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Graded Poisson structures on the algebra of differential forms

J. V. BELTRAN AND J. MONTERDE

Abstract. We study the graded Poisson structures defined on Q(M), the graded algebra of differential
forms on a smooth manifold M. such that the exterior derivative is a Poisson derivation. We show that
they are the odd Poisson structures previously studied by Koszul, that arise from Poisson structures on
M. Analogously, we characterize all the graded symplectic forms on (M) for which the exterior
derivative is a Hamiltonian graded vector field. Finally, we determine the topological obstructions to the
possibility of obtaining all odd symplectic forms with this property as the image by the pullback of an
automorphism of Q(M) of a graded symplectic form of degree 1 with respect to which the exterior
derivative is a Hamiltonian graded vector field.

Introduction

There are many examples in differential geometry of constructions, definitions,
objects, etc., on the graded commutative algebra of exterior differential forms,
Q(M), on a smooth manifold M, which depend on its grading. One of these objects
is the Poisson bracket on differential forms once a Poisson bracket on functions is
given [Kz].

The purpose of this paper is to characterize such Poisson brackets by applica-
tion of the techniques of graded manifold theory to the particular graded manifold
defined by the sheaf of differential forms, i.e., using graded symplectic forms on this
graded manifold and their corresponding graded Poisson brackets (cf. [Mo], [Ro]).

It has been shown in [Kz] that a Poisson bracket { , } on M defines a graded
Poisson bracket = A E on Q(M). We shall call it Koszul-Schouton bracket. Its values
on smooth functions and on exact 1-forms are given by [/, g] =0, [df.¢] = {f. g}
and [df, dg] = d{f, g}, respectively, and it is then extended to all differential forms
by the graded Leibniz rule. Two properties follow immediately for such a Poisson
bracket: First, the exterior derivative is a Poisson derivation for it; that is,

dfee, B] = [dor, B] + (— D) ¥~ "[er, dB],
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for any =, ff € Q(M). Graded Poisson brackets with this property will be called
differential. The second property is that with respect to the Z-grading, it is of
Z-degree — 1, i.e., for homogeneous differential forms o and f, the Z-degree of
[ BT s Je] + |81 — 1.

Our first aim is to characterize the graded Poisson brackets that satisfy these
two properties. We show in section 1 that among all graded Poisson brackets on
Q(M) of Z-degree — 1, only the Koszul-Schouten brackets are differential.

The notion of graded Poisson bracket may also be formulated for the Z,-grad-
ing of Q(M). The corresponding homogeneous brackets in this case are called even
or odd. We have found a negative answer for the existence of nondegenerate
differential even Poisson brackets (cf. Prop. 6.1 below).

In section 2 we characterize all graded Poisson brackets by means of graded
derivations on Q(M). In particular, we give an expression for the Koszul-Schouten
bracket in these terms.

Our second aim is to study the analogous problem for graded symplectic forms.
So, in section 3 we review, following [Ro] and [Mo], the graded techniques needed
to characterize the graded symplectic forms by means of tensor fields. It is shown
that any graded symplectic form on (M) of Z-degree 1 is uniquely determined by
a linear isomorphism L:T*M — TM. Then, in section 4 we show that in the
nondegenerate case, the Koszul-Schouten bracket comes from a graded symplectic
exact form. That is, the graded symplectic forms on (M) of Z-degree 1 that
produce differential graded Poisson brackets are determined by the isomorphism P
defined by an invertible Poisson bivector, i.e., a symplectic structure on M. On the
other hand it is shown in section 5 that any odd symplectic form is the image of a
graded symplectic form on (M) of Z-degree 1 by the pullback of an automor-
phism of the algebra Q(M).

These two results lead naturally to the question of whether or not an odd
symplectic form that produces a differential graded Poisson bracket is the image of
a differential graded symplectic form of Z-degree 1 by the pullback of an automor-
phism of the algebra Q(M) that commutes with the exterior derivative. By applica-
tion of the results obtained in section 2, we obtain an affirmative answer to this
question if the Betti numbers b,;, k =2 of M, vanish them all (Theorem 5.2). In
particular, this cannot be the case in compact symplectic manifolds of dimension
greater than 2 (sec e.g. [Po]).

1. Graded Poisson structures on (M)

Let M be a differentiable manifold of dimension n. Let (M) = @7 _, Q%(M) be
the algebra of differential forms on M, and let Q(M; TM) = @} _, Q“(M; TM) be

AIAUCU CUISSUIL SLEUCLULES Ul LIS d1geula Ul UIISICHUAL IS J00

the graded left 2(M)-module of vector-valued differential forms. We adopt the
convention that if v is an clement of a graded module and the notation |v] is used
we are tacitly assuming that v is homogeneous of degree [v]. Q(M; TM) can also
be viewed as a graded right Q(M)-module with the multiplication S Ao =
(— 1)y A S for o e QM) and S € QM; TM). Let Der Q(M) be the graded right
Q(M)-module of all derivations on Q(M). Der (M) is a graded Lie algebra with
the usual graded commutator. Unless otherwise stated, /inear will mean R-linear.

DEFINITION 1.1. A graded Poisson structure of Z-degree k,k € Z (resp.
Zy-degree k, k € Z,) on Q(M) is a map [ , | : QM) x QM) —»Q(M) such that

(1) [, ] is R-bilinear.

(2) |[e B]| = || + |B] + & (resp. mod. 2).

(3) =”R. .ﬁé =—(— :%TE._.*TEF%. i_.

@) o f ay] =[x ] Ay +(~ DG A o,y

(5) [ [ ] = [ BT, v] + (= ®=OPg, o, 3]].

The natural grading of the algebra Q(M) is the Z-grading, bul sometimes we
will also refer to the Z,-grading. In this case, homogeneous elements, or any other
homogeneous structures, will be called even, if K =0, or odd if £ =1.

Note that a graded Poisson bracket is completely determined by its value on
differentiable functions and on their differentials. This is an immediate consequence
of the Leibniz rule (4).

A Lie algebra structure on I-forms can be defined by means of a linear
isomorphism L : T*M — TM. A special case is when the linear isomorphism is the
inverse of the morphism defined by a symplectic form on M ([A-M], pages
191-194).

Moreover, by transfering the Schouten-Nijenhuis bracket on multivectors to
differential forms via the homomorphism extension AT*M — ATM of a linear
isomorphism L : T*M — T'M (which will also be denoted by L) we obtain a graded
Poisson structure on the full algebra Q(M), whose restriction to smooth functions
vanishes identically. We thus have the following:

DEFINITION 1.2. Let L: T*M — TM be a lincar isomorphism. We define the
Poisson bracket of degree —1 on Q(M), [ , [y, as

__Hn. _m__r = —L7'[L(z), L(B)sw-

for o, f € Q(M), where [ , sy denotes the Schouten-Nijenhuis bracket of multivec-
tor fields.
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The minus sign appears in order for this definition to coincide with that of
[A-M].

Note that the antisymmetry, the Leibniz rule and the Jacobi identity for this
graded Poisson bracket are obtained from the same properties of the Schouten-
Nijenhuis bracket of multivector fields on M.

An odd Poisson bracket on @(M) was defined by Koszul using differential
operators [Kz] as follows (see also [Krl], [Kr2]): Let P be a Poisson bivector (not
necessarily nondegenerate). We denote by & the second order differential operator
acting on differential forms defined as &, =ipod —d o i,, where ip is the lotal
insertion operator with respect to the bivector P.

DEFINITION 1.3. The bracket [ , [xs defined by
[ee, Bleser = (=D)AL plex A B) — (Zp0) A — (=1 A (ZLpf)),

for @, f € Q(M), defines an odd Poisson structure on (M), which is called the
Koszul-Schouten bracket associated to P.

The Koszul-Schouten bracket is characterized by its value on smooth functions
and on exact 1-forms as follows,

Fﬁ N?GS =0, Fﬁ &muwmcs = P(df. dg) = {/.&}», ()
[df, &lksir = PAf, dg) = {f; &} [dfs deksir = d(P(S. dg)) = d{f; g}

for all f, g € C*(M).

Remark. This bracket has been used recently in the Batalin-Vilkovisky quan-
tization and in BRST theories [Ne, Sc].

Remark. If P is a nondegenerate Poisson bivector and P: T*M — TM is the
associated linear isomorphism, then the brackets | , |p and [ , Jxse coincide.
This can be proved easily by checking that their values on functions and on their
differentials agree. Use has to be made of the fact that P d(P(df, dg)) =[P df, P dg].

The main property of the bracket defined by Koszul is that the exlerior
derivative is a Poisson derivation of degree 1 in the graded Poisson algebra
(@(M), [ , T). This is easily shown using the identity #pd = —d > ¥p (see [Kz]).
So we cast this property in the following.

DEFINITION 1.4. A graded Poisson structure [ , | on Q(M) of degree k € Z,
(resp. 7) is differential if the exterior derivative is a Poisson derivation of degree 1

in the graded Poisson algebra ((M), [ , |); that is, if for any «, § € (M) we hav:
de, ] =[da, ] +(=1)H e, df].

What we want to show now is that this simple condition characterizes com
pletely the Koszul-Schouten brackets.

THEOREM L.5. A graded Poisson bracket of degree —1 on Q(M) is differentia

if and only if it is the Koszul-Schouten bracket associated to a Poisson structure o
M.

Proof. Let [ , | be a differential graded Poisson bracket of degree —1. Wi
define the map { , }: C=(M) x C™(M) - C™(M), (f, g) — {f. g} =, dg], and w
show that { , } is a Poisson bracket;

() {fig}=—{g.f}since [f,g] =0,and [ , | is differential, then 0=d[f, g] =

e ﬁﬂ wm wc? dg] = J.ﬁmm. &m I |___§ ag]. .

e Leibniz rule {f,gh}=|f.d(gh)]|=[fhde]+[f gdrh]|=h[f de]+
e e 1= 11 hde] +If, ¢ ] = hl, de]
(3) the Jacobi identity {f, {g, h}} = /. d[g. dh]] =, [dg, dh]] =
(L. de]. an] + [dg, [ dhl] = {{/. &}, b} + {g, {; h}.

; So, { , } is a Poisson bracket on C*(M). Let P be its associated Poissor
bivector. The Koszul-Schouten bracket is characterized by the relations (*). Thus
we finally have to show that a differential graded Poisson bracket [ , ] of degree
— 1 satisfies the relations (*). The only one of those which is not yet obvious from
the definition of { , } is the last one. But,

ldf. dg] =d[f. dg] = d{f, g} = d(P(df, dg)). O

2. Hamiltonian graded vector fields

._..2 __ . ] be a Poisson bracket on Q(M) of degree k € Z, (resp. Z), and let « be
a differential form on M. Condition (4) of definition 1.1 implies that the operator
D, =[a, ] is a derivation of (M) of degree |a| + k.

DEFINITION 2.1. The derivation D, = _?_ ﬁ will be called the Hamiltonian
graded vector ficld associated to o.

It is well known [F-N] that any derivation of Q(M) can be uniquely written as
a m_”:: of an algebraic derivation and a derivation that commutes with the exterior
derivative. Let us recall this decomposition:
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If K=a®XeQFHM; TM), the algebraic derivation iy € Dery,_, QM), is
defined by ix(ff) = & A iy(f), where iy is the usual insertion operator. For arbitrary
K e QM; TM), iy is defined by linear extension. The graded commutator [ig, d] is
a derivation that commutes with the exterior derivative. It will be denoted by % .
If K is homogeneous of degree k then % is of degree k.

A fundamental result of [F-N] is the following

THEOREM 2.2. Any derivation D € Der Q(M) can be uniquely written as
Zo+ip, where Q, L € Q(M; TM).

We apply this result to the derivation D,, to conclude that there exist vector-
valued forms Q,eQF*“M;TM) and L,eQF+**(M;TM), such that,
D,=%, +1i,,. It is now possible to define two derivations from Q(M) into
Q(M; TM) related to @, and L,:

PROPOSITION 23. Let [ , | be a Poisson bracket of degree k € Z, (resp. Z),
and
(1) let K : QM) — Q(M; TM) be the map defined by K(2) = (—1)"*Q,. Then, K
is a derivation of degree k.
(2) let H: QM) —Q(M; TM) be the map defined by H(x) =(—1)F«+dr 4
K(dx). Then, H is a derivation of degree k + 1.

Proof. In the sequel, K, and H, will be used instead of K(x) and H(z).
Condition (4) of Definition 1.1 can be written, with the help of condition (3), as

[x A B, 3] =(=D)Kl+B[a, y] A B+ o A [B, 7]

Writing this formula in terms of derivations and having in mind that for
SeQ(M; TM) and o € Q(M)

Los=an s +A|:_n_+_m.__.¢._n>m7
we get the following expressions

mk\:m "H|~u_.w_kmn A ﬁ +a A _..Mh:
Loy =(—DPC+DE A B4y ALy —(=D)AEvY. A dp
(=D HE gy 5 Q.

The first formula says that K is a derivation of degree k. Using this fact the
second formula can be rewritten as
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(=DETMEEDL, o+ K(d(x A B)) = (= 1)+ DL, 4 K(dn)) A §
+(—DkEEDg A (— )DL, L K(dB)).
But this is precisely the fact that H is a derivation of degree & + 1. )

In particular, it is now evident that we can write the graded Poisson bracket of
degree k in terms of derivations as follows

:Ru mg == :_a_»m.msb il ;n_mﬁ\x&vh.

The following proposition characterizes the differential brackets in terms of the
derivations K and H.

PROPOSITION 2.4. 4 graded Poisson bracket of degree k c Z, (resp. Z) is
differential if and only if the associated derivation H vanishes.

Proof. An easy computation shows that
dfo, B] = [, B] = (=) **a, dB] = (= )*+ DK = 2}, + (= )iy, )p.

Then, d is a Poisson derivation if and only if the derivation — Ly, + (=DM, is
identically zero, i.e., if and only if H=0. |

COROLLARY 25 If d is a Poisson derivation for [, ], then
L, =—(=1)FH**0Q, and

[ Bl = (=DMK(L, — (= D)Hig, )p.

Let us determine the derivation K that defines a Koszul-Schouten bracket. First,
let P be the linear map associated to the bivector P, and let us denote by p the
extension of this linear map to a derivation from Q(M) into Q(M; TM) of degree
—1, ie, p(f) =0 for fe C*(M), and

&
ploy A >8LH,M (D" lan s AdA s An ®p(%), o e QM)

PROPOSITION 2.6. The Koszul-Schouten bracket is given by

[ot, Bl xseer = (= DP(L 0 — (— 1) M08,

Jor o and B in Q(M).
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Proof. The Koszul-Schouten bracket is a differential Poisson bracket of degree
—1. Thus by corollary 2.5, we have to show that the derivation K is equal to p.
Since any derivation from (M) into Q(M; TM) is determined by its value on
0-forms and on exact 1-forms it suffices to determine K, and K, for f e C*(M). An
application of the definition of the Koszul-Schouten bracket yields, for all
g e (M)

_T_._WH__K.KSHQHMQH\W, _?H N”_TQBH%A&\“ dg) = Iqq%w&w..
so, we deduce that K, =0 and K= p(df). Whence, K = p. O

Remark. Let @y be the symplectic form associated to a nondegenerate Poisson
bivector P and [ , Jxs, its Koszul-Schouten bracket. Then, the Hamiltonian
graded vector field associated to —@p is the exterior derivative (see [K-M], formula
6.12),

D_g, =], Jxsir =Loeopn =L =4d.

3. Graded symplectic forms on 2(M)

The remaining part of the paper will be concerned with nondegenerate graded
Poisson structures, i.e., graded symplectic forms. This section is devoted to a review
of the graded symplectic geometry that will be needed to state our main results in
sections 4 and 5 below. From now on, we will be interested mainly in the
Z,-grading.

Graded differential forms. Recall that the elements of the graded Q(M)-module
of derivations, Der Q(M), can be regarded as graded vector fields on the graded
manifold with structure sheaf Q(M). By analogy, a graded differential form is an
Q(M)-multilinear alternating graded homomorphism from the module of graded
vector fields into Q(M). (We shall refer to [Ko] for definitions.)

Being a graded homomorphism of graded modules, a graded differential form
has a degrce. Thus, we can define a 7 x Z-bigrading on the module of graded
differential forms. We will say that a graded differential form, 4, has bidegree
(p.k)eZx 7, if

A : Der QM) x." . x Der (M) — (M)

is such that, for all D,, . . ., D, € Der (M),

Graded Poisson structures on the algebra of differential forms 3

KDy Dy 3] = ¥ )| + &,

i=1

Using this bigrading, any graded p-differential form 1 can be decomposed as
sum A = &gy +- - + A, where A, is a graded form of bidegree (p, i).

We shall denote by d9 the graded exterior differential. (See [Ko] for details.) T
particular, for a graded 0-form o € M), {D;d%} = D(x), and for a grade
1-form, 4, on Q(M) we have

(D1, Do (d9)) = Dy ({Dy; ) — (—1)P1l1221D, (( D, ; 13) — ([D,, Dy]; A).
The graded exterior differential is an operator of bidegree (I, 0).
A fundamental result is the following corollary to Kostant's Theorem 4.7 [Ko]

A very simple proof of this fact has been obtained by Tuynman [Tu].

COROLLARY 3.1. Every.d®closed graded Jorm of bidegree (p, k) with k >0 i
exact.

Other familiar operators on ordinary manifolds also have counterparts or
graded manifolds. If D e Der Q(M), then:
(1) The insertion operator, (D), is defined by

$Dissivis Dy 3 DAY = (=132 16Dy L DL DAY,

Note that i(D) is an operator of bidegree (—1, [D]).

(2) The Lie operator, %, is defined by
LG =1D) o d®+d% o (D).
Note that £ is an operator of bidegree (0, D).
Graded symplectic forms. Let w be a graded symplectic form of degree k e 7,
(resp. Z) on Q(M). By definition, this is a d®-closed, nondegenerate graded 2-form.

We observe that
(1) A nondegenerate graded Poisson bracket [ . ] is defined by

;R; .RH_E = gUM.Qm.uv

for o, f € Q(M), and where, D? is the unique graded vector field such that
(D2)w = da.
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(2) Conversely, a nondegenerate Poisson bracket of degree k on Q(M), defines
a graded symplectic form of degree k& by means of the formula

[ B] = — <D, Dy; @3,

where, D, (resp. D) is the Hamiltonian graded vector field associated to «
(resp. B) (Definition 2.1). In this case, we have D = D for all § € Q(M). In
fact,

—{Dy, D3y =, B = D,(f) = {D,; d°f} = — (D, Df; ).

Therefore <D,, (D; — D§); w» =0 for all & € Q(M), and since @ is nonde-
generate, Dy = Dj.
Note that if @ is a graded symplectic form of bidegree (2, 1), then, D, is a
derivation of Z-degree |¢|—1 and the associated graded Poisson bracket is of
Z-degree —1.

DEFINITION 3.2. A graded vector ficld D is locally Hamiltonian if the graded
1-form (D)w is d®-closed.

Remark. As a consequence of corollary 3.1, every locally Hamiltonian graded
vector field of positive degree is a Hamiltonian graded vector field.

Graded symplectic forms of Z-degree 1. Next, we will characterize the graded
symplectic forms of Z-degree 1. This characterization is a particular case of the one
obtained in [Mo] for graded manifolds in general. We shall include the proof for
the graded manifold of differential forms because it does not make use of linear
connections as opposed to the original approach in [Mo].

Note that Der Q(M) is a graded locally free Q(M)-module. This is a conse-
quence of the Frolicher-Nijenhuis theorem 2.2. So, any graded form is uniquely
determined by its action on derivations {iy, # }, where i, and &, are the insertion
operator and the Lie derivative with respect to a vector field X" on M, respectively.

PROPOSITION 3.3. There is a one-to-one correspondence between graded sym-
plectic forms, w, of Z-degree 1 and linear isomorphisms L : T*M — TM.

Proof. First, given a linear isomorphism L : T*M — TM, let us denote by Ay, the
graded form of bidegree (1, 1) defined by:

(xs ) =0, (L y=L7'(X).

It is easy to prove that the graded differential form wy, = d“4; is symplectic.
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Conversely, if @ is a graded symplectic form of Z-degree 1, corollary 3.1 implies
that @ = d°J, for some graded form A of bidegree (1, 1). The value of 1 on the
derivations i, where X is a vector field on M, determines a differential 1-form, o,
on M : {iy; 1y =o(X). Now, consider the graded 1-form 1 =1—d“:. Clearly
(iy; £»=0 and we can characterize this graded l-form by its value on the
derivations ., namely, (%) =A(X) e QY(M), where A is a C*(M)-linear
mapping from TM to T*M. Note that A is a tensor field because {iy; 2> =0. As
@ is nondegenerate, A is a lincar isomorphism. Let L =A~". Then 1 =1, and
® = Wy, O

COROLLARY 3.4. Any graded symplectic form of Z-degree 1 can be written as
wy, =d%\,, where 4, is the graded form of bidegree (1,1) defined by the linear
isomorphism L associated to the graded symplectic form by the previous proposition.

Let L:T*M —TM be a linear isomorphism. Let us determine the graded
Poisson bracket [ , ], associated to my=d1.. To do this we determine the
Hamiltonian graded vector fields D} and DL, for fe C*(M) and o € Q'(M).

The derivation D}, defined by u(DF Jwp =d®f, is of degree —1. Thus, there
exists a unique vector field ¥ on M such that D} =i,. The vector field Y is
determined by the value of (D} )w,, on graded vector fields of the type ¥ for a
vector field X on M,

(L UDF Yoy ) = —( Ly, DF;d» = i,(L7(X)) = (L~ )*(¥)X),

where the asterisk denotes the dual map. On the other hand, {%; d%f > = df(X).
Therefore Y = L*(df).

The derivation DY, defined by i(DY)wy =d%, is of degree 0. Thus,
DY = %, +i, where Z is a vector field on M and K € Q'(M; TM). Then

(iy; DYoLy = =iy, Lz;00) = —ix(L7'Z).

On the other hand, {iy; d%} =iy(«), and then Z = —L(2). In order to determine
K, we have
{Ly; HAU“.VE_:V =4+ Ly Lrw: OL) — <Ly, Ix; oLy
= £ 30— L1 (L71X) — LY, L(@)] + ix(L'X)
=Lyt — QMN-.EFLV o L)(L7'X) + ig(L71X).

But {(Fy;d% )= Lo S0, K=(Fpm L") LeQ(M; TM). Then the graded
Poisson bracket associated to o =d%; satisfies
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[fgle,=0, [2g]a, = —de(Li@)),
[f e]oy = 2«(X*d)), [ B, = —L~'[La, LA,

forf,g € C*(M) and %, § € Q'(M). Comparing those expressions with formulae (*)
in section 1, we have [ , [,, =], ]

4. Differential graded symplectic forms

In this section we are going to translate the condition that a nondegenerate
graded Poisson bracket must satisfy in order to be differential into a condition on
its associated graded symplectic form. From now on we assume that the dimension
of M is 2n.

DEFINITION 4.1. A graded symplectic form on Q(M) is differential if the
exterior derivative is a Hamiltonian graded vector field on Q(M) with respect to this
graded symplectic form.

ohmg?a} 4.2. A graded symplectic form, o, is differential if’ and only if
Liw =0.

Proof. If w is a differential graded symplectic form, then G0 =d%d)w = 0.
Conversely, if Zfw =d“d)w =0, then d is a locally Hamiltonian graded
vector field of degree 1. Therefore by the remark following definition 3.2, d is
globally Hamiltonian. O

PROPOSITION 4.3. A graded symplectic form of degree k € 7, (resp. 7) is
differential if and only if the associated graded Poisson bracket is differential.

Proof. Let  be a graded symplectic form of degree k € Z, (resp. Z) and let
[ . ]. be its associated graded Poisson bracket. This graded Poisson bracket is
differential if and only if

—d{D,, bh“ @)+ (D, Uu.. W)+ (— C_n_i..AbE U&_T. ®y=0
or equivalently,

dD,(B)) — Du(B) — (= 1)H**D, (df) =0,

for any a, f e Q(M).
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Therefore, the graded Poisson bracket is differential if and only if [d, D,] = D,,.
Now, by the definition of the Lie operator,

7 (—)H*CD,, Dy; LGw) = d{D,, Dy; 0> —<[d, D.], Dy; 0}
—(=D)M*(D,, [d, Dyl; .

If the graded Poisson bracket is differential, then

7 (=1)E+ACD,, Dy; LG = d{D,, Dy; ) — (D, Dy; @)
IAI:_Q_LAP. Dy wy=0.

That is, d is a Hamiltonian graded vector field for w.

Conversely, let us suppose that ¢ is a Hamiltonian graded vector field for . The
graded commutator of two Hamiltonian graded vector fields D, and Dy is again a
,Im:.—:ﬁo:mm: graded vector field, ie.,

[D., Dgl = Dy = Dp,p-

Applying this to d, we have [d, D,] = D,,; in other words, the associated graded
| Poisson bracket is differential. a

| The graded symplectic forms of Z-degree 1 are those that produce graded
Poisson brackets of degree —1. Thus, according to Theorem 1.5, we have the
following

COROLLARY 4.4. A symplectic form of Z-degree 1, w, =d“}y, is differential
if and only if the nondegenerate tensor field L is a Poisson bivector.

The proof follows from the previous proposition, Theorem 1.5 and the expres-
sion of [ , ], computed in section 3.

A consequence of this corollary is that the Koszul-Schouten bracket defined by
a nondegenerate bivector field P comes from an odd symplectic exact form
wp=d%p, where P:T*M —TM is the linear isomorphism associated to the
bivector P.

5. Odd symplectic forms under the action of the automorphism group of (M)

The group of automorphisms, Aut Q(M), of the algebra of differential forms
acts by pullback on the space of graded symplectic forms. In this section we first
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study the space of odd symplectic forms under the action of the subgroup
Auty QM) = Aut Q(M) consisting of those automorphisms that induce the identity
on M.

THEOREM 5.1. Any odd graded symplectic form is of the form i *(w, ), where
w,, Is the graded symplectic form of 7-degree | defined by a linear isomorphism
L:T*M — TM, and v is an automorphism of QM) that induces the identity on M.

The result follows by an argument similar to that of [Ro] (Theorem 4) applied
now to the odd case. We develop it here because we shall refer to it later in the
proof of Theorem 5.2.

Proof. Any odd graded symplectic form, @, can be written as a sum
=@y + oE + ..., where @y, is of bidegree (2, 1), w, is of bidegree (2, 3), etc.
Now it is easy to see that wy, is again a graded symplectic form; so, by corollary
3.4 there exists a linear isomorphism L : T*M — TM such that o, = w,..

From d“e = 0 we have that d%em, = 0, thus by Corollary 3.1, wg, = d%ug, with
Heyy of bidegree (1, 3). Since w is nondegenerate, then there is a unique graded
vector field Y,,, defined by

(Yo = — ).
Note that Y, is a nilpotent derivation and therefore its formal exponential exp (D),
is finite and defines an automorphism of Q(Af). Let us consider the graded
symplectic form

(exp (Yo, ) * (@, + 0@, + 7)),
where (exp (¥5))* is the pull-back defined by the automorphism exp (Y.

An easy computation shows that the part of bidegree (2,3) of
(exp (¥)) (0 + ey +- -+ ) is

£5,.,00 + g, =dU Yoo, + wg, = —d%g) + 0, =0.

So, we have

(exp (Yy))*o =ap + O+ -,

where @, _y, is a graded form of bidegree (2, 2k — 1). By applying iteratively the
same argument we obtain at the end, an automorphism ¥ of Q(M), which is the
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composition of automorphisms of the type exp (Ya,), such that i *e is exactly o, .
Just note that with every iteration we raise the Z-degree of the remainder terms, so
we finally exceed the dimension of M. O

Now we study the space of differential odd symplectic forms under the action of
the subgroup, Aur§ QM) = Auty Q(M) consisting of automorphisms taken from
Auty Q(M) that commute with the exterior derivative.

In section 4 we have characterized those graded symplectic forms of Z-degree 1
that produce differential graded Poisson brackets, ie., the differential graded
symplectic forms of Z-degree 1. They are of the form wp, where P is the
isomorphism defined by a nondegenerate Poisson bivector P. On the other hand
Theorem 5.1 gives us a characterization of all odd graded symplectic forms.
Therefore, it is natural to ask if any differential odd symplectic form is the image
of a differential symplectic form of Z-degree 1 by the pullback of an algebra
automorphism of Q(M) that commutes with the exterior derivative. The rest of this
section is devoted to ascertaining the validity of this conjecture.

Our question is prompted by the following two facts: First, if ey, is a
differential graded symplectic form of Z-degree 1 and Y is an automorphism of
Q(M) that commutes with the exterior derivative, then, ¥ *(w,,,) is a differential odd
symplectic form. This assertion follows from i(d)oy*=y*ci(d) and
d% =% =y* o d° And second, as we have said before, any odd symplectic form is
the image of a graded symplectic form of Z-degree 1 by the pullback of an
automorphism of the algebra (M), and the graded symplectic form of Z-degree 1
is of the form w; where L : T*M — TM is an isomorphism. This automorphism is
not unique; it depends on the choice of a representative of the cohomology class of
closed graded differential forms of Z-degree greater than zero. (See for example the
choice of y3, in the proof of Theorem 5.1.) So, in some cases it may be possible to
choose this representative in such a way that the resulting automorphism commutes
with the exterior derivative.

The answer to the question is settled by the following

THEOREM 5.2. The following two conditions are equivalent:

(i) The Betti numbers of M, b,y vanish for k =2, ..., n.

(il) Any differential odd symplectic form is the image of a differential graded
symplectic form of Z-degree 1 by the pullback of an autemorphism of (M)
that induces the identity on M and that commutes with the exterior derivative.

Proof. (i) = (ii). We will prove that it is possible to choose suitable representa-
tives of the corresponding graded cohomology classes such that the resulting
automorphism of Q(M) commutes with the exterior derivative.
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Let us recall that the resulting automorphism in Theorem 5.1 is the composition
of the exponentials of graded vector fields of different degrees, i.e.,

W =exp(¥y) oo exp(Yy),

where the iteratively defined even vector fields ¥, can be written as (see Theorem
22)

Yory = L0y + i,y Where Qo € QHM; TM),
Lo 1y€ Q¥ W(M; T™).

_ Such automorphisms commute with the exterior derivative if and only if the graded
vector fields commute, i.e., if and only if they have no algebraic part. So, the choice
of representatives will be made in such a way as to delete the algebraic part of the
graded vector fields.

We are going to do this for the first step of the iterative process. For the rest,
similar arguments can be applied.

Let us suppose that o is a differential odd symplectic form that can be written
a8 O =wp+ e _yy+..., where P: T*M - TM is a linear isomorphism that
comes from a nondegenerate Poisson bivector P, k is a natural number greater than
1, and the dots denote terms of Z-degree greater than 2k — 1. Recall that the graded
vector field Y, -, is defined by

(Y~ 3)0p = — fak_1ys

where p_yy is a graded differential form of bidegree (1,2k —1) such that
dUy _ 1y = Wy _yy- By definition, d is a Hamiltonian graded vector field for o, so

d)w = d)wp + Hd)op 1y + -+ = —d%0p +d B+ ... .,

where @p is the symplectic form on M associated to P, and @, is a differential
form on M of degree (2k — 1). Let us show that the commutator [d, ¥, ] is a
Hamiltonian graded vector field of Z-degree (2k — 1) for wp. We have
i([d, u\ﬁ.vuscncv = T@%_ (Yo o)lwp = ..QMQA u\ﬁ»|wv8_uv =it( %ﬁ‘?.&x .@m@«.v
= I.thﬁ»iv = \_E:&n.:a»\ n) — &h_au.:ﬁrf 1
\&nﬁ&ﬁ»\: + Ud )iz —1y)-

Thus, [d, ¥, _2] is the Hamiltonian graded vector field associated to
( \Ql..ﬁkl 1k Aa&tﬁ» - :v.

Graded Poisson structures on the algebra of differential forms 399

On the other hand, the graded symplectic form w, produces a nondegenerate
Koszul-Schouten bracket; thus, applying proposition 2.6 to [d, Y5, _»)], there exists
v € Q*(M) such that

[d Yo pl=D,= ?.. ﬁ:... =L — Iy

Since the derivation [d, Y, _»,] commutes with the exterior derivative, it has no
algebraic part and this implies that dy = 0. The uniqueness of the decomposition of
derivations of Q(M) (see Theorem 2.2) implies that Yo, 5 =%, | — -

Using by, =0, we obtain y=df, with 0eQ* '(M). Note that
—(Hex 1y +d%0) is a graded form of bidegree (1,2k —1) such that
d9(—pgx 1y —d0) = 0y

Now the derivation

— N : i s LR — -
Zokn =Yoo 5= Do=Lp, 2~ by = (=Lowy — b)) = L 0z _zy+ o

where D, = [0, H_Ev. satisfies (Zy 2))0p = O _1y. So, we have obtained a graded
vector field that commutes with the exterior derivative.

Using this fact, exp (Z; 1)) *(w) is a differential graded symplectic form that
can be written as wp + Wy ; 1, + .. . . This iterative process produces a symplectic
form which, at each step, yields ey, plus a term of Z-degree higher than the previous
one. It obviously terminates when the Z-degree exceeds the dimension of the
manifold M.

(ii) = (i). Given k € {2, ..., n}, let « be a differential form on M of degree 2k,
such that do = 0. We shall show that a is an exact form.

Let Ay be the graded form of bidegree (1, 2k — 1) defined as follows,

iys Aoy =0, (Ly; L_N_T:v = —iyo.

Now consider the graded symplectic form o = @p + d%Aq; .

The Hamiltonian graded vector field for w associated to the differential form on
M (—@p + (2k — 1)) is the exterior derivative: that is, 1(d)w =d%( —a@p +
(2k — 1)2).

By hypothesis, every differential graded symplectic form, w, is of the type
@ = r*(wp) where | is an automorphism that commutes with the exterior deriva-
tive. So, we obtain

d%(—@p + (2k — Do) = ld)o = 1(d) *op = ¥ *i(d)wp = dW( —@p)),

that is, Y( —@p) = —@p + (2k — 1)a. Note that §( —ap) € Q(M) is equal to a sum
of two terms of degree 2 and 2k respectively.
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At this point, let us recall a result from [U] that guarantees that any automor-
phism that commutes with the exterior derivative can be written as,

Y =exp(Zg,

2m)

Yor-o mxﬂah‘wﬁuu o ¥,

where ¢ is a diffeomorphism of M and K,y € Q¥(M; TM), for r=1,...,n.

We apply this fact to our case and equate in WY(—dp) = —@p + (2k — l)a the
terms of the same degrees. The only terms that do not vanish are those of degree
2 and 2k, ie.,

?E I&lv@ S %A Inmmv = —p,
(W (= &p))any = (L LLA —@p) = \&nﬂ# 0= (2k — Do

Therefore, o = —1/(2k — 1) di,, ,@p is exact. O

Let us suppose that M is a compact symplectic manifold with dimension greater
than 2. It is well known, see e.g. [Po] Theorem 8.8, that M has non zero even Betti
numbers. In particular the Betti number 5, does not vanish. Therefore, condition
(ii) in Theorem 5.2 is not satisfied. This means that there exist differential odd
symplectic forms on M which are not in the Autd Q(M)-orbit of a differential
graded symplectic form of Z-degree 1.

6. Nondegenerate even Poisson structures

In the previous sections we have studied the class of nondegenerate odd Poisson
structures that are differential. The situation is different for nondegenerate even
Poisson structures. The same condition, d is a Poisson derivation, does not distin-
guish a class of even Poisson brackets.

PROPOSITION 6.1. There are no nondegenerate differential even Poisson brack-
ets.

Proof. We are going to prove that there are no differential even symplectic
forms. An even symplectic form can be written as © =g, + @ +... . In
particular, it defines a symplectic form on the manifold M, @, determined by the
following expression

(X, Y):={Ly, Ly; Wy ) = Ty ({ L, Ly; D),
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where mg, () € Q°(M) denotes the degree 0 component of the differential form
o€ (M), and X and Y are vector fields on M.

If d is a locally Hamiltonian graded vector field for @, then
Ud)o = i(d)og, + (d)wz, + . . . is a d9closed graded 1-form of odd degree, but it
is easy to check that i(d)w, is not d%-closed. Indeed, if X, Y are two vector fields
such that @(X, ¥) #0, then

{Ly.iy; a.nm_ﬁkvochsuv
=Zy({iy; A&ES. W= iy({ZLx; ;&EAE ) =< L, iv]; AaCE.Ev
=iy({Zy,d; wp>) = (X, ¥) #0. =
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