JOURNAL OF

Journal of Geometry and Physics 10 (1993) 315-343 CGEOMETRY ano
North-Holland PHYSICS

Existence and uniqueness of solutions to
superdifferential equations

J. Monterde !

Dpto. de Geometria y Topologia, Facultad de Matemadticas, Universitat de Valéncia,
C/Dr. Moliner 50, 46100-Burjasot (Valéncia), Spain

O.A. Sanchez-Valenzuela 2
Centro de Investigacion en Matemdticas; Apdo. Postal, 402; C.P. 36000 Guanajuato, Gto., México

Received 28 May 1992
(Revised 9 October 1992)

We state and prove the theorem of existence and uniqueness of solutions to ordinary
superdifferential equations on supermanifolds. It is shown that any supervector field, X =
Xo + Xi, has a unique integral flow, I': RU! x (M, Ay) — (M, Ay), satisfying a given
initial condition. A necessary and sufficient condition for this integral flow to yield an
R'l!-action is obtained: the homogeneous components, Xy, and, X, of the given field must
define a Lie superalgebra of dimension (1,1). The supergroup structure on R!I!, however,
has to be specified: there are three non-isomorphic Lie supergroup structures on R!/!, all
of which have addition as the group operation in the underlying Lie group R. On the other
extreme, even if X, and X; do not close to form a Lie superalgebra, the integral flow
of X is uniquely determined and is independent of the Lie supergroup structure imposed
on R!'. This fact makes it possible to establish an unambiguous relationship between the
algebraic Lie derivative of supergeometric objects (e.g., superforms), and its geometrical
definition in terms of integral flows. It is shown by means of examples that if a supergroup
structure in B! is fixed, some flows obtained from left-invariant supervector fields on Lie
supergroups may fail to define an R!!!-action of the chosen structure. Finally, necessary and
sufficient conditions for the integral flows of two supervector fields to commute are given.

Keywords: Supermanifolds, superdifferential equations, Lie supergroup actions
1991 MSC: 58 A 50, 58 C 50, 58 F 25, 34 A 12; secondary: 34 A 26, 22 E 20

! Partially supported by the Spanish CICYT grant #PB90 — 0014 — C03 — 01.
E-mail address: monterde@vm.ci.uv.es

2 Partially supported by MRLTA/90-92, and CONACY T-México.
E-mail address: saval@unamvml.dgsca.unam.mx

0393-0440/93/$% 06.00 © 1993 — Elsevier Science Publishers B.V. All rights reserved



316 J. Monterde, O.A. Sanchez-Valenzuela / Graded differential equations

1. Introduction

We prove here the theorem of existence and uniqueness of solutions to su-
perdifferential equations on supermanifolds. This work is based on two previous
approaches—each one followed by each of the authors separately (refs. [7] and
[9], respectively). Both predecessor papers dealt with the problem of integrat-
ing supervector fields on supermanifolds, but the results reached by each one of
them were only partial. In ref. [7], a unique way of integrating even supervector
fields was obtained, but ad hoc techniques were required for the odd ones. Even
50, not all of them could have an integral in the sense defined there; integral
flows in ref. [7] depended only on one real parameter ¢ € R. On the other hand,
the approach in ref. [9] provided a better way of making sense of the ordinary
differential equation defined by any supervector field. This was achieved by
introducing R!!" as the parameter superspace to carry out the integration, and
by using the evaluation morphism on points to completely determine the C*>
functions that build up the flow. The proof of the theorem on existence and
uniqueness of solutions there, was based on the ideas of the pioneering work of
Shander [13]: To determine first the normal forms for the superfields so as to
actually carry out the integration on the simplest coordinate version of each. The
normal-form problem, however, was not solved in ref. [9], and the theorem was
therefore proved only for a subclass of supervector fields: those having a normal
form in R!I'. Nevertheless, these included the known examples in the literature
so far, and provided some new ones (cf. refs. [5,2,13]).

We are now very pleased to communicate in this paper the best statement of
the theorem, and its most unrestricted proof: i.e., one without any regard on
parities, normal forms, special integrating parameters or techniques, etc. (cf.
theorem 3.5, below). But before giving the details, it is pertinent to make some
comments about the nature of the problem, the nature of our approach, and the
significance of the results.

First of all, the problem of posing ordinary differential equations on super-
manifolds (or, on any similar geometric category), combines the supervector
field to be integrated, X, with the solution of the equation, I', so as to I'-relate
X with some fixed derivation D in the integrating parameter superspace, 7. We
call the pair (7, D) the integrating model for the equation. Thus, the starting
point is always the equation,

Dol =" elX, (1.1)
(cf. section 2 below for precise definitions and statements). Since I™ is a map

of superalgebras, it preserves the Z,-grading, and therefore, eq. (1.1) may im-
mediately be split into two equations; namely,

Dyol’'™ =I'*o Xy and Dol =T"o X, (1.2)
where, X = Xy + X, and D = Dy + D, are the corresponding Z,-decomposi-
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tions of X, and D. In particular, to integrate odd superfields one requires at least
a non-zero D;. On the other hand, since the supercommutators of two I -related
derivations are again I"-related, it follows from (1.2) that

[Do,Dy]oI'™™ =T"o [Xo,X,] and [D,,D\]ol™ =1I"0 [X,X]. (1.3)

These relations may produce some non-trivial conditions on the superfields X
to be integrated depending on the values of [Dg, D; ], and [.Dy, D, ]. It is natural
to assume that the integrating parameter superspace 7 is a Lie supergroup, and
that Dy, and D, are left-invariant supervector fields, so that they form a (1,1)-
dimensional Lie superalgebra. If this is the case, there are real constants a, and
b (and in fact, a b = 0), such that

[DQ,D[] =aD| and [Dl,Dl] :ng. (14)

In particular, if I"* happens to be monic (cf. ref. [1]), (1.1) becomes a well-posed
equation only for those superfields satisfying the “integrability conditions”,

[Xo,X1] =aX, and [Xy,X] = bX,. (1.5

There are, however, various reasons to pursuit the idea that any supervector
field must be integrable, in the sense of giving rise to an integral flow, I': T x
(M, Apr) — (M, Aypr). In fact, an integral flow for any superfield is needed in
order to relate the dynamical (geometrical) definition of the Lie derivative of
any supergeometrical object (e.g., superdifferential forms), to its corresponding
algebraic characterization. The latter usually makes good sense, no matter what
superfield is chosen to take the derivative along to. The best example at hand is
this: the Lie derivative of any superform w, may be defined algebraically by

Lyw=i(X)odw + doi(X)w, (1.6)

without imposing conditions like (1.5) on X. One would like to understand this
formula as the quantitative result of a geometrical assertion: the rate of change of
w along the flow generated by X. In particular, one would like to conclude that
when the Lie derivative of something is zero, that something does not change
along the flow. This is the crucial step in proving some geometrical assertions. To
quote a concrete example, let us mention that this result is needed to show that
the integral flow of a supervector field acts by supersymplectic transformations,
if and only if it is superhamiltonian (see for example, refs. [10,12]; see also refs.
[6,11] for the basics of supersymplectic supermanifolds).

The way to suppress the conditions on the homogeneous components of the
field, and to produce a uniquely determined integral flow for any supervector
field, is to pose the differential equation in terms of the evaluation morphism on
points of the superparameter space 7. This was precisely the main contribution
of ref. [9]. We recall that in the category of supermanifolds there is a unique
terminal object: a single point with the constant structure sheaf R. It is natural
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Table 1
ul(t. 7)), (t2,12) ) Dy D,
Type 1 (6 + 12,7y + 72) (o] dr
Type 2 (ty + 12 + 1172, 7y + T2) O dy + T
Type 3 (¢, + 12,73 + €27y) Jr + Ty dy

in terms of it to produce an evaluation morphism on points, and to make sense
of, ev|;=y,, as a morphism of superalgebras. Thus, the differential equation must
be (cf. section 2 below for the precise definitions),

eVlipo Dol = evlj=yo [ o X. (1.7)

What remains then is to select a specific integrating model, (7, D). Now, the even
part of any supervector field on (M, Ay) canonically projects onto a smooth
vector field X on M whose integral flow always defines (locally, at least) an
action of the additive group R on M. Therefore, it is only natural to require that
Ted = R, and the underlying smooth map # of the Lie supergroup operation
u: T x T — T be addition in R. On the other hand, letting Dy, and D, be left
invariant supervector fields, the possible choices are forced by the following
procedure: First, determine all the (1, 1)-dimensional Lie superalgebras over
the reals. Then, look at their corresponding connected, simply connected, (1,1)-
dimensional Lie supergroups having addition as their underlying opération in
R. Finally, realize Dy, and D, as left invariant supervector fields. It turns out
that there are three different (1, 1)-dimensional Lie supergroup structures on
R!I! extending addition on R. We shall label these structures by the numbers 1,
2, and 3. Thus, if (1.4) is satisfied, the corresponding Lie supergroup structures
on R!!', and their left invariant supervector fields are given according to table
1.

(The Lie supergroup structure of type 2 is locally isomorphic to the supermul-
tiplicative structure given by g ( (¢, 71), (£2,72) ) = (t1t2 + 7172, £1T2 + 127y).)
Note that D = Dy + Dy, is always of the form:

D=a;+af+TD".

Now, one can prove that the integral flow obtained when using D is exactly
the same as that obtained when using &; + 9. (cf. section 2.3 below). In other
words, for the sole purpose of determining the integral flow, I': R x (M, Ayy) —
(M, Ayr), the detailed supergroup structure on R!!! is irrelevant as long as the
differential equation is posed as in (1.7). When it furthermore happens that the
homogeneous components of the supervector field do form a (1, 1 )-dimensional
Lie superalgebra, the differential equation may be posed as in (1.1) without the
evaluation morphism, and a Lie supergroup action of the R!! supergroup cor-
responding to that Lie superalgebra is defined by the integral flow (cf. theorem
3.6 below).
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Note that conditions (1.5) have nothing to do with the integrability criteria
given by Frobenius theorem on the bundle that trivializes the particular super-
manifold on which X is defined: egs. (1.5) are stronger because a and b are
real constants. When these conditions are not satisfied, all what happens is that
the integral flow does not behave like the real one-parameter exponential of a
C> vector field. The integral flow exists, but it fails to define a Lie supergroup
action of R'l' on (M, A, ). This phenomenon might be exaggerated if a definite
integrating model is fixed. For example, fixing the Type | supergroup structure
as the integrating model (7, D), the integral flow obtained for a non-even left
invariant supervector field on the Lie supergroup GL(1|1) (i.e., the multiplica-
tive supergroup structure on R!I') does not define a Lie supergroup action of 7.
The reason is of course that the Type 1, and Type 2 structures are not isomor-
phic: The exponential morphism—understood as the “point” determined on the
supergroup by flowing along the integral “curve” of a left invariant supervec-
tor field after a unit of “time” from some prescribed initial direction—does not
provide a Lie supergroup homomorphism in this case.

The main results of this work (theorems 3.5, and 3.6) are presented with no
commitment to any particular type of supergroup structure on R!/'. Our original
approach made use of a specific choice (Type 1) arguing that for such a super-
group structure the correspondence that makes it possible to view an arbitrary
section of the structural sheaf of a given supermanifold as a morphism from the
supermanifold into R!I' was addition preserving. However, M. Rothstein has
pointed out to us that in so doing one leaves out some of the interesting Lie
theoretic phenomena arising from the integration process. Besides, almost no
new work had to be done in order to present the results in the more general
setting because the actual computation of the integral flow I" does not depend
on the Lie supergroup structure of R,

The paper is organized as follows: section 2 gives the basic definitions, and
it is based on ref. [9]. The various Lie supergroup structures on R!!! are given,
and it is shown that for the actual determination of the flow only &, and d; may
be used. Section 3 states the theorem of existence and uniqueness of solutions.
Its proof is considerably reduced to the proof of the same theorem for an even
superfield, Xy, but this is precisely the theorem proved in ref. [7], which we
translate so as to fit with our general scheme here. Following refs. [10,12],
we define in section 4 Lie derivatives of superforms in terms of our integral
flows and show that one may compute these Lie derivatives algebraically with
only interior multiplication, and exterior differentiation, as expected. Finally,
section 5 provides the details for determining the left invariant supervector
ficlds of the different Lie supergroup structures of R!I'. Needless to mention
the relevance of having settled the integration question, as it is a fundamental
tool in some applications. Concretely, we are thinking of some physical and
geometrical considerations involving the Euler-Lagrange equations studied in
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ref. [8], and Hamilton’s equations studied in refs. [10,12]. We also hope that
the methods developed here will be of some help in the infinite dimensional
theory of superintegrable systems developed mainly in ref. [4].

2. The ODE problem on supermanifolds

2.1. DEFINITIONS, CONVENTIONS, AND NOTATION

We shall refer the reader to refs. [3,5] for definitions. Our conventions are
the following: A supermanifold shall always mean a real supermanifold; it is a
pair, (M, Ay ), with M some m-dimensional real smooth manifold, and .4, the
structure sheaf of real superfunct_ipns on M. A morphism (M, Ay ) — (N, Ax)
is a pair ¥ = (¥,¥*), with ¥: M — N continuous, and ¥*: Ay(N) —
Ap (P~1(N)), a map of R-superalgebras commuting with restrictions. The ter-
minal object is ({x},R); a point with the algebra of constants on it. The terminal
morphism, (M, Ay ) — ({x}.R) shall be denoted by C. By definition, a super-
manifold has a preferred embedding, d: (M,C53) — (M, Ay ); its superalgebra
map, d*: Ay (M) — C37 (M) shall be written, f — f Each point x € M de-
fines a morphism dy: ({*},R) — (M, Ay), by letting, ;" Ay (M) — R, be,
[+ f(x). The composition &, o C gives a superalgebra map closely related
to this: [ — f{x}l,{mm. Note that the domain can be any supermanifold.
We shall write Cy, and evl|y, instead of d, o C, and (J, o C)*, respectively. In
products, with underlying points (x,y) € M x N, the notation ev|, stands for
(Cx x idy)*; it pulls back superfunctions on M x N to superfunctions on N.

An (m,n)-dimensional superdomain shall always be understood as a coordi-
nate superdomain; i.e., an open coordinate domain, U, in some R™, and the
exterior bundle, A R", based on the trivial rank-n-bundle, R", over /. When
U = R™, the corresponding superdomain, (R™, " (AR")), shall be denoted by
R™"_ It is convenient to write & C R™I" for the restriction of the structure sheaf
I'(AR") on R™, to the open domain U c R™. Thus, U = (U, (AR") )

2.2. ODE’S ON SUPERDOMAINS

Let (M, Ajps) be a supermanifold, and let Der Ay, be the sheaf of superderiva-
tions of Ays (M ). Supervector fields on M are sections of Der .4,,. Each supervec-
tor field X defines in aEnique fashion a smooth vector field, X € Der C* (M),
by letting, jf(f) = X;;.{f), for each f € Ay (M) (cf. ref. [3, section 2.8]). It is
well known that X, gives rise to a collection of smooth maps, {¢, };cg, for which
the following is true (cf. ref. [15]):

For each t € R, there exists a maximal open subset V, (X) c M, and a smooth
map, ¢, Vi(X) — M, such that
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(i) d(x) = y(t,Xx), for each x € V.(X); y being the unique integral curve of
¥ through x at t = 0, and defined on its maximal domain {t cR | x € P}(X}}

(it) ¢ Vi( X))V (X)isa diffeomorphism whose inverse is ¢ ;.

(ii)) Vo(X) = M, ¢o = idy, and Vi (X) C Vi, (X), if 1, 2 12 2 O, or
h <t <0 x 7

(iv) Upo Vi(X) = U V(X)) = M
Furthermaore, for each x € M there is an open subset V (X) c M,and somee >0,
such that the map (1,y) — ¢, () is smooth and defined on (—e.€) x Vi (X).

In particular, the subset V(f) ={(tLx) ERxM|xe€ V;(f}} is open, and a
smooth map ¢ : ' (X) — M can be defined by ¢(1,x) = ¢,(x); equivalently,
there is a well defined homomorphism ¢*: C*(M) — C*(F (X)), ¢*(f) =
[ o ¢, which is the unique solution to the equation

Dod* =g*e X (2.1)
subject to the initial condition ¢(0,x) = x. We have written D for the lift to
¥V (X) of the vector field d/ dt defined on R. This lift is uniquely defined by the
conditions Dop;* = p;*o d/dz, and Dop; = (; p,, and p; being the projections

of V(X) c R x M into the corresponding factors. Note that (2.1) is equivalent
to the following equation in C> (M ):

EV|‘:ED of)o@}* = CV|'=[,DO¢'O.?._ (2.2)

for each ty € py(V (X)). Now let Vx be the open subsupermanifold of R'I! x
(M, Ay ) whose underlying smooth manifold is ¥ (X). A solution to the Z;-
graded differential equation defined by X, is a supermanifold morphism,

such that, for each {; € R,

evl,_, oDol* =ev|,_, ol"oX, (2.4)

=i

subject to the initial condition,
I'o (Cy xid) = id. (2.5)

Equality (2.4) is set between superderivations of the sheaf .A;,. We have written
D for the lift to Vy of a preferred superfield, D, on R!I' (cf. section 2.4 below).
This lift is defined by the conditions D o p;* = py* o D, and Dopy = 0;
p1, and p, being the projections of Vy into the corresponding factors (which
are open subsupermanifolds R!!! and (M, Ay ), respectively). The evaluation
morphism ev/|,_,, is used to pull the superfunctions in Vy back to (M, Ar) (cf.
refs. [5,9,1]). Note that the initial condition (2.5) may be rewritten as,

R (2.6)

for any superfunction [ € Ayy.
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2.3. ON THE ROLE OF THE EVALUATION MORPHISM

It is worth our while to actually appreciate the difference between eq. (2.4)
and
Dol* =T"oX. (2.7)
In order to do this we shall work on the supermanifold R”!", and we shall write
equations (2.7), and (2.4) in local coordinates for an arbitrary derivation D in
R!!. Let {£,7} be a set of local coordinates in R!/!. There is no loss of generality
in assuming that the integration model is locally of the form

D=(l+at)d+ (1+p17)0, (2.8)

where a, and # are smooth functions of 7. Now, let {x’;6#}, be a set of local
coordinates in &4 ¢ R™!", Let X be some given supervector field on i/, and write
it in these local coordinates as

Xi=D (A" + 3 AL0" + > 4;,6"6" + ) G

i M n<y
i (B" + 2 B0 + ) BLOYE + - ) Byt . (29)
p v By

Let I” be a morphism R!!' x Z{ — #. We shall write it in coordinates as

?6+Z?if3"+21’;w3ﬂ9”+'“”
v

u<y

I=x*

I

0% g;7+2359”+2gﬁ,18“6”+ Z g‘fﬂvﬂ’.—ﬂﬂﬁ"’+...,
v

p<v icp<y (2.10)

where, in fact, we should have written p;*t, and p;*6*, instead of just 7, and @,
as we just did, for the local coordinates on R'' x i (p; being the projection onto
the jth-factor of the product R'' x ¢/). Let us further simplify the notation, and
write

F'xi — (?En} + }’iz) + ) 47 (3’{[) + P{].;. + )a

et = T(gfo) ek grzy o ) P {g?” + gfg) + ): (2“}
where ‘(k)’ denotes the Z-degree of homogeneity in the odd variables {64}.
Then,

j-**Xxl' — (},(0)*Af gL Z},{O]-AL&,EJ]) + - )

+7 (Z Yoy AL &Ly + an‘ﬁxm"w{l, + - ) ;

J
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T*X6F = (yo)*B* + Y _v0y'Bigly + )
18

¥ J

where use has been made of the fact that for any C* function f on U, I"" f is
given by f oy + T3 720705 f © ¥y + *--. On the other hand, we have

— ‘ + ,‘ s .l' I r
Dr*x' = (yop + 7 +°) + ay + ¥y + )
. ? . ] r . r
+ 1[a (}’im =+ J’EE} + 1) + (?Eu + 76y +-°)
+ By + 7 + )]
— - i
DF 8# — (g{ﬂ,o) + gfz} + “') + (gf” + 3?3; -+ "']

+ T[(gﬁ)}! + 35‘2]’ Rl } + o (3:4”’ + giu;}r + )
+ B(gly + &y + )] (2.13)

If the definition of the superdifferential equation is given without the evaluation
morphism in front of it, these local-coordinate cxpressions yield two separate
systems of equations; namely

1 L . gl *
Yoy = Yo*4', 8oy = Y BY,
5 - i !
Yy = D ro 4l gl &hy = D re Bl gl
15 43

e s i (2.14)

= san s
and
s i ! *
aYi = Z?WJ“AL &0y gloy + 8ty = Y_ v B gloys
v @

j= 1 i * FE ! " "
Yy + B2y = Do dud'vy, agpy = EJ’WP 0B 1)),
] J
3 o ot Sl = (2.15)

It is intuitively clear from these expressions that a unique solution exists to
the first set of equations: The first equation in (2.14) is classical. Its unique
solution, y(gy, may be plugged into the equation right in front of it to determine
uniquely the coefficients gfm. In fact, 7() must be plugged into every single
equation of the system. The next equation to solve is the second on the right
in order to determine uniquely the g(;,’s. Then go to the equation on the left
to determine the {,)’s in terms of the g{},’s. It is clear that this “shoe-lace”
manner of solving the first set completely determines the coefficients of the flow
in a unique fashion. Now, the second set of equations arises from the coefficients
of 7. Since the flow coefficients are already determined, the second set must be
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thought of as identities that ought to be true among the coefficients of the given
superfield. If no restrictions are imposed on the superfields to be integrated,
the second set of equations should not be there at all. The way to do this is
precisely by formulating the differential equation of the superfield X with the
evaluation morphism in it, so that the equality (2.7) really means a congruence
(mod 7); but this is precisely what eq. (2.4) says. We shall see in theorem 3.6
below precisely under what circumstances the superdifferential equation can be
posed without the ev-map.

2.4. ON THE CHOICE OF THE INTEGRATING MODEL

Note that once the ev-map is made part of the definition, the system of equa-
tions obtained from the model D, and that obtained from the model D + D’ are
exactly the same. This can be readily seen, either from the fact thatev|_, 7 =0,
or from the coordinate expressions above. (Note that the system (2.14) obtained
from the full derivation D, is exactly the same as the one obtained from 8, + d: ).

Now, one may argue that if some pair of homogeneous fields, Dy, and Dy, is
chosen as model for the integration of all supervector fields, they must form a
Lie superalgebra. In fact, Dy, and D; must generate the Lie superalgebra of left
invariant supervector fields on a (1, 1)-dimensional Lie supergroup. If further-
more, the integration theory of supervector fields is required to reproduce the
C> theory under the canonical morphism A — €35, the underlying Lie group
must be R with its additive structure. It is well known (and easy to see) that
up to isomorphism there are only three (1, 1)-dimensional Lie superalgebras;
labeling them with j = 1, 2, and 3, their structure may be displayed as follows
(multiplying Dy by a constant if necessary, one may assume thata = l,ordb = 1
in (1.4)):

[Do.D1] = dj3 Dy and  [Dy, D] = dj2 Do

To realize Dy, and D, as supervector fields satisfying these commutation rela-
tions on the (1, 1)-dimensional Lie supergroup, local coordinates {f, t} may be
chosen in such a way that

Dy = 6, + atd;, and D, = 8; + b1d,, (2.16)

where a and b are real constants satisfying ab = 0. (If the constraint on Dy,
and D, to generate one of the Lie superalgebras above is not imposed, 4, and b
would be arbitrary smooth functions of 7). By formal exponentiation of the Lic
superalgebra elements one obtains formally some ‘Lie supergroup elements’ from
which the supergroup operation may be obtained. Now, for the sake of clarity
we shall state first the explicit operations, y;: R'I! x R!I! — R!'I' (j = 1, 2, and
3) that endow R'!! with a Lie supergroup structure (propostion 2.1 below), and
recover a posteriori the corresponding left invariant supervector fields (section
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5 below). Thus, we have the following result whose proof is a straightforward
verification using the techniques of ref. [1]:

Proposition 2.1. Let {1, 1} be the standard supercoordinate system on R'! (ie.,
t is the linear functional R — R dual 1o the basis element 1 € R, and 1 is the
generator of N(R1)* dual to t*). There are three different supergroup structures
on R whose composition morphisms, w;: ®'' x RN — RU (j = 1, 2, 3), are
respectively given by the following superalgebra maps:

(p1™t 4 p2"t,p1"T + P2°1); Sl
WLu'e) = (prt+prt+priptoptt+ p2tn); j=2,  (217)
(1™t + pat,eP!py* 1 + py*t)); Jj=3

where p,, and p, are the projection morphisms of RMN' x R into their factors. In
all cases, the identity morphism is given by ev|,_o, and the inversion superdiffeo-
morphism o: RN — RYY s given by

=L : | = 172,
ot L T (2.18)
(_I:_E-,T); JI = 37

Remark. It is shown in section 5 below that the homogeneous generators for the
corresponding Lie supecralgebras of left invariant supervector ficlds are given by

":)l .I = ])27 lF"|‘l' .j e 11 31
Dy and D, = (2.19)
I:); + 1'37 _] = 3, f')t + T(?; j = 2

In what follows, it will be assumed that D = 9, + 9, + © D}, with,
D= 5,8, + 020 i=1.23. (2.20)

3. Existence and uniqueness of solutions to super-ODE’s

By Batchelor’s theorem, any supermanifold (M, Ay, ) is isomorphic (although
not canonically) to a supermanifold of the form (M, I" (A E)), wherem: E — M
is a smooth vector bundle. The proof of existence and uniqueness of solutions to
super-ODE’s in a supermanifold (M, 4 ) can be reduced to the same problem in
a graded manifold of the Batchelor kind. This is a consequence of the following.

Lemma 3.1. Let 0 : (M, Ay) — (N, Ax) be a supermanifold isomorphism.
Let X be a supervector field on (M, Ay ) and let Vy be the maximal domain of
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definition of some solution, I': Vx — (M, Ayr), to the ODE defined by X
ev|r=ruofjor*=m-|£=_,0or*ox, (3.1)

Let 6, X = (67')* o X o 6* be the supervector field on (N, Ay) induced by o
and X, and let p;, and p, be the projections of the product R'l' x M onto their
corresponding factors. Then, o o I" o (py x 0" o py) is a solution to the ODE
defined by o, X, and its domain of definition, o (Vx), is maximal. Furthermore,
if T is a unique solution satisfying (2.6), then d o I' o (py x 6~ o py) is also a
unique solution satisfying a similar condition for superfunctions in Ay.

Proof. We shall write DM, and DV, for the lifts of D to R x (M, Ay), and
R x (N, Ay ), respectively. The fact that g o I" o (p; x 6~ o p;) is a solution
to the equation defined by ¢. X, is a consequence of the following equalities:

€V]t=ty © DV o (p1 x oo pi)ol*oa®
= eVliepo (prx0 o p)* o DM o 0"
— (o-_]]"ocvh-:ro ODMOI-‘*OG*

= (67 ") oev|jeyo ™o Xo0"

= eV|jmo (py x o o p)* ol o0c" 0 (=) o Xog’

= eV|i=r,0 (1 x 37 o p3)* o I'* 0 0% 0 (6,X),
where the following facts have been used:
DVo (pyxa™ o p3)* = (p1 x 0" o py)* 0 D¥,

eV]i=gy © (21 % o o)t = (a7 1) ev|i=4,-

The maximality of the domain can be easily deduced arguing by contradiction,
and using the facts that ¢ is an isomorphism, and that Vy was assumed to be
maximal. The uniqueness part of the statement is proved similarly. O

Remark. This lemma implies that if we know how to integrate ODE’s in Batchelor
supermanifolds, then we also know how to integrate them in any supermanifold.
Moreover, the non-canonicity of the Batchelor isomorphism is not a problem: Let
us suppose that g; : (M, Ay ) — (M, I'(NE;)), I = 1,2, are two isomorphisms
and that X is a supervector field on (M, Ay ). Then, the supervector fields
(61).X and (g3).X are related by the isomorphism o, o (g,) ~'; hence, by the
lemma, their integrals are also related, and once the uniqueness question is
settled (cf. prop. 3.2, and theorem 3.5 below), they will define the same solution
in (M, d).

From now on we shall assume that (M, Ay) = (M, I'(AE)), wherern: E —
M is a smooth vector bundle. For the sake of simplicity, we shall occasionally
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write M for the pair (M, Ay ). Let X € Der Ay (M) be a supervector field,
and assume " is a morphism, Vy — M, satisfying (2.4), and (2.5). As we
pointed it out in the introduction, the fact that I'*, and BV|:=:0 are morphisms
of superalgebras, makes it possible to split the differential equation (2.4) into
two equations:

LU Lhee 4
eW;:;,,"DU"r = CV|:=:D°F o Xy and

= (3.2)
ev[f_:rn oDjol™ = ev|t=:a ol oy,

where X = Xy+ X,and D = D+ Dy, are the corresponding Z,-decompositions
of X, and D. We shall assume that Dy, and D, are the generators of the left-
invariant supervector fields on R'' for one of the Lie supergroup structures
listed in proposition 2.1. Due to the first observation made in section 2.4, the
integral flow I” only depends on the congruence class of Dy, and D;, modulo ;
whence only on d;, and d;, respectively.

Now, for the proof of the existence and uniqueness theorem we shall follow
the methods of ref. [7]. Let X be the supervector field on Vy defined by the
conditions X op* = Oand Xop,* = py*o X. Since p;* is monic, it is easy to sce
that the map X ~— X is monic. We shall make use of the Type 1 structure in our
first few results, but only to apply the main result of ref. [7, proposition 3.2], and
to find explicitly the integral flow in terms of an auxiliary Type 1-R'l'-action,
@ (see theorem 3.5 below). Once this is done, the question of whether or not
the integral flow defines a Lie supergroup action can be stated as in theorem 3.6
below, without having to compromise with any specific choice.

Proposition 3.2, Let Xy be an even supervector fieldon (M, Ay ) = (M, I'(ANE)),
and let the notation be as in section 2.3 above. There exists a unique solution @:
Vx, — M, to the equation

5. 0.0 = Do Xy,

satisfving the initial condition ev o®@* = id. Furthermore, the solution @
satisfies the following properties:
{{f) (v A Xu = XU o @*.

(ii) @ defines a Type 1-R''-action.

li—o

Proof. This is simply theorem 3 of ref. [7]. The only subtle point is this: Ac-
cording to ref. [7], @ defines a (local) R-action. The statement that it defines
in fact a Type 1-R'I'-action follows easily because d; o @* = 0. 0O

Remark. The proof of this result in ref. [7] was carried out with the help of
a linear connection defined on the bundle E. The connection was only used
to have manageable expressions of supervector fields as derivations. Its role is
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unessential; in fact, the solution found turns out to be independent of the linear
connection, as expected (e.g., one may argue by uniqueness). On the other hand,
it is interesting to note that an essential use of the underlying C* flow of X is
made in ref. [7] in order to determine the maximal domain of the solution. Now,
if one proceeds naively integrating the local expressions (2.14) one can easily
get convinced that, up to first order in the odd variables, there will be a unique
solution I" of (3.2), such that I' = 7(0) 1s the smooth flow on the coordinate
neighborhood U generated by Y= S A'0,:, and g(y) is the parallel transport
on E with respect to a connection V uniquely determined by the order-one
coefficients of the odd part of the field X. In fact, one may think of  — g, (f)
as a curve on End E, which in view of the initial condition (2.6) gocs through
the identity at 1 = 0. But then, the differential equation for g, in (2.14) is
simply the equation that defines parallel transport on E along 79, with respect
to the connection form whose matrix is (B ).

We shall now turn to the integration of odd supervector fields.

Lemma 3.3. Let X bean odd supervector field in (M, Ayr). Let Xo € Der Ay (M)
be even, and let @:V — M = (M, Ayr) be its unique integral flow as in proposi-
tion 3.2 (v c R x M). Let p,, and p, be the projections of the product R!' x M
onto their corresponding factors, and let c: R'' — R be the inversion superdif-
feomorphism on the Type | Lie supergroup structure of R\ (c¢f (2.20) above).
Define,
D, = (pxDP)o(aop xp): V-V

Then,

(i) @, is a superdiffeomorphism whose inverse is . =D,

(i) o B 0 Xy o By = P o [Xo, X1] 0 B,

(iii) The integral flow of @,~" o X, 0 @, is p: W — V, with

p* = M2 + (2171) (2" o Dy~ 0 Xio®D):

W c R x vV, and n,, and n, the projections of RMN' x V' into their corresponding
factors.

Proof. The first assertion follows from the fact that @ is an action: Indeed (cf.
ref. [1]),
(ppxPolaopxp))o(prx@P) =pyxDPo(aop xP)
=P xPo(Cyxpy) =pXps.
The second assertion requires a little work to establish the following facts:

_(a) 5,0 (p1xD)* = (p x D) (9, + Xp), i.e.. (py x @) is the integral flow
of 9, + X, with no need of the ev-morphism (cf. proposition 3.2 above).



J. Maonterde, O.A. Sdanchez-Valenzuela / Graded differential equations 329

(b) d0X; = X;08,.

(c) (@opy xpa)*oXg=Xgo (aop; xp2)°

(d) (aopy xp2)*0d = =00 (aop x p2)*.
Now, these may be proved by showing that both sides of the stated equalities yield
the same answer when applied to an arbitrary element of the form p,* /' p,* g,
with f a superfunction in R'l', and g a superfunction in (M, .Ays). Thus, for
(a), we have

Qo (p1 x D) (p1*f p2'g) = 8ilpr”f D*g)
(21" (0.0)) (@*g) + (11*f) (B0 DP*g)
(21" (8f)) (D*g) + (11" f) (P* 0 Xog).

On the other hand,
(D1 x D)* o (8 + Xo) (11" f p2*g)

(py x @) (p1* (0 f))p2" g
+ (P x @) " f(p2" Xo &)
(p" (B )P g)+ (P * )P o Xpg).

Similarly, for (b):
8o Xi(p1*f p27g) = [p1* 0 (fo— /i1)]1p2* X1 8 = X108:(pi" f p2°8),

where we have written f = fy + fi7, with f,, anf f; smooth functions on R.
The proof of (c) is equally easy, and the proof of (d) comes down to show that
da* f = —a*8,f, for any superfunction in R!!. But this follows from the fact
that o*t = —1, and a*1 = —1. Indeed,

a'f = O(fooa— froar)
= —fyea+ floart
= —a"(fy + fi 7).
With (a)-(d) settled, the second statement is a straightforward computation:
do® ™ oX jo®," =dio(pxP)oX ob,"
= (p X lﬁ)*oé‘;o Xi0P,  + () x®P)* o Xgo X10D,~
=D, o X X 10D, + P, 0 X 08,0 (aop xpy)*o P
o, =

o Xpo X1 0®," — B, "0 X0 (aop xpy)* 0d o O
D o Xy Kiods — @, o Kyo (moppx p)odtio Xg
D o Xyo Xio®. 0.7 o Ko llaop % pr)s Xgolde
il (T[,o ¥i— T TU) o

I
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Finally, the third assertion is just a straightforward check: On the one hand,
@+ 000 p* = m' X + (1) (1B (Ko, K] @4”).
On the other hand,
pto 87T @, = 10 E 0, + 5o (0, (K 1104,

and it is clear from both equations that the right hand sides are congruent (mod
m*T). O

Corollary 3.4. Let the hypotheses be as in the previous lemma. The necessary and
sufficient conditions for having

@ +8:)o p = pTo (9,7, 0,°),
without the ev-morphism acting from the left are
(X0, X1] =0 and [X,X1] =0.

Proof. The right hand sides of the two equations in the proof of the previous
lemma are equal if and only if

D, o X, X1] o D" =4 B, 0 (X, K1) 0 Bs”.

Since both sides of this equation are homogeneous elements of different parity,
since @,°, and @, are isomorphisms, and since X — X is monic, the assertion
follows. O

Theorem 3.5. Let X be a supervector field on (M, Ayr), and let Xy, and X, be its
homogeneous components. Let @:V — M = (M, Ay ) be the unique integral
flow of X, as in proposition 3.2 (Vv C RI! x M). Let @, be as in lemma 3.3, and
let p: W — v W c R x V) be the unique integral flow af D=t o X oD,
Then, there is a unique integral flow, I', of X satisfying the initial condition
evlf=l] ol™ = 1d. fﬁfaCI,
F*=H*0p*°¢',

where n: V — W is the unigue morphism defined by the conditions

nn*f =p*f and n'nyg = g,
for all superfunctions, [ in R'', and g in V.

Proof. Note that
Pod, =Po (Pl x @ o (aop sz)) =@o(Coxp2) =pa
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because @ is an R'I'-action. Therefore, @,"®* = p,*, and hence

°p' @ = (7' ®" + ("0 (72°®0 X 1p3") )
?I"(ﬂz'@' + (1"1) (12" Pa ™" P27 1) )
= n*(nz*fﬁ* + (mp*1) (:frz“’fﬁ"Xl))
=@ + (n*1)P*X,,

where use has been made of @a_ltp;' = (ppo®, ') = ®* (cf. lemma 3.3-
(1)). Now, on the one hand we have

(@ + 8o I'* = %o (Xo + X1) + (1) (@70 Xpo Xy);
whereas,
I'o(Xo+ X1) =@ 0 (Xo+ X1) + (1"7) (@7 0 X o (Xo + X1)).
It is now clear that the right hand sides of both equations are congruent (mod
n't). O

Theorem 3.6. Let X be a supervector field on (M, Ay ), and let Xy, and X, be
its homogeneous components. Let j = 1, 2, and, 3, label the different Lie super-
group structures of R'!' as in proposition 2.1. Then, the following assertions are
equivalent:

(i) Xo. and X, generate the following (1, 1)-dimensional Lie superalgebra:

[Xo, X1l =83 X1 and [X.Xil=6daX (=1223).
(ii) The integral flow I' of X satisfies the equation
9 +8 + D)o P*=T*s X,
without the ev-morphism (D}’ as in (2.20)).
(iii) The integral flow I' of X defines a Type j-RM'-action on (M, Ayr).
The next-to-last equation in the proof of theorem 3.5 above implies that
10 = (pi*7) (P*o Xg) and 78: = (pi*1) (P*o Xy).

It then follows that (&, + 5:+ Dy') o I'* is actually equal to (and not just con-
gruent (mod p;*7) to) I"* o (Xp + X,), if and only if

Do Xgo X} = @*0 X| 0 Xg—9j3P*0 X; and

Do Xi0 Xy = 0,2P" o Xp,
and the equivalence between (i), and (ii) follows.

To prove the equivalence between (/) and (iii) we shall need the specific Lie
supergroup structures of R!!! (cf. proposition 2.1 above). Let {z,15, 71,72} be
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the graded coordinates of R'!' x R'I' and {¢, 7} those of R!!!. The map u; can be
conveniently expressed in terms of y, as follows:

g f =S +dpnitame (B)f + 9t (e2=1) "o () f,

for all f € ARHI (R)
Now, let the notation be as in theorem 3.5 above. The integral flow I" of X" defines
a Type j R!1-action on M = (M, Ay ) iff the following diagram commutes:

% llomy

fijo (@ X pyo M) X pao @a 1 l!'. (3.3)
BRI
We shall then need the following formula:
[ujo (my x pro m3) x pao @3]™ = [py0 (my x pyo M3} X pao Ma]”
+ 0271 T2 (1o (@ x pyo @) xpro ma]" o ay
+ 63 (e?— 1)1y [pyo (m x pye mp) x pao ma]™ o d:,
where we have written 7,*1 = 7, 72" p1*t = (5, and, 7,* p,*t = 72 This may
be proved in a straightforward manner by the methods of lemma 3.3.
Since @ is a Type 1 action, the diagram above commutes when @ is placed
instead of I, and uj = ;. Therefore, on the one hand we obtain
(o (m x pyo M) X pyo M) ™
= [#jo (m x pro M) x pao 1] (@* + (p1'T)(P*X)))
= [®o (o (m xpiom)xprom)]
+ ((m xpro M) u*t) [@o (o (my xpromy) xpaoma)] o Xy
+ 3T T2 (o (my X pro my) x pao my) 0D
+ d3 11 (e — 1) (g o (my x pyo W) x pao My) " P*X,
= (Po(mxPom)) + (11 +12) (Po(mxPomy)) o X,
+ 3311 (e?2—1)(Do(m xPom)) o X,
+ 0172 (Do (my x Pomy)) o X (3.4)
On the other hand,
(myxFomy)'T* = (my xTom) (P + (p)'7)(P7X)))

— (Q)O(]'[] Xroﬂz))*+T|(¢0{RIXFOK2))*O J(X:;I.S}

Thus, everything comes down to compare @ o (7, x "om;), with @ o (m; xPom;).
Now we claim that

(Po(myxTomy)) = {Q‘)o(mxlcbonz))*+r;_(n|xﬁbn_]oxz}’fi@‘. (3.6)
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To prove this we may again assume that @*f = >, pi* fi p2* gi. (By complete-
ness of the product sheaf on V, if the result is true for this particular form of
¢* f, the result will be true in general). Now

(Po(mxTom))'f = Z(nl x I'oma)* (py* fip2* &i)

= Y " fil(Pomr) g + 12 (D oma) Xy 8i)

I

= (mx@om) (X pimfiprg) + (3w T i@ oma) "Xy 1),
i {

where we have put, T,— = (fi)o — ([fi) 7, because we permuted places with the
odd variable 7,. Note that

P X 8 = x2*¢aF'=T|P1'3a',

because
D' P*X 1 8 = p2* X1 8 = X2 g
- &'X, g = (D, ) Xip &
- T DX, g = (D o) X 12" g
Therefore,

(Po(myxTem)) f = (cp o(m x P O‘Ez))xf
+ Tz((i‘n x @, om;)* Z(Pl*_fflpz*gi))
i
= (fp o(m x® 02‘(2))'_{
+ rz({m x @, lomy)* Y (Xypi' fi pz"gz-)),
i
where we have used the fact that X, is an odd derivation to revert from [, to f;.
Thus eq. (3.6) above is true. In particular, the right hand side of eq. (3.5) is,
RHS of (3.5) = (Po(mxPom)) + 12(m x Dy~ o 73)* X "
rl((tb o (myxDPom)) X; + 12(m, x cba_loﬂz)*fm‘k'.).

If we now compare this expression with the right hand side of eq. (3.4), we
conclude that the diagram (3.3) commutes, if and only if

(M x @y ' om)* X1 @* = (1 +3d3(e2—1))(Po(m x Pomy)) Xy,

and,
(my x D' oma)* X 1@ X = §p (Do (my x Pomy)) o X
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Equivalently, if and only if
X,0 @* =(l+d3(e”—-1))P"0 X; and
T|0¢'0 X| =(5j2¢‘0 X(},

where we have used the fact that m; x @, o 7, is invertible, and its inverse is
m; x @, ' o7, and the fact that

(dj (s] (T{l x @0?{2)) =] {?Tl X‘pu_lo??,'z) = {I’,

(3.7)

(both assertions are easy to check). Note the appearance of e~ in the right
hand side of the first equation. This follows from, (m; x @, o m3)* eP1o™)"! =
e(@oP°m)™ which is in turn a consequence of the definition of @,. In particular,
it follows from these equations that

(szd')*o Xo = (1 +(SJ',3 (e2—-1))P*o X, o X.

For j = 1, and 3 this equation says that @* ¢ X, o X; = 0, and since @* is
monic, [X;,X;] = 2 X;0 X; = 0. Forj = 2, the same equation says @~ (2 Xy —
(X1, Xi]) = 0. 53
On the other hand, for j = 1, and 2, the first equation in (3.7) says that X, o
@* = @*o X,. Applying 8, on both sides, and using both, proposition 3.2, and
the statement (3.4) in the proof of lemma 3.3, we get

o @ o V=@ Yo Xy

Now the original equation may be used again in the left hand side and replace
X, o @* by @* o Xy, to finally obtain, ®*([Xy, X;]) = 0. For j = 3 the
procedure is exactly the same: Apply d; on both sides, then use proposition 3.2,
the statement (3.4) in the proof of lemma 3.3, and finally equation (3.7) again
to substitute the value of X, o @*. m)

Example 3.7.

Let £ (M) be the sheaf of differentiable forms on the differentiable manifold
M of dimension m. The pair (M,Q(M)) is a supermanifold of dimension
(m, m). Some distinguished supervector fields are:

(i) The Lie derivative, Ly, with respect a vector field X in M,

(i1) The contraction, iy, with respect a vector field X, and,

(ii1) The exterior derivative, d.
Now, the integral flow of Ly is the pull-back, @*, of the integral flow of X. The
integral flow of iy is given by the map I'* = id" + 7 iy. Finally, the integral flow
of d is given by the map I'* = id" + 7 d. It is easy to construct a supervector
field that does not define any type of R!! action. For example, X; = d + ix.
This is so because [ X, X|] = 2Lx. The integral flow of X, is given by the map
I'* = id" + 7 (d+ ix). The reader can also check directly that the integral flows
of d and iy do not commute.
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An example of supervector field defining a Type 2 R!I! action is given by the
derivation, iy + d + 2Ly. Its integral flow is I'* = @* o (id” + ©(d + ix)),
where @* is the integral flow of the vector field 2.X.

For an example of a supervector field defining a Type 3 R!I' action let Id be
the identity map of the cotangent bundle. Id can be viewed as a vector-valued
differential form of degree 1. The contraction of this form with differential forms
defines an algebraic derivation of degree 0; the latter shall be denoted by 4.
Note that if j,) is a differential form of degree p then ijq(f)) = PP ) The
integral flow of iy4 is given by @* B(,, = e’ (). Now, consider the derivation
D = iyq + iy. This is of type 3 because [y, fjg] = iy. The associated derivation
t.‘Dc,"* o X 0®," defined in lemma 3.3 is just e ‘i y. By theorem 3.5, the integral
flow of D is given by I'* B(p) = e?(Bp) + T lixB (p))-

Our next result states precisely under what conditions the integral flows of
two supervector fields commute. In order to keep the notation simple, the proof
is given only for complete supervector fields. The general case considers the
intersection of the domains of the flows and it is handled similarly. Note that
in the C*° category, the statement that the flows ¢ and w (of Xj, and Yy, resp.)
commute is that for all t,, and all t,,

b oW, = Y, ¢y

Thus, the statement for the Z,-graded category has to use the twist morphism,
T: R x RMT — R x R, defined by the conditions

T =p* and p°T = pi’,
where, p;, and p, are the projections of the product R!! x RIIT,
Proposition 3.8. Let X = Xy + X, and Y = Yy + Y| be supervector fields on

M = (M, Ay), and let I, and @ be their correspanding integral flaws. Then, I,
and @ commute, i.e.,

(=) % Fomy)o(Toln xop omy) X paons)

R x R x M R x M
o= @o 5] J' l (2]
: r
RUL x M M

commutes, if and only if
[X0, Y] =0 and [X,,Y] =0.

Proof. The methods of the proof are the same as those of theorem 3.6. We shall
write, ['* = @* + 7, ®* X, and " = ¥* 4 17, ¥* Y, where both, @, and ¥—
being the flows of X, and Y;, respectively—define Type | supergroup actions
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of RM! in M. Thus, on the one hand one finds (cf. eq. (3.6) in thm. 3.6),
(M x @cm) T = (Po(my x¥Pory)) + ta(my x ¥y 'omy) Y D"
+ (o (mx¥om)) + a(m x Vo™ o12) V1 @7) X,
On the other hand,
(my xTom)'@" = (Yo (m xPom)) + Ta(n) x @ omy) "X | P™
+ (Yo (m x Pomy)) + Talmy x Py~ omy) X )Y

Thus, acting on both sides of this equation with (7 o (m; x op; o m2) X pp o
m;)", we simply get 7|, and 7, interchanged. Thus, the diagram in the statement
commutes, if and only if, the following equations are satisfied:
Do(ay x¥Pom) = Vo (ay xPony),
(M x ¥ omy)' YV @ = (Wo(mxPomn,))'Y,,
(DPo(mxPom))' Xy = (m x By~ om) X 1P,
() x O om) ¥ @ X, = —(my x Po ' o72)* X\ P Yy,

where the minus sign in the last equation is the result of writing 737y = —17 72
We now substitute the first equation in the second and third, and the resulting
three in the last one. We finally act on such equations from the left with, (@, x

¥ om)*, and (m, x ¥, o my)*, appropriately, and end up with the following
system of equivalent equations:
Bo(m xPom) =PolmxPony), XoY =-Yoli,

Do Y1=?|0¢l, ?*DX|=X|0P*,

and these equations hold true if and only if

[X[h YU] = Or [X], 1"]] = 0:
[X[h Yl l = Or [X|4 YU] = 0.
(Note that these equations are not equivalent to [X, Y] = 0). 0

Remark. In the C*-category there exists a bijection between the set DerC*> (M),
of complete vector fields on a smooth manifold M, and the subsct

Hom (C® (M), (R x M),
of algebra maps @*: C*>° (M) — C= (R x M), satisfying
(i) @y~ = id, and,

[li) ‘p;l' o fpfzt — ¢f|+12'-‘ for all L, and 16 in R,
where @," = ev|,0 @* € AutC™ (M), for each t € R.
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In order to find a similar characterization in the Z,-graded category, note first

that if I' € Hom (Ap (M), Agiiy aq (R M))RIII (where Agii, o4 denotes the
structure sheaf of R'! x (M, Ay )), then,

I =@+ T2k,

for any f € Ay (M). It is easy to verify that Z; must be an odd R-linear map
Z1: Apr (M) — Agioyg pq (R x M), satisfying

Zi(fg) = Z(f)D*(g) + (-DVIDd*(f) Z(g),

for all f, and g in A/ (M), and furthermore, that

@ € Hom (Ap (M), Agijo, 4 (R x M) ). Our last result in this section says that
there is a similar correspondence in the Z,-graded category. The statement and
its proof are simple rephrasings of the proof of thecorem 3.5, and the previous
lemmas. (We arc indebted to Prof. J. Mufioz Masqué, for bringing this point to
our attention).

Proposition 3.9. Let M = (M, Ay) be a supermanifold, and let Agi, g, and
Agiioy ap, be the structure sheaves of the supermanifolds R'' x M, andR"1° x M, re-
spectively. There exists a one-to-one correspondence between the set Der Ay (M),
of complete supervector fields on (M, Ayr), and the subset,

Hom (Ay (M), Agii g R x MR,

of superalgebra maps I'*, such that
()Iy" =ev,_ool* =id,
(i) The homomorphism @* € Hom (Ap (M), Agiio, aq (R x M )) associated to
I, defines an R-action on M, and naturally extends to an R'!'-action.
(iii) The odd R-linear map Zy: Ay (M) — Ao, g (R x M) associated to I is
such that
Do Z € pa* Der Ay (M),

that is, D* o Z | comes from an odd supervector field on (M, Ay ).

(Note that the third condition means that the map @* o X;, which in principle
is just a derivation from Ay into Agip, o, actually defines an odd supervector
field on (A4, Az ).

4. Integral flows and Lie superderivatives of superforms

This section is included for the sake of completeness. We shall proceed along
the lines of refs. [10] and [12]. Our aim is to define the Lie derivative of any
superform, e, on a given superdomain, with respect to any supervector field,
X. Moreover, we want to relate our definition to the integral flow I', of X', and
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also, be able to prove that the usual algebraic characterization given in terms
of interior multiplication and exterior differentiation holds true. Our guiding
principle has been the fact that the algebraic formula for Lie superderivatives,
also called the Cartan formula, Ly @ = d o i(X)® + i(X) o dw, makes sense
regardless of the peculiarities of the field X (i.e., it is not necessary that its
homogeneous components satisfy [Xg, X;] = ;3 X, and [X). X;] = Jjp Xp).
We thus start with the following:

Definition 4.1.

Let X be a supervector field on a superdomain (M, Ay ), and let I" be its
unique integral flow satisfying the initial condition, ev|,_o™* = id*. Let @ be
any superform on (M, Ax ). The Lie superderivative of @ is the superform, Ly,
given by >

Lxw =ev]_, oDoI™w.

Proposition 4.2. The usual relationship between Lie derivatives on forms, exterior
differentiation, and interior multiplication, holds true in the theory of superman-
ifolds; namely,

Lyw=di(X)w+ i(X) dw.

Proof. Tt suffices to verify that both sides yield the same answer when @ = f,
and when @ = df, for any superfunction /. Now, for @ = f, we have,
Exf = e\-'[l:n 050 F‘f

= ev|,_gel™ o X f

=X F=1Cx)df
where use has been made of the differential equation for the flow of X, the
initial condition, and the definition (as in ref. [3]) of the exterior derivative on
superfunctions.
Let us now assume that @ = df. Let d, and dg, be the exterior differentiation
operators on the supermanifolds (M, Ay ), and R!/!, respectively. Therefore, the
exterior differentiation operator on RM! x (M, Ays) is defined by the conditions

don} =mjodg and dom} =m}od.

“I'* commutes with d”, then means that dol'* = I'* o d. Moreover, the
operators d, and D commute with each other, as can be checked directly from
the definitions. With these preliminaries in mind, one now has the following:

Lxdf =ev|,_joDol"df =ev|,_goDo dI*f
= "-‘V|;=o°a° Dol*f=do evl._o oDol*f
=doev_joleX f = d(i(X)df),
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where we have used the superdifferential equation, and the initial condition. [J

In the case when the integral flow I" defines a Lie supergroup action of R'l' in
(M, Ap) we can say even more:

Proposition 4.3. Let X be a supervector field satisfving any of the conditions of
theorem 3.6, and let I be its unique integral flow satisfying the initial condition,
eVl,=ol'* = id*. Then, for any superform w,

I*Cyo=Delw.

Proof. This is a straightforward verification using, @ = [/, and @ = df, for
an arbitrary superfunction /. The only difference with proposition 4.2 above is
that Thm. 3.6 now guarantees that the superdifferential equation satisfied by I"
isDI'™ =TI"X. O

S. Left invariant superfields on R'/"

Following ref. [1], a Lie supergroup is a supermanifold (G, Ag), with a pre-
ferred underlying point, ¢ € G, and two morphisms,

u: (G, Ag) x (G, Ag) — (G, Ag) and a: (G, Ag) — (G, Ag),

satisfying

(1) o (uo (p1 xp2) x p3) = po (pr x o (p2xp3)),

(ii) o (Coxid) = id = po (id x ),

(iii) uo (axid) = C, = po (id x a).
The left action of (G, A¢) on itself can be expressed in terms of u as follows:
Let {x/, 0"} be a local system of coordinates on (G, Ag). Assume

A0 e 8 e R

Then
L'f = F(x/,x';6,",8%),
with
L*xJ =x/ and L*6," = 0,".
This morphism is invertible, and its inverse, L', is given in terms of g, and «
as follows: write
{wo(aopy x p2)}* f = H(py"x/, py"x75p* 6%, p2*6").
Then
LU F =) uli6h k),

with

L V% =x% and L71°8]" = 8,"
We shall illustrate the use of L in the following examples:
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Example 5.1. Let RY! be considered with its multiplicative structure; in terms
of the local coordinates {x, 6},

X =p"x p*x + p170 p*8 and u*0 =p*x pa*0 + pi 0 pa'x.

Let GL(1|1) be R'' with the point x = 0 removed, and structure sheaf the
restriction of that of R'' to R — {0}. Then, GL(1|1) is a Lie supergroup (cf. ref.
[1]). The inversion morphism is given by

The morphism L referred to above is given by
L'x =x1x+ 6,8 and L*8 = x,0 + 8,x,

and its inverse Is

il o xil(x—i—:e) and L '70 = li_l(e— %x).

Let X = (fy + f16) 8y + (80 + £:¢) 9y, be an arbitrary supervector field on
(R'1")*. Then, X is left invariant, if and only if

DO T S G S S VR b e R
It is then easy to check that X is left invariant, if and only if it is of the form
X =g (x0x + 08y) + 4y (x0y — 00y),
with 1g, and A, real constants. Note that in this case (assuming igd, # 0),
2,2
[Xﬂrxll =0 and [Xerll = ﬁxﬂ
The integral flow of X is found as follows: First, it is easy to check that the map,
$*x = e‘]'?' X, @0 = eh0,

is the integral flow of the even part X, satisfying 9; @* = 0 (i.e., asif X; = 0).
As we have seen, the integral flow of Xy + X, isgivenby /™™ = @* + 71@*0 X|.
It is then easy to check that

I x = ed! (x—1;70), I'*6 = e (0 + i Tx).
Example 5.2,

Now consider R!/! with the Type 2 Lie supergroup structure: In terms of the
local coordinates {x, 8},

W X = pi*x + py*x 4 p1*0 pp*@ and uy*0 = p,*0 + py*0.
The left multiplication morphism L is,

L**X=x+x+688 and L*¢=6,+10,
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and its inverse is,
L= —xi+0-0;6 and L=20=:8;+8.

Let X = (fy + f10) 0« + (go + £10) 9y, be a supervector field on R!!'. Then,
the condition, X = L*XL~1", for left invariance, leads to the following: X is
left invariant, if and only if it is of the form,

X = Aﬂax = A-I {aﬂ + 831’):
with Ag, and A, real constants. Note that, if ig4; # 0,

2.2
[Xp,X;] =0 and [X,X;] = z%xo.
0
The integral flow of X is found as in the previous example and is given by
Ix=x+Agt4+ 4t and I''0 =0+ 1,1
Remark. It is interesting to note that there is a Lie supergroup homomorphism
(local isomorphism) between the Type 2 supergroup structure of R!!!, and the

supergroup GL(1]1) of Example 5.1 above. This is the map ¥: R!! — GL(1]1),
given in terms of local coordinates {x, 8} of R!!', and {y.&} of GL(1|1) by

Y*y=e* and P& =¢e"0.
It is a straightforward matter to check that this is the unique (locally invertible)
morphism satisfying

pro (Fopyx¥opy) =¥ou,,

where i and p5 are as in the previous examples.

Example 5.3.
Finally consider R!!' with the Type 3 Lie supergroup structure: In terms of the
local coordinates {x, 8},

U3X = pi*x + pr*x and uyt0 = P2 ¥ pt0 + patéo.
The left multiplication morphism L is,
L*’x=x1+x and L' =e*6; + 0,
and its inverse is,
Ltle = cx b x and Lih 0= e 0 40,

Let X = (fo + f19) 0x + (g0 + £10) 8. be a supervector field on R!!, The
condition, X = L*XL~'", leads this time to the following: X is lefi invariant, if
and only if it is of the form,

X =29 (0 + 60p) + A, Oy,
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with A5, and 4, real constants. Note that
[Xo, X1] = =4 X} and [X}, X;] =0.
The integral flow of X is found as in the previous examples, and is given by

IMx=x+At and I"0=e%0 + A1

In all these examples, the integral flows of the left invariant supervector fields
under consideration do not define Type 1 R!/!-actions on the supergroups they
are respectively defined. In fact, [X;, X;] # 0in 5.1-5.2, and [X, X;] # O in
5.3 (See Thm. 3.6). On the other hand, the integral flows in 5.2, and 5.3, trivially
recover the multiplication map g; of proposition 2.1 for 4y = | = 4;.

Remark.

Let Der Ag ( G]‘d‘“[m be the left invariant derivations on (G, .45 ). Note that the
Lie supergroup structures we are dealing with here do not satisfy the properties
stated in ref. [3]; namely, that the function and exterior factors can be recovered
from the left invariant supervector fields. In particular, it is not true that C* (G)
is isomorphic to

Co(G) = [f € Ag(G) | Xf = 0, for all odd X € Der Ag(G)*¢@}.
In both examples above we obtain

Co(G) = {f € Ag(G) | I = cp; ¢ constant} ~R.
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