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Abstract

We propose, thanks to a new characterization of Jacobi structures
by means of a Lie algebroid bracket, a definition of Jacobi-Nijenhuis
structures, that includes the Poisson-Nijenhuis structures as a particular
case. The existence of a hicrarchy of compatible Jacobi structures on a
Jacobi-Nijenhuis manifold is also oblained.

1 Introduction

The aim of this work is to build up in the case of Jacobi manifolds a notion of
structure analogous to that of Poisson-Nijenhuis. Let us recall that a Poisson-
Nijenhuiz structure is a pair {P, V) given by a Poisson structure on a manifold
M, and a recursion operator, or Nijenhuis tensor field, N, which satisfy some
compatibility conditions [T]. 'The compatibility conditions are posed in order
to assure the following fact: a new tensor field defined by means of PP and
N, and denoted by NF, is again a Poisson tensor ficld and, moreover, it is
compatible with the previous one, P, this is, P4+ NP is a Poisson tensor field.

The notion of compatibility of Jacobi structures has been previously de-
fined and partially studied in [4] and [13]. Therefore, we give in this note
something that can be seen as a sccond step in the study of compatibility
of Jacobi structures, i.e., the definition of recursion operators in the Jacobi
setting, and the characterization of the compatibility conditions between a
Jacobi structure and a recursion operator.

The firat attempt of definition, and possibly the more natural, goes in the
following direction; It is well known that given a Jacobi structure on a manifold
M, onc can associate a unique homogeneous Poisson structure on the manifold
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M x R. Something similar can be done with recursion operators. Let us call
these processes under the name of Poissonization. The first tentative definition
states that a Jacobi structure and a recursion operator are compatible if their
Poissonizations are compatible in the sense of Poisson-Nijenhuis structures.

Such an attempt does not work basically because, whereas Poisson atruc-
Lures are a subclass of Jacobi structures, Poisson-Nijenhuis structures do not
fulfill the previous tentative definition. The hey point of this drawback is that
compaltibility conditions between Poisson and Nijenhuis structures imply the
possibility of building up a hierarchy of compatible I'oisson tensor fields, but
they are not the sufficient and necessary conditions to assure this,

The second and definitive attempt, presented here, studies, directly, the
sufficient. and necessary conditions that a Jacobi structure and a recursion
operator must fulfil in order to assure the existence of a hierarchy of compatible
Jacobi structures.

But the same can be done in the Poisson setting, and in fact, it can been
found in [12]. The resulting structures are called weak Poisson-Nijenhuis struc-
tures. Using this ‘weak’ version of Poisson-Nijenhuis structures, the tentative
attempt through the Poissonization process now worlks.

A short version of this paper has been published in [11].

2 The Lie algebra X(M) x C*(M)

All along this paper (™M) denotes the algebra of €™ real-valued functions
on a manifold M, Q(M) the space of 1-forms, X(M) the Lie algebra of vector
fields and [, | the Lie bracket of vector fields,
On the C°°(M)-module (M) x C°°(M) we consider the Lie bracket de-
fined by
[(X, £), (Y, 9)] = ([X, Y], X (g) = Y(f)), (1)

for all (X, f),(Y.g) € E(M) x C™{M). Note that if ¢ is the usual coordinate
on R, £ is the Lie derivative operator on M = B and

@ X(M) x CF(M) — XM x &) = {X € (M x R)/Ly X =0},
is the isomorphism of C™°(M)-modules given by
B(X, f) =X + for, (2)

then ®[(X, f),(Y,g)] = [®(X, f),®8(Y.g)]. Thus, the Lic algebras (X(M) x
C=(M), [, ]) and (Er(M x R), [, ]) are isomorphic.

Let ¥ : (M) x C=(M) — X(M) x C*®°(M) be a C°%°(M)-lincar map.
The set of C'**(M)-linear maps of the space (M) x C™ (M) onto O™ (M) can
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be identified with Q'(M) x C™(M) in such a way that

(@ F)((X, g)) = o(X) + [y,

for all (a, f) € (M) x C*(M) and for all (X, g) € (M) x C=(M).
Therefore, the adjoint operator of N, *N, can be seen as the C*°(M)-
linear map

EN QN M) x CF(M) — QY M) x C®(M), (e, f) = *N(a, f),

where *N(a, f) is defined by (*N{ea, f)}(X, g) = (o, FHN(X, g)), for all (X, g)
€ X(M) x C=(M).

Since (M) = €*°(M) is a real Lie algebra, one can define, in a natural
way, the Nijenhuis torsion of N as the O°(M)-bilinear map [N, N] : (€M) x
C2(M))?2 — X(M) x C°(M) given by

IN-:M[(X:JC}'. {Ys 9:]} i [N(X, .”1 N{Ytﬂ'J] = N[N(X1 f}: (Y:!J]] {_;)
—-N[(X. £), N(Y, g)] + N*[(X, f). (¥, 9))-

3 Jacobi and Poisson manifolds

A Jacobi structure on M is a pair (A, E), where A is a 2-vector and E a vector
field on M satisfying the following properties:

[A,A],q,v = 2FENA, [E, A]_q,\r =}, (4)

Here, [ , ]gn denotes the Schouten-Nijenhuis bracket (see [1, 10, 14]). The
manifold M endowed with a Jacobi structure is called a Jacobs manifold. A
bracket of functions (the Jacobi bracket) is defined by

{f,9} a8y = Aldf,dg) + FE(g) — gE(f), forall f,geC¥(M). (5)

The space C™ (M) endowed with the Jacobi bracket is a local Lie algebra in
the sanse of Kirillov (see [6]). Conversely, a structure of local Lie algebra on
(M) defines a Jacobi structure on M (see [3, 6]). If the vector field &
identically vanishes then (M, A) is a Poisson manifold. Jacobi and Paoisson
manifolds were introduced by Lichnerowicz ([8, 9]; see also [1, 2, 10, 14]).

Other interesting examples of Jacobi manifolds, which are not Poisson
manifolds, are the contact manilolds (see for example, [9] and [10]). A contact
manifold is a 2m + 1-dimensional manifold endowed with a 1-form n on M
such that 1A (dn)™ # 0 at every point. The Jacobi structure (A, E) associated
with the contact 1-form n is given by

Ale, 8) = dn(>" (@), b~(8)), E =b"Y(n), (6)
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for all a, 8 € Q}(M), where b : X(M) — §1*(M) is the isomorphism of C*(M)-
modules defined by b(X) = ixdn+n(X)n. Note that F is the Reeb vector field
of M which is characterized by the relations ign = 1 and igdn = 0 (see [9]).

Let A be a 2-vector and ¥ a vector field on M. Define the homomorphisms
of C%(M)-modules #5 : QM) — X(M} and #,m) : (M) x C°(M) —
¥(M) as follows,

Bl#ala)) = MB,a), #oam (e f) = #ala) - fE,
for v, @ € QM) and [ € C™(M).
If (M, A, E) is a Jacobi manifold, then for all (e, £), (B g) € QM) x
C(M), - 3 =
[#om (o, £ #iam (,8)] = #a.m (v B,
with (v, k) € Q' (M) x C(M) given by

¥ o= f‘#,a,[f:}ﬁ —_F#a(mﬂ + d{A(aLﬂ}} — fLpf+ glpa +ipla nB), ()
h = A(Ct, ,!3) =5 #[,\.E}{O‘f, f}(g) = #[ﬁ,E}[ﬁ:g}{I]:
£ being the Lie derivative operator (see [5])- a:
These facts allows to introduce & Lie algebroid (T* MxR, [, lo(a,2), #a.5))
over M. where T*M is the cotangent bundle of M and [, [,z (21 (M) x
C(M))2— Q1 (M) x C%(M) is the bracket on (M) x C>(M) defined by

(e £), (3 a}loraey = {10 B, (8)

(for more details, see [5]).

In the particular case when (M, A) is a Poisson manifold we recover, by
projection, the Lie algebroid (T*M, [, Jucay. #4), where [, Lo(a) is the bracket
of 1-forms given by

lov, Alugay = LpaiarB = Lgaige + d(Ale, 8)), (4)
for o, 3 € QY (M) (see [1, 14]).

4 Characterizations of Jacobi structures

Let A be a 2-vector and E a veclor field on M. Tor a real (™-differentiable
function f, the hamillonian vector field associated with f is the vector field
X; g;lveu hy Xf = #{,\j;](df, f} e #A(fif} T fE

As in the case when (A, E) is a Jacobi structure, we also can define the
bracket. [, Jucam (M) x C=(M))2— QYM) x C*(M) by (7) and (8).
It is easy to check that this bracket is skew-symmetric and that

[{df: .f}1 {dg_-g}]u(ﬂ__ﬂ) = _(d{frg}(ﬁ,ﬁh {f?g}{h,bj}!
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ll—(‘-r’ f)? h‘{.ﬁrg}]v[ﬂ,ﬁ'} T h[[{ﬂ,f), tﬁkg}_lv{rhﬂ:] + #(A.E‘}(O\ f}{h)(ﬂs g)e

for all a, 8 € QM) and f, g € C=(M).
Using the above definitions, we derive the following characterizations of
Jacobi manifolds (see [3, 5, 9]).

THEOREM 4.1 FLet M be a differentiable manifold, A a 2-vector and E a vector
field on M. The follouring stalements are equivalent:

15 CM A E) 56 8 Jasobi msntfald.
2. The bracket { , }u.z) satisfies the Jacobi identity.
3. For all f,9 € C=(M), [Xp, Xg) = ~X(sg)n.
4. For all (o, f), (B, g) € Q'(M) x O=(M)
[#(h,ﬂ){ﬂs s #(.«,E}(ﬁ.-:?}] = #(A,FJ}[[(OH £, (8,9)]via,E)- (10)

Besides this we can give another characterization of a Jacobi structure in
terms of the Lie bracket [, | defined in (1) and a new homomorphism #,m)
associated with a pair (A, [), where A is a 2-vector and £ is a vector field
on M. The homomorphism of C™(M }-modules #¢y g : QHM) % C=(M) —
X(M) x C*(M) is given by

#amle f) = F#amle ) e(B) = (#ala) - fE,a(B). (1)

THEOREM 4.2 Let A be a 2-vector on M and E be a vector field on M. Then
(M, A, E) 15 a Jacobi manifold if and only if for all (v, [), (3, g) € D} M) x
C(M),

F#am (e, ) #a.m (8. 9)] = #op) e ), (8, 9)]uia,5)-

Proof. Lel us suppose first that (M, A, E) is a Jacobi manifold and write
[(ce, £, (8 @)luia. 5 = (7, B). Then,

#,e0 [l £ (8, 0)luia ) = (Fiae (1 1) (E)).
On the other hand, using (7}, (10) and (11),

[Famles D) #FamB ol = Famnh), #amle £BE)
—#ia.m (5 gllal E))).

Therefore, we only have to prove that

YWE) = F a8 (0 [)BE)) = #4008, 9) (2 E)).



6 JACORI-NLIENHUIS MANIFOLDS

Indeed, from (7), we deduce that

E) = (LgymBIE) — (Lyymal(E) + E(Aa, 5))
+eE(a(E)) — FE(B(E))
= #uamla HBE) ~ #s.5)(8.9)(a(B))
Bl Ly B) + alLyypE) + E(Aa, 5)).

On the other hand , since LgA = 0 (see (4)) it follows that Loty = #Facelp.
Applying this we have that the last three terms of (12} vanish.

(12)

The converse statement follows from Theorem 4.1. m
In the particular case of a contact manifold we get

PropoSITION 4.3 Let (M, A, E) be a Jacobi manifold. Then (M, A, E) is a
contact manifold if and only if the mapping

#(J'L,E} ¥ {nl(ﬂ{) x C’x(ﬂ}‘r:}![[ ¥ ]]u[h,E}} g (EKM) x UM(M}! [ 1 l)
18 an isomorphism of Lie algebras.

Proof. Suppose that (M,n) is a contact manifold and that (A, E) is its
associated Jacobi structure.  From Theorem 4.2 we deduce thal #, g ¢
(' (M) x C=(M), [, lua gy) = (X(M) x C2°(M), [, ]) is & homomorphism
of Lie algebras.

On the other hand, from (6), (11) and since #4(a) = b~} {a) — a(E)E,
the homomorphism of C*(M )-modules by g : E(M) x C(M) — QM) x
C™ (M) given by

bea, i) (X, f) = (ix(dn) + S, —n( X)), for (X, f) € (M) x C*(M),

is the inverse homomorphism of #4 g

Conversely, assume that (M, A, £) is a Jacobi manifold and thal the map-
ping #a.m ¢ (M) x C°(M), [, luam) — (X(M) x C®(M),[, ]) is an
isomorphism of Lie algebras. We will prove that for all » € M,

oM = (#a)(To M)+ < B; > .

Let # be a tangenl vector at a point @ of M. Since the mapping #{A,E} s
% M )-linear, it induces an isomorphism between the vector bundles T* M <K
and TM x R which we also denote by #(4 g). In fact, the restriction of this
isomorphism to THAM x [ is defined by

(#oap)e oM xR — M xR, (o, t) — ((#a)z(0z) — 1By, 0 (Ea)).
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Thus, there exists (o, t) € T0M x T such that

(¢,0) = {#{A,Ej}w{“mt) = ((#a)ele) — tEy, ap( Ex)).

Therelore, v belongs Lo the subspace (#4) (T3 M)+ < E; > . On the other
hand, Ex & (#4):(T7M). Indeed, if we suppose that there cxdsts w, € T M
such that By = (#a)e(we) then (#1401 )e(we, 0) = (#(a,m)(0, —1). But this
is not possible, since the mapping (#a, ) is a linear isomorphism.

The above facts imply that (M, A, E) is a transitive Jacobi manifold and
that the dimension of M is odd, that is, (M, A, E) is a contact manifold (see
[2,6,9]). m

5 Recursion operators and Jacobi-Nijenhuis mani-

folds

Let M be a differentiable manifold. Suppose that A (respectively, F) is a
2-vector (respectively, a vector field) on M and that N : (M) x O=(M) —
(M) x O=(M) is a C™(M)-linear map.

We can consider the tensor field Ay of type (2,0) and the vector lield F;
characterized by

#Fing i) =N oA E)- (13)

A direct computation shows that A is a 2-vector if and only it N o #, g =
#m) © IN, where 'V : 1(M) x C®°(M) — QY (M) x C°°(M) is the adjoint
operator of N,

Now, we will study the following problem:

Ghiven a Jacobi structure (A, E) on M and a C*(M)-linear map N :
X(M) % CO(M) — X(M) % C™(M) satisfying N o #.8 = Fam © N,
which are the necessary and sufficient conditions for assuring that the pair
(A1, Bq) given by (13) is a Jacobt structure compatible with (A, E).

‘We recall that two Jacobi structures (A, E) and (Ag, BY) on M are com-
patible if (A + Ay, B+ E) is a Jacobi struciure (see [4, 13]).

In order to solve the above problem, we define the deformed bracket
[: ] emoqam : (M) x O2(M))? — QM) x O (M) as follows

MG:? f)- (4, g)]]*:\'.y(ﬁ,Ej = EL-N(“? f}s (ﬁ, 3)]]0(.&.5} o [("1 £ tN[lﬁrﬂ}]v{A.E‘]

~'Nl(e, £),(8,9)ua,5)- =

Firat we characlerize when (A, Fy) defines a Jacobi structure in the fol-
lowing result.
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Prorosimion 5.1 Let (M, A B) be a Jacobi manifold and let N : X(M) x
Co(M) — X(M) x C=(M) be a C*(M)-linear map such that N o #, gy =
Foae @ PN, Then the pair (Ay, By) is a Jacobi structure on M if and only if,
for all (e, f), (8,9) € QM) x C=(M),

[N, Nli# e (o Pl #a ) (309)) = N#am(le, 1), 18,90 )ua,,m)
=[(e, £). (8. gl ewvuia.m))-

Proof. Using (3), (13) and Theorem 4.2, we have that (A}, E;) 1s a Jacobi
structure if and only if

[V, N](#a,my (o £y # a5 (8, 9)) + NIV o #0489 (a, £ #a,m (5, 9]
i E (e £), N o #a ey (8, 9)] — N o #a (e £), (8, )], (15)
_#{ﬁm [{-CI, f)r{.srg)]u{ﬁ'l.gﬂj =0

For all (e, ), (7, 5) € QL (M) x O=(M).
On the other hand, using (14}, Theorem 4.2 and the equality No#, gy =
#(ﬁ.ﬂj o LN; we oblain thal

[N e #ame £) #ia,m (B9 + [F#am e, £ N o 4 1y (8, 9)]
=N o #u g [le, 1. (8, alluiae — #Fam e 0 (8,80 i, 0
= #um(Ne, ), (8 Dluar + e, 1), *NG @l m)

— *N(ex, £}, (8, g)ﬂv(h.E} — [, £, (8, H}Bu[m,ﬂl])

= #um (e £ (8. 0)] envwin,my — Lo, £ (8, 9)]ucar B0))-

Therefore, substituting in (15) we deduce that (A1, £1) is a Jacobi structure
on M if and only if

[V, NI(# (00 £ Foam (B,9)) = N#amlla ), (8, $uias E0)
“[{arf}r{ﬁ:g)]'N.v(A,E')D'
n
If the C°°(M)-trilinear map #, p, o [V, N] : (2'(M) x €°(M))* —
€*(M) given by

#{a) oLV N]((e, £), (8,9), (7, h)) = (7, R)(IN, NY(#a, (e, ), # a0 (8, 9))):

vanishes then IV is called a recursion operator of (A, E).

Under the same hypotheses as in Proposition 5.1, one can define the
(M )-trilinear map #x &) © C((A, E), N) : (M) x C=(M))* — C=(M)
given by

(# (8,2 0C((A, E), N)) (e, [), (B, 9), (v, B)) =

Cr. B}y ([t £, (Be )tan 1) — L £ (B Mlewmniy)). OO



MARRERO, MONTERDE AND PADRON 9

Now, we give in the following result an answer for the problem posed at the
beginning in this Section.

Tunorem 5.2 Let (M, A, E) be a Jacobi manifold and let N : (M) x C®(M)
— X(M) x O(M) be a C®°(M)-linear map such that N o #ne = #uE ©
IN. Then (A, E1) is a Jacobi structure compatible with (A, E) if ond enly if
N is a recursion operator of (A E) and the C°°(M)-trilinear map #5 g ©
C((A, E), N) vanishes.

Proof. From Theorem 4.2, we deduce that two Jacobi structures (A', £} and
(A1, E}) on a manifold M’ are compatible if and only if, for all (e, f), (7,4) €
QUMY x C=(M"),

#arenllee 1) (3 9)luens ey + Hagm e £, (8. 9)uw gy = (7
= [#ar ey lon 1) # ) (B 9]+ [Fag.my (o 1) #iar,m) (8, 9))

Using this fact, (13), (14), (16), Theorem 4.2 and Proposition 5.1, we prove
the result. ]
Theorem 5.2 suggests us to introduce the following definition.

DrFINITION 5.3 Let (M, A E) be o Juocobi manifold and let N @ X(M) x
C®(M) — X(M) x C®(M) be a C°°(M)-linear map. The triple (A, E,N) is
said to be o Jacobi-Nijenhuis structure if N o ffh ) = Fame N, N s a
recursion operator of (A, E) and #¢ py o C{(A, E), N} vanishes.

ExAMPLES 5.4 1. Weak Poisson-Nijenhuis manifalds: Let P be a Poisson 2-
vector on M and N : X(M) — X(M) be a (1, 1)-tensor field on M. Consider
the tensor field of type (2,0) Py = NP given by Pi(a,/) = P(*Ne, 3), for
all o, 3 € Q(M), where 'N : QM) — Q1(M) is the adjoint operator of N.
The pair (P, N} is said to be a weak Poisson-Nijenhuis structure on M if Py
is a Poisson structure compalible with P (see [12]).

A direct computation, using (13), Theorem 5.2 and Definition 5.3, proves
that (P, N) is a weak Poisson-Nijenhuis structure on M if and only if the
triple (P,0, V) is a Jacobi-Nijenhuis structure, where NV : (M) x C™(M) —
Z(M) x C™(M) is the C°°(M)-linear map given by N(X, f) = (NX,0).

Thus, from Definition 5.3, it follows that (P, N) is a weak Poisson-Nijen-
huis structure if and only if N o #p = #po ‘N and

[N, Nen(#p(a), #p(8)) =0, #p(C(P,N)(e, 6)) = 0,

where [, | is the Fr6licher-Nijenhuis bracket and C'(P, N) is the concomitant
of P and N.
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On the other hand, if P is a Poisson structure on M and N is a Nijenhuis
operator ([N, N|pw = 0) then the pair (P, N} is said to be a Poisson-Nijenhuis
structure if N o4tp = #fp e 'N and the concomitant C(P, N) vanishes (see
[7]}. It is clear that a Poisson-Nijenhuis manifold is always a weak Poisson-
Nijenhuis manifold. However, the converse is not true as shows the following
simple example;

Let P = [Py be the Poisson bivector on a manifold M defined by a Poisson
structure Fp and by a Casimir f : M — R of Fb, this is, [ satisfies #p,(df) = 0.
Now, consider the Nijenhuis tensor N = fId, where Id denotes the identity
on X[ M). Then, No #p=H#po L. Moreover, NP = fEPn is again a Poisson
structure which is compatible with P. However, the concomitant C(P, N)
does not vanish in general. In fact, C(P, N) = —P @ df.

2. Contact manifolds:  Suppose that (M,n) is a contact manifold with as-
sociated Jacobi structure (A, E') and that (A, ) is a Jacobi structure on
M compatible with (A, E). In such a case, the homomorphism #4 g is
an isomorphism (see Proposition 4.3). Thus, we can consider the C™°(M)-
linear map N = (4, gy © #[_J’G.E)‘ Since A is a 2-vector it follows that
N o #ae) = Fiae) © “N. Therefore, from Theorem 5.2 and Definition 5.3,
we deduce that (A, E, N) is a Jacobi-Nijenhuis structure.

6 The hierarchy of Jacobi-Nijenhuis structures on
a Jacobi-Nijenhuis manifold

Let A be a 2Z-vector and let E be a vector field on M. Denote by P the
homogensous 2-vector on M x R defined by P = e YA+ 8, A E), where t is
the usual coordinate on [R.

Consider the bracket [ , J.a g (respectively, [, Jy)) on the space
Q'(M) x C™(M) (respectively, /(M x R)) given by (7) and (8) (respec-
tively, (9)) and the C*°(M }-module 21(M x ) defined by

QUM x R) = {a e 0" (M x R) /Ly = a}.
The isomorphism of C* (M )-modules
2 QY M) x CF(M) — QLM x B), (o, f) = '{a+ fdt)  (18)
satisfies the condition [y(o, £),%(8,9)lupy = ¥(l(e, £). (8, 9)luia, ), for

(e, f), (B,9) € QY M) x C=(M) (see [15]). Moreover, a direct computation
proves that
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LEMMA 6.1 If A (respectively, E) is a 2-vector (respectively, a vector field)
on M and P is a 2-vector on M x | then P = e Y (A + 8; A E) if and only
if Pogfam = #poth where & : X(M) x C*¥(M) — Xr(M x R) is the
isomorphism af C™(M)-modules given by (2).

Now, suppose that N : (M) x C®(M) — E(M) x C=(M) is a C=(M)-
linear map. N induces a (1, 1}-tensor field on M x R as follows. Note first
that o No®~ ! Xp(M x R) — X (M x ) defines a (/°°(M)-linear map on
X;(M = R). Thus, since (M x &) is a C*°(M x R)-module locally gencrated
by Xr(M x ), this map can be extended to E(M x [£) by linearity. Let us
denote the extension by N®. From (18), it follows that {(N%)o ¢ = 1o N,
Therefore, using Lemma 6.1, we have that

No#pm=#mpo ‘N> Nlodp=#po {N®).  (19)

On the other hand, it is well-known that the pair (A, E) defines a Jacobi
structure on M if and only if the 2-vector P defines a Poisson structure on
M »x R (see [8]). In fact, if (A, E) is a Jacobi structure on M, the 2-vector
P is called the Poissonizetion of (A, B). Furthermore, in [4, 13] the authors
prove that two Jacobi structures on M are compatible if and only if their
Poissonizations on M x R are compatible. Using these results, (19), Theorem
5.2 and Lemma 6.1, we deduce

PROPOSITION 6.2 Letf (A, E) be a Jacobi sfructure on M and N : X(M) x
C(M) — X(M) = C°°(M) be a C°°(M)-linear map. The triple (A, E,N) is
e Jacobi-Nijenhuis structure on M if and only if the pair (P, N?®) is o weak
Poisson-Nijenhuis structure on M % R, where P is the Poissonization of the
Jacobi structure (A, E) and N7 is the extension of N to X(M x R).

Now, assume that (A, E, N) is a Jacobi-Nijenhuis structure on M and that
P (respectively, N**) is the Poissonization of (A, E) (respectively, the extension
of N to ¥(M x R)). Then, using Proposition 6.2 and the results of [12], we
obtain that (P = (N™")*P, (N")") is a weak Poisson-Nijenhuis structure, for
all k, £ € H.

On the other hand, it is easy to check that (N*)¥ = (N9)® and, from
Lemma 6.1, it follows that (N®)*P = e~*(A, + & & Ej), where (Ag, By) is
the pair characterized by the condition #4, &, = NEo #n2)- Conqequpntly
using Proposition 6.2, we deduce the following:

THEOREM 6.3 Let (A E) be a Jacobi structure and N : Z(M) x O™(M) —
E(M) x C®[(M) be o C°°(M)-linear map. If the triple (A, E, N) is a Jacobi-
Nijenhuis structure then for any k£ € N, (A, E, Nf) 1s a Jocobi-Nijenhuis
structure on M. Thus, for any &, € M, (Mg, Ey) and (Ag, Ey) are compatible
Jocobi structures on M.
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