any local basis of TM, {X;}/L,, and any local basis
of E, {Ej}_?=1= with dual basis {a;}7_,, the determinant

aut ( (@(Vx; Vx o) (@liay ?x;))(u})
(W(ijr%k))(u] (wlia;, ‘aa))(n}
X XY =KX o)
= det u( ik 1Ay B4 ) 0
e (mxﬁaa La(ag,ex) ) 7
and this is equivalent to say that p is an isomorphism. O

Corollary 4.4. (1) If w is an even graded symplectic form then & is a symplectic
form on M, K1 =0 and L, is a meiric on E~.

(2) If w is an odd graded symplectic form then & = 0 = Ly and K, defines an
isomorphism between TM and E.
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Corollary 4.5. Let Ky € I'(T*M ® A'E) be such that it defines an isomorphism
between TM and E. Then the graded 2-form dG(Ag,_K]) is an odd symplectic form and
it is independent of the linear connection V. We shall denote it by wy. Thus we have
a canonical lifting from isomorphisms between T'M and E to odd symplectic forms.

Proof. dG(AE%_K]} is independent of ¥V because )‘?S.K} is. (See Proposition 3.2).

5. The odd symplectic form associated to a Riemannian manifold

Let (M,g) be a Riemannian, or pseudo-Riemannian, manifold. Let us consider the
graded manifold (M, A(M)) whose dimension is (m,m), in this case £ = T*M. g €
['(S2T*M) can be considered as an element, Ky, of I'(T*M ® T*M) and it defines an
isomorphism between TM and T*M.

As we have seen before, @ = 0,L = 0 and K = K; define a unique odd symplectic
form that we shall call w, := d%(Ag ,))-

By Lemma 4.2, the action of w, on pairs of derivations is given by

wy(Vx,Vy) = (dVg)(X,Y)

= Vx(9(Y;-)) - Vy(9(X, -)) - g([X,Y], -) € A} (M),
wo(Vix,iy) = —g(X,Y) € C=(M), -
welix,iy) = 0.

We want to study now the super-Poisson structure induced by the odd symplectic
form w,. We need to compute first the Hamiltonian vector fields,
Given a € A(M) there is a unique D, € Der A(M ) such that

w(Da, D) = (d%a)(D) = D(a).

D, is called the Hamiltonian graded vector field defined by a.
In order to make computations easier, let us suppose that ¥ is the Levi-Civita con-
nection. Thus, w,(Vx,Vy) = 0.

Proposition 5.1. (1) If f € C®(M), then Dy =i, ;-
(2) If f e C=(M), then Dy = —Lyraay-

Proof. (1) Simply compute wy(igraqs,ix) =0 =ixf, and

Wy (igrad 1, Vx) = 9(X grad f) = X(f) = Vx f.

(2) By Lemma 1.2 we have Lx = Vx + i vy, thus

wy(—Lerad frix) = g(grad f, X) = X(f) = ix(df),
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and, if Z is a vector field

wy(~Lgrad > VXN Z) = wg(Vx, igrad f)(2)
= g(X,Vzgrad f)
= Z(X(f) - VzX(f)
= X(2(f))-Vx2(f)
= (Vx(df))(2). O

The definition of the super-Poisson structure is given by, see [7],

{a, )} = wy( Do, Dg).
See also [3].

Proposition 5.2. Let f,h e C®°(M), and let 2 € A™(M) be the Riemannian volume
element then

l:l} {f}h'} =0,

(2) {f,dh} = —grad h(f),

(4} {2, f} = igrad_fﬂ and

(5) {2,df} = (Af)R, where A denotes the Laplacian.

Proof. Apply Proposition 5.1.

6. The even symplectic form associated to a symplectic form and a Riemann-
ian metric

We want to define a canonical lifting from symplectic forms and metrics on M to
even graded symplectic forms on the graded manifold (M, A(M)). As we have seen
before, a symplectic form @ on M defines a unique closed graded 2-form of degree
0, wg. Our purpose now is to define a closed graded 2-form of degree 2, which is the
graded differential of a graded 1-form of degree 2.

Let g € ['(S*T=M) be a metric on M. Let us define L = g € T'*(T*M ® AT M)
and KV e I(T*M ® A*T*M) by

K¥(X;Y,Z) = (Vyg)(X,2) - (Vz9)(X,Y)
+ F(XﬁTv(zv Y))"" g(Y,TV(Z,X:I) -+ g(Z,Tv(X,Y))

Proposition 6.1. The 1-form A&,Kv) does not depend on ¥V, therefore its graded

differential wy is a graded 2-form of degree 2 independent of the linear connection.

Proof. Let ¥V’ be another linear connection, then we have Vy = V' + iy.x). It is

obvious that the action of AFL Kv) OB algebraic derivations does not depend on V. Let



A characterization of graded symplectic struclures 93

us check now that

)‘E{;,KV)(VX) = Agﬁ,w)(V){].

Let Y, Z be vector fields, then
(Ax o) (V) = N gony(Vx))(Y, 2)
= (Aﬁ,‘h'V}(vX) = AE'::‘KVJ}(V{X + iA{X])(Ys Z)
= KY(X;Y,2) - KV'(X;Y,2) - g(A(X)Y, Z) + g(A(X)Z,Y)
= [}
as a straightforward computation shows. O

Thus, the map that assigns to the symplectic form & and to the Riemannian metric
g the even symplectic form wp + wy is independent of the linear connection used to
construct it. We shall denote this even symplectic form by wg g

If V is the Levi-Civita connection of g, then KV = 0 and the action of the symplectic
form on pairs of derivations is given, after Lemma 4.2, by

Wz (Vx,Vy) =&(X,Y) —go RV (X,Y),
W,g)(Vx,iy) =0,
Wa,g)(ix,iy) = 29(X,Y).
Note that in this case, g o RV(X,Y)(Z,W) = 29(RY(X,Y)Z,W) = -2R(X,Y,Z,W)

in the notation of [6].

Naturality. Let f: M — N be a local diffeomorphism between differentiable man-
ifolds. Let f* : A(N) — A(M) be its pull-back, thus F' = (f, f*) : (M, A(M)) —
(N, A(N)) is a local diffeomorphism between graded manifolds.

Let D € Der A(M), we define F.D € Der A(N) as

(F.D)a:=(f1)y'Dfac A(N), forall agA(N).
It is easy to check that if X is a vector field on M then
f‘l(i‘;x):if‘x a.‘l'ld F*[VX]ZV}'X,

where V is a linear connection in M and ¥~ is the linear connection in N induced by
the local diffeomorphism f.

Note that if ¥V is the Levi-Civita connection of a metric, g, on M, then V= is the
Levi-Civita connection of the metric (f~1)*g.

Let A be a graded p-form on the graded manifold (N, A(N)), we define F*), a
graded p-form on (M, A(M)), as

F*X(D1, ..., Dp) = f*(A(F.Dy,..., F.D,)) € A(M),
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for all Dy,..., Dy € Der A(M).

It is easy to check that dSF*)X = F=d\.

With this definitions, a straightforward computation shows that, if ¥V is the Levi-
Civita connection of a metric g on M then

F*(A((s-1y25,0)(Vx) = 0= A, 0)(Vx),
F*(Ar-1ye0,0)(ix) = 9(X, -) = A 0)(ix)-
Thus F*(A((f-1)+4,0)) = A(g,0) and then the same happens with the graded differentiale

F* (@1yeg) = dOF (A ((£-1)25,0)) = 49X (g0) = -
Moreover, if w2 is the graded 2-form of degree 0 on (M, A(M)) defined by
w(vﬁﬁ V}’J =£)(X: Y): M(Vx,iy) =0, W(ix,z:y:] =0,

then
F"'(w?}._‘].a) = wl.

Finally, we get the naturality of the even symplectic form wy;, ;) = w3 + w7 because

F(@(s=1)e,(1-1)20)) = W(arg)-
The odd symplectic form defined in Section 5 is also natural following this sense.

The associated Poisson bracket. The Poisson bracket defined by this graded sym-
plectic form is a bracket defined on A(M) and constructed by means of a symplectic
form and a metric on M. A first attempt to define a Poisson bracket constructed just
by means of a symplectic form can be found in [11].

We shall see that the Poisson bracket associated to the even symplectic form w =
W(g,q) 18, in a certain sense, an extension to differential forms of the Poisson bracket on
functions associated to the symplectic form @.

Let ¥ be the Levi-Civita connection defined by ¢. Let us compute the Hamiltonian
graded vector field, Dy, associated to a function f. Since Dy is a derivation on A(M)
we have, by Proposition 1.1, that there exist X;,Y; € T(AT*M @ TM) such that
D;=Vx i iyf.

By definition of Dy, w(Dy,ix) = ix f = 0 for all vector field on M, X. Therefore
Y; = 0. Since w is an even symplectic form we have that Dy is an even derivation.
Let us decompose X as sum of homogenous components X? + Xf+ +++, where X}“ €
T(A%*T*M @ TM).

By definition of Dy, w(D;,Vx) = Vx f = X(f) = df(X) = &(Hs, X ), where H;
denotes the classical Hamiltonian vector field associated to f. On the other hand, by
definition of the even symplectic form w = W(a,g)

w(Dy,Vx) = &(X},X) - go R(XP, X) +&(X7,X) -+,

where the dots denote terms of degree 4 or higher and where LD(X},X ) is defined by
the following condition: If K? = a@Y € ['(A?T*M @ T M) then &( K%, X) = ad(Y, X).
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Therefore, equating terms of the same degree we get X_“r = Hy and Q(X},X) =go
R(X}‘,X} for all vector field X . & defines an isomorphism between T*M and T'M . This
isomorphism can be obviously extended to an isomorphism between AT*MeT*M
and A¥I*M @ T'M. This isomorphism assures us that X? is uniquely defined by the
condition @(X?,X) = go R(X9, X). Analogously for X}**?,

Let us now go to the Poisson bracket defined by w, {-, - }. Let us denote by {-, -}z
the classical Poisson bracket defined by &.

The relation between both brackets is given by {f,h} = {f,h}s + ---, where f.h €
C*(M) and the dots denote terms of degree higher than 0. This is why we call {., -}
an extension of the classical Poisson bracket {-, - };.

We will say that the extension is strict if {f, h} = {f,h}z.

Proposition 6.2. The even symplectic form w = w(g ;) gives rise to an strict extension
of the Poisson bracket associated to & if and only if the curvature of the metric g
vanishes.

Proof. If the curvature vanishes then D = Vj;, and we get thus an strict extension.
Reciprocally, if the Poisson bracket defined by w is an strict extension then {f,h} =
w(Dy, Dy) € C*(M). Since Dy = Vg, + Vx? + -+ we have

N(Df,Dh) :Q(HI,H;L]—!}Q Rl:”f,Hh)+ﬁ(X?,Hh}-|-(:J{H!,X§]+

where dots denote terms of degree 4 or higher.
By definition of X} we have that J;[X},Hh) =goR(H, Hy), and then

w(Dy,Dy) = O(Hyy Hy) +&(Hp, Xi) + -
=@(Hy, Hy)+go R(Hyp, Hp) + -

Therefore, if the extension is strict we have that g o R(H;, Hy,) for all functions f,h.
Since there exists a local basis of Hamiltonian vector fields, we have that E=0. O

Relation between the Berezinian and the curvature. When the differentiable
manifold M is a surface is R? a curious relation between the Berezinian of w ,) and
the Gauss curvature can be shown. For the definition of the Berezinian see [10] or [18].

First note that any volume form in M can be seen as a sympletic form, w. Let
us denote by g the Riemannian metric induced by the euclidean metric in R3. Let
w(g,g) be the graded symplectic form canonically defined by @ and g. We shall com-
pute the Berezinian of such form in the following local basis of graded vector fields
{Vajoz,> Voy0zs1 18702 s19/az, }» Where {1,221} are Darboux coordinates for @, and V is
the Levi-Civita connection.

The matrix of wg ;) in such basis is

0 —1-2R1212 dzl .-"\dmg 0 0
(A O) o 1+2R1212d$1hd22 0 0 0
0 G 0 0 g1 Nz

0 0 2z 922
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where
a8 d a 4 a 8
= Wihestasreen Ml oy o= it el
Rlzu—g(R (3:!:1’39:2) B.t:’am) 3nd i) g(ax,-’azj)'
Th
i Booi e det A o 1 +4Ryppdzy Adxg Siaral ARG
S T detG J11922 —gfz ~ det @ ’

where K is the Gauss curvature of the surface M. Note that since M is a surface then
det (& # 0 and thus the Berezinian has sense.

7. The Schouten-Nijenhuis bracket

As a final example, we shall see that the Schouter-Nijuenhuis bracket can be ex-
pressed as the Poisson bracket of an odd symplectic structure. This was first observed
in [9]. A dual construction on differential forms was constructed in [8]. For a detailed
study of this bracket see [12].

Now, E is the tangent bundle, TAM. Thus, the graded manifold is (M,V(M) :=
T(ATM)). The elements of V(M) are called multivectors. Let us choose as Ky €
I(TM ® T*M) the identity isomorphism from TM into itself.

Let A be the graded 1-form )\(%',-‘\"1] and let w = dA be the associated odd symplectic
form. As it has been seen, w does not depend on V.

It it easy to check that, by Lemma 4.2,

w(Vx,Vy)=TY(X,Y),
w(Vy,ta) = —a(X),
W(iasig) = 0.

Theorem 7.1. The Poisson bracket on multivectors induced by w is the Schouten-
Nijenhuis bracket.

Proof. Let X € I'(TM). The Hamiltonian graded vector field assaciated to X is the
derivation Dy defined by

w(Dyx,D)= D(X), for all D € DerV(M).

It is easy to check that Dy = —(Vx —isvx7v(x, )) and, by Lemma 1.2, this is equal
to —Ly.
Let X,Y e V(M) and f,h € C*°(M). The Poisson bracket is given by

{X,Y}=w(Dx,Dy) = Dy(X) = -Ly X = [X,Y],

{I,X} = w(Df'rDX) = —X(f),
then, {X, f} = ={/, X} = X(f). Finally, {f, h} = 0, because it is an element of degree
=9

By the known properties of both brackets, they agree on multivectors. O
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