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In this note we discuss the existence and projectability of graded extensions of ordinary
Poisson brackets. We will show that there are topological obstructions to both problems.
To prove it we use a new algebraic characterization of graded Poisson brackets on graded
manifolds based on a characterization of derivations on the exterior algebra of a vector
bundle.
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1. The extension problem

A graded Poisson manifold (or a Poisson supermanifold) [1] is a pair (P, A),
where A is a sheaf of Poisson superalgebras over P and (P, A) is a supermanifold
in the sense of Kostant [5]. The graded Lie algebra structure {,} of the sheaf
A will be called the graded Poisson bracket of the supermanifold. Most of the
results in this note can be extended easily to odd Poisson brackets but we will
restrict in what follows to even Poisson brackets. We should remark that a graded
Poisson bracket {,} induces a Poisson bracket on the underlying manifold P
such that the augmentation map restricted to Ay is a Poisson morphism.

As is well known, any smooth supermanifold (M, .A) is simple or split, i.e.
isomorphic to a supermanifold whose sheaf of superfunctions is the sheaf of
sections of the exterior algebra AE of a vector bundle £ — M. The vector
bundle E is called the conormal bundle of the supermanifold (M, A). Given a
Poisson manifold P with a Poisson structure {, }» and a vector bundle £ — P,
we can consider the existence of a graded Poisson bracket {,} on the sheaf
I'(AE) such that {F,G} = {F,G}p for all F,G € C(P). We can state this
problem in terms of abstract graded manifolds as follows.
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Extension problem. Let (P, A) be a graded manifold over the Poisson manifold
(P,{,}p). Docs there exist a graded Poisson bracket {, } on (P, A) and a splitting
p:C>® — Asuch that {p(F),p(G)} = p({F,G}p) forall F,G € C>*?

Notice that, if the extension problem has a solution, then the splitting p is a
Poisson retraction. A graded Poisson bracket on (P, A) will be called projectable
if it is a solution of the extension problem for the induced Poisson bracket on P,
and it will also be said that a projectable Poisson bracket is an extension along
a retraction map of an ordinary Poisson bracket. It happens that the existence
of projectable Poisson graded brackets on (P, A) depends on the topological
propertics of the conormal bundle E, as the following theorem shows.

Theorem 1. Let (P, A) be a graded manifold with conormal bundle E and let
{,}p be a constant rank Poisson bracket on P; then there exists a projectable
graded Poisson bracket on A inducing the Poisson bracket {,}p on P if and only
if there exists a connection on E whose curvature vanishes along the symplectic
leaves of { , } p.

Corollary 2. Any projectable symplectic supermanifold (M, A) is isomarphic to
a flat symplectic supermanifold (M,I"(\E)).

It was proved in ref. [4] and refined later in ref. [8], that any supermanifold
whose underlying differentiable manifold has an exact symplectic structure can
be endowed with a graded symplectic structure. It is an immediate consequence
of corollary 2 that these symplectic supermanifolds cannot be projectable unless
their conormal bundle is flat. In the same way of reasoning it is noticeable
that the canonical graded symplectic structure on the cotangent supermanifold
(T*M,T*A) of a graded manifold (M, A) (see ref. [5]) is projectable iff the
conormal bundle £ of A is flat (notice that the conormal bundle of 7% A is
E & E*). However, the graded version of the Darboux theorem assures that
we can find canonical supercoordinates for graded symplectic structures. If the
graded symplectic form is not projectable these canonical supercoordinates will
never define a splitting of the underlying graded manifold. It is also remarkable
that there are no graded extensions of Poisson brackets to the Cartan algebra of
a given Poisson manifold unless the tangent bundle of the manifold is flat (see
for example the discussions in refs. [2] and [6]).

2. A characterization of graded Poisson brackets

A derivation D of A is called a graded vector field on (P, A) and the sheaf
of derivations is naturally a sheaf of graded Lie algebras. Given a splitting of .A
we can identify it with the sheaf I'( , AE). The Poisson superbracket {,} is a
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derivation on each argument and consequently, for any superfunction 4 on P,
the linear operator {4, - } defines a supervector field Dy, called the Hamiltonian
supervector field associated to the Hamiltonian function 4.

Let TP — P be the tangent bundle over P and I'(AE & TP) the I'(AE)-
module of smooth sections of AE @ TP. Let V be a linear connection in E. If
K = fuy® X € A*(E) ® TP, we define the endomorphism Vg : I'(AE) —
T'(AE) by Vgu = fy)Vxu, where u € I'(AE), and if K € I'(AE ® TP),
we define Vg by its linear extension. It is obvious that Vi thus defined 1s a
derivation and we call it the proper derivation associated to K through V.

Now, we shall define another type of derivations, the algebraic ones. Let E* —
P be the dual bundle of E, and let I'(AE ® E*) be the I' (AE)-module of
smooth sections of AE® E*. If L = fiz) ® a € A“(E) ® I'(E"), we define the
endomorphism iy : I'(AE) — I'(AE) by iru = fk)iatt, where u € I'(AE)
and i, is the interior multiplication. If L € I' (AE ® E*), we define iy by its
linear extension. It is clear that /r is a derivation and acts trivially on the smooth
functions on P. We will call i, the algebraic derivation associated to L.

With the help of a connection V on E, we can characterize the graded vector
fields on (P,I"( ,AE)). Let D be a derivation on I" (AE); then there are unique
fields K e T'(ANE®TP)and L € I'(AE ® E*) such that D = Vg + i [7,3].

The graded commutator of two algebraic derivations, [#(L;),i(L>)], is again
an algebraic derivation; thus, there is a unique element [Lj,L;Jrn € [ (AE ®
E=) such that [i(L,),i(L;)] = i([Ly,L;]rn). The field [L,, Lz ]gn € F'(AE®
E~) is called the Richardson-Nijenhuis bracket of L; and L;. With this bracket
the space I' (A*+!E @ E*) becomes a graded Lie algebra. When E = T*P this
bracket is the usual Richardson-Nijenhuis bracket.

The graded commutator of two proper derivations, [Vg,,Vk,], is again a
derivation; then there are unique elements [K;,K;]eny € T(AE ® TP) and
R(K,,K;) € '(AE & E*) such that ['G’K,,ng] = VIKDKz]FN + IR(KLK) - We
shall call [K;, K]y € T'(AE @ TP) the Frolicher-Nijenhuis bracket of K
and K, with respect to V, but notice that it is not a Lie bracket and that it
does not agree with the usual Frélicher-Nijenhuis bracket when E = T*P. It is
also noticeable that for vector fields X, Y we have that [X, Y]y = [X, Y], the
usual Lie bracket, and R(.X, Y) is the curvature tensor of the linear connection
V actingon X, Y.

The graded Hamiltonian vector field D is a derivation of degree | /| and again,
given a fixed connection V on E, there exist unique K, € I'(AVIE ® TP) and
Ly € I'(AVI+¥1E @ E*) such that Dy = Vg, + iL,.

Let F be a vector bundle over P; then I'(AE @ F) can be scen as a I (AE)-
module. A map D : I'(AE) — I'(AE ® F) is called a derivation of degree |D| if
D(fg) =D(f)g + (—1)WPWIfD(g). Then it is simple to show that the map
K : T(AE) — I'(AE®TP) defined by f — K is a derivation of degree 0, and
the map L : I'(AE) — I'(AE @ E*) defined by f — (=1)/|L is a derivation
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of degree 1. Thus, given a pair of derivations as before, (K, L), we can construct
a bracket on I" (AE) satisfying Leibniz" rule by means of the formula

{f.8} =Yk + ()L g (1)

The characterization of derivations is extended by the following

Proposition 3. Let D be a derivation from I' (AE) into I' (AE ® F) and let V be
a linear connection in E. Then there are unique fields ¢ € '(ANE ® F @ TP) and
w € T'(AE @ F ® E*) such that D = V + iy, where V, and iy are derivations
from I' (AE) into I (AE & F) defined analogously to derivations of I' (AE).

Let us apply this characterization to the two derivations associated to a graded
Poisson bracket. K is a derivation from I' (AE) into I'(AE @ TP); then, by
proposition 3, it defines uniquely two tensors I7 € I'(AE @ TP ® TP) and
Y € I'(AE ® TP @ E*). On the other hand L is a derivation from I"(AL)
into ' (AE®E*): F = E* in the notation of the previous proposition, thus it is
defined by two more tensors, ® € (AE®E*@TP)and S € '(AEQE*QE™).
Now, it is easy to check that the graded commutativity of the graded Poisson
bracket implies that I7 € I'(AE @ A’TP), S € I'(AE % S2E*) and that @ is
the transposition of . We get then the following

Proposition 4. Let { , } be a graded bracket on I' (\E) satisfying graded com-
mutativity and Leibniz’ rule; then, given a connection in E, the graded bracket is
uniquely determined by three tensors IT € I'(AE@A*TP), X € I' (NEQTPRE™)
and S € C(AE & S*E*).

The bracket constructed using eq. (1) satisfies Leibniz’ rule but not necessarily
the graded Jacobi identity. Writting the graded Jacobi identity in terms of the
derivations Vg, i, we gel

Kijg = (K Kglew + in, Ko — (-1)V18lig K, (2)
Lisg = R(Ks,Kg) + Vi Lg— (—DVIEWg Le 4 [Ly, Lelry,  (3)

and R denotes the linear extension to I'(AE @ TP) of the curvature of the
connection V. Let us write K}’- (resp. L}‘-] for the part of degree n of K, (resp.
Ly). The part of degree zero of (2) is

K{rg = [Kp. Kgl + ff.}Kg = fL,',K?s (4)
and the part of degree 1 of (3} is
Lisg = R(K},K) +.VK}L.; ~ VioLy + [Lf. Lelrn. (5)
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Proof of the extension problem. Let us suppose that there exists a connection
¥ on FE such that L} = 0 for all f € I'(AE). For such a connection we get
immediately from (5) that 0 = R[KJ‘E’-, K?). Moreover, since the graded Poisson
bracket is an extension, then K¢ is the Hamiltonian vector field X, associated
to fy € C*(P) using the Poisson bracket {, }p. Therefore the curvature of the
connection vanishes on the vector fields of the characteristic distribution of 7y,
i.e., on the symplectic leaves of P.

Let us prove now that there exists a connection such that L} = 0 for all
f € I'(AE). Let C be the characteristic distribution defined by the constant
rank Poisson structure { , }p and let D be a complementary distribution such
that C & D = TP. Let K, L be the operators defined by the graded Poisson
bracket extension. Let us define a one-form on C with values in £ @ E* by
means of A(Xg) = L} for all F € C*(P). Then A is defined on all vector
fields in C because the Hamiltonian vector ficlds X generate the subbundle C
of TP. Then, finally let us define A4(X) = A(X) for all vector fields X in P,
where X = X€ + X2, X€ € C and X? € D. Because of the tensoriality of L we
have a well-defined 4 : TP — E & E* that depends only on the choice of D. Let
us define another connection V', by writing V', = Vyx + i (x): then it is clear
that we have (L}}l = Qforall f € I'(AE).

Conversely, let us suppose that there exists a connection V on E whose cur-
vature vanishes along symplectic leaves of the Poisson manifold P. In order to
define a graded Poisson bracket we must specify two derivations K and L sat-
isfying egs. (2), (3). Let K : I'(AE) — I'(AE ® TP) be the derivation Vg,
where 7 is the Poisson tensor field associated to the Poisson bracket { , }p, and
let L = 0. In a coordinate basis, if

G
{F,Glp=nm Jﬁm
for F, G € C*(P), the action of the derivation K on f € I'(AE) is given by
Kp = Vof = n7Vif ®9/9x,

where V; denotes V4. Therefore, the graded Poisson bracketof f, g € I' (AE)
is given using (1) by

{f,g} = ng = Vﬁfg = :n:UV,-fVJ-g,

Graded commutativity is thus immediate, as well as Leibniz’ rule due to the
choice of derivations. The only point that remains to be proved is the graded
Jacobi identity. We have to check formulas (2) and (3). With our choice of
operators K, L and having in mind that the curvature vanishes on sympletic
leaves, the second one reduces to a trivial identity. Indeed,

R(K;,Kg) = ViJVgR(K\,Ky) =0,
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and a simple computation shows that K, ., = [K;,K;]mn, for all f,g €
I'(AE).
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