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Introduction

In [4] P. Michor gives a generalization of Hamiltonian Mechanics extending the Poisson
bracket to a graded Lie bracket in the space of differential forms modulo exact forms.
Such extension is based on the well known Frolicher-Nijenhuis operators that commute
with the exterior derivative. [2]

In the first part of this work we improve a result of [4] that allows us to check the
goodness of the generalization: Let (M,w) be a symplectic manifold. We prove that
there is an exact sequence of graded Lie algebras

A(M

) Z, Lham(M) L H*+}(M) — 0

0 — H"(M) -

where A(M) is the algebra of differential forms, B(M) is the subspace of exact forms,
H¥*(M) is the k-th singular homology group and LHam(M) is the space of T'M-valued
differential forms K such that Lxgw = 0 and P(K) = 0 , where Lk is the Frélicher-
Nijenhuis operator induced by K and P is the projector from the space of all T'M-valued
differential forms to the subspace of K such that i(K)w = 0.

On the other hand, A. Montesinos and myself [5] have found a method to compute
the integral curves of derivations on the algebra of sections of a exterior bundle. In par-
ticular, thanks to this method we can integrate the Frolicher-Nijenhuis operators. These
integral curves are the orbits in the Michor’s generalization of Hamiltonian Mechanics
and they can be used to find conserved quantities.

Finally, these results are applied to the study of the relation between symplectomor-
phisms (Sw = w), Poisson automorphisms ({Sa, S8} = S{«, 8}) and the Z;-graded
algebra automorphisms (S(aAB) = SaASP) that commute with the exterior derivative.

1 want to express my gratitude to A. Montesinos for helpful discussions and hints,
and to P. Michor for a first reading of the manuscript.

* Work partially supported by the CICYT grant n. 1242-84-C02-01
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L.- Derivations on A(M).

In the first two paragraphs, we recall some definitions and results taken from [4].

Let M be a manifold. Let A(M) = @o<k<n A*(M) be the graded algebra of
differential forms and let A(M;TM) = Bo<ik<n A¥(M;TM) be the graded-space of
T'M-valued differential forms over M. Given K € A*(M;TM), let i(K) be the algebraic
derivation of degree k — 1 defined by

i(K)a = K(¢; )Aalej, ),

where o € A(M), {e;} is a local frame and {e’} its dual.

The proper derivations are defined by Lx = [i(K),d], where d is the exterior
derivative and [, ] is the graded bracket of derivations, which induces the Frolicher-
Nijenhuis bracket on A(M;TM), and we have [4]:

Proposition 1.1:

1- If K € A¥(M;TM) and L € A™'(M;TM), then

[£x, (L)) = i([K, L)) = (~1)¥ Lir )k
2-If K; € AM(M;TM), for j =1,2, a € A%(M); then
[0 A Ky, K3) = a A [Ky, Kg] = (—1)HR%2 (L a) A Ky + (1) 0 da Ai(K) Ko,

2.- Generalized Hamiltonian Mechanics. (See [4] for details).

Let (M,w) be a 2n-dimensional symplectic manifold. w induces a vector bun-
dle isomorphism p:T*M — TM , and, as a consequence, a linear homomorphism
AY(M) — A°(M;TM), which can be uniquely extended to an algebraic derivation of
degree —1 p: A(M) — A(M;TM) -

Let H: A(M) — A(M;TM) be the generalized Hamiltonian mapping defined by
Hy = p(da), where d denotes the exterior derivative.

Lemma 2.1:

1. i(pa)w = (—1)*'aa for a € A%(M).

2. i(Ha)w = (=1)%(a + 1)da for o € A*(M).

3. ﬁﬂnw =0,

4. i((K,L)w = dA(K,L)w for K € AN(M;TM), L € A(M;TM) such that
Lrgw = Lrw =0, where

A(K, L) = (-1)*i(K)i(L) - (-1)*=D(L)K).
5. i(i(K)Hy)w = (—1)%ai(K)da for o € A%(M).

We will write p#(a) = (—1)*~*4p(a) for & € A%(M). p#* is a right inverse to i(.)w.
Among the several possibilities of definition of the generalized Poisson bracket
presented in [4] we will choose the following one: {a,8} = Lg_p.
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Lemma 2.2:

1- {a, } is a derivation of degree a on the Cartan algebra. of differential forms.
% Hardla]l= Hsny:

3.- {, } satisfies the graded Jacobi identity.

4.- {, } is not graded anticommutative. We have

{8} + (=1)*"{8, a} = (=1)*d(i(Ha)B — (- 1)~ D=Di(Hp)a).

Thus { , } induces a structure of graded Lie algebra on %E%}. Let I'(E,) be the

subespace of the elements K € A(M;T M) such that i(K)w = 0. We have the projector
P:A(M;TM) — T(E,) given by P(K) = K — p¥ (i(K)w).

The main result of [4] is the following:

Theorem 2.3: Let (M,w) be a symplectic manifold.

1.- Let B(M) be the space of exact forms, let H*() be the k-th singular homology
group and let V(M;TM) be the space of the elements K € A(M;TM) such that
wa ==,

The following sequence is exact and consists of graded Lie algebras (the brackets
are indicated below the spaces) '

0 = H*(M)—i»% 2, V(M;TM)
0 o [,]

All mappings are homomorphisms of graded Lie algebras.
2.- Let y(K) be the cohomology class of i(K)w. Then the following sequence is
exact

== L V(M;TM) 2 (M) @ T(E,) — 0.

3.- A Generalization of locally Hamiltonian fields.

If X is a locally Hamiltonian vector field different from zero then i(X)w is always
different from zero because w is a symplectic form. However, in this generalization of
Hamiltonian Mechanics, it is possible to have i(K)w = 0 with K # 0. In such case
Lxw = 0 trivially. Then, we must not consider all the TM-valued forms such that
Lgw = 0 as locally Hamiltonian. To get only the right ones, we project the space of
the K € A(M;TM) such that Lxw = 0 onto the complementary of I'(E,).

Definition: K € A(M;TM) s called locally Hamiltonian if £ xw = 0 and P(K) =0,
and is called globally Hamiltonian if there exist « € A(M) such that K = e

We shall denote by LHam(M) (GHam(M)) the space of all locally (globally)
Hamiltonian K € A(M;TM). Obviously GHam(M) = Im H. We shall study the
structure of both spaces with respect to the graded Lie bracket.

Lemma 3.1: LHam(M) is a graded Lie subalgebra for the Frolicher-Nijenhuis
bracket.
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Proof: If K,L € LHam(M) then, locally, there exist ¢ and v such that K = Hy
and L = Hy. Thus,

P([K, L]) = P({Hy, Hy)) = P(Higgy) = 0. n

Lemma 3.2: Let K € A(M;TM) be such that Lxw = 0. If [K,Im H]| C Im H
then [K, Hy] = Hp, 4 for all ¢ € A9(M), where

q k+1
g+ k1 R T Gremm®

Proof: In the following, p#(i(K)w) will be denoted by K#. First, let us suppose
that K = K#, i.e. that K is locally Hamiltonian. Then, the form (K )w is closed, and,
if p € M, there exists a homologically trivial neighbourhood U,of p, where i(K)w is
exact.

Since the sequence in theorem 2.3, with M = U, is exact, and since K|y is an
element of the kernel of v + P, then, there exists a ¥ € A(U) such that Hy = K|y.

Thus

D¢ =

(K, Hy)(p) = [K|v, Holu](p) = [Hylv, Hylv)(p) = Hgjo 610} (P),

by lemma 2.2.2.
From the definition of Poisson bracket definition this is equal to

Hey,, 010)(P) = Heyo(p) = Hpro(p).
Let us assume now that [K, Hy] = Hp(k,¢). Then
[K — K#,Hy] = Hp(x,4)-£, o9) Where i(K — K#)w = 0.
Moreover
i([K — K¥* Hy))w = —(-1)*i([Hy, K — K*])w=  (by proposition 1.1.1)

= (1) G, il + (~DRIHHDL g o
since

i(K - K*)w=0=Lg,w,
= (—1)7** di(i(K — K*)Hy)w =
by lemma 2.1.5
= (=1)1** qdi(K — K#)d¢ = (=1)"*q dLx_x+¢.
On the other hand, it follows from lemma 2.1.2, that
i(Hp(k g)-£,p9)@ = (=1)*(k + ¢+ 1) d(P(K, ¢) - Lxnd).
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Therefore

k+1

dP(K,¢) = s, S dlxo + |

Tt kTl dlgw¢ = dDk ¢.

Then
Hp(x,¢) = HDK¢- ]

Lemma 3.3:Let K be a T'M-valued form with no part of degree n = dimension of
M.

Lx ¢ is closed for every ¢ € A(M) if and only if K = a A Id with da = 0.

Proof: We can assume that K is homogeneous of degree n > k > 0 and that ¢ is
homogeneous of degree p. First, if K = a A Id with da = 0 then

dLx ¢ = dLanrad = di(c A Id)d¢ = pd(c A dgp) = 0.

Assume now that Lx¢ is closed for every ¢ € A(M). Let us write K = K' ® 3%
locally, where K' E_A("‘}(M). For ¢ = 2! we have dK' = 0, and for ¢ = z'2/ we have
dz? A K' + dz' A K7 = 0. Evaluating this expression on 3‘5—; and adding from j =1 to
n we get

n
o0
E gt 5. R
(n—k+1)K' = dz Aj-le“(axf’ ) =0
Then, there exits a such that K' = a Adz'. da = 0 is a consequence of dK' = 0 and
degree of a<n—1. »

Proposition 3.4: [K, H¢) = He, 4 for every ¢ € A(M) iff K is locally Hamiltonian.

Proof: We can assume that the degree of K is k and that the degree os ¢ is q. By
lemma 3.1, if K is locally Hamiltonian, then [K, Im H] C Im H. Now, it follows from
lemma 3.2 that [K,Hy) = Hg 4.

Assume now that [K,Hy] = Hg, ¢ for every ¢ € A(M). First, we shall see that
Lgw = 0. We can suppose that, locally, the symplectic form is the canonical form
w = dp; Adg', {m,q'} being the Darboux coordinates. Let ¢ = p;d¢* be the Liouville
form so that d¢ = w. Thus, we have Ly, = —d, the exterior derivative. Then,

LH;;K¢ = ‘C[K,H¢] = E_K»CH‘ - (—1)k£H¢£K = —.C_Kd + (—l)kdﬁx = 0.
Hence Hg, ¢ = 0. This means that Lx ¢ must be a closed form, and thus
0=d(Lx¢) = Lxdp = Lxw.

We shall see now that P(K) = 0. From lemma 3.2 [K,Hy] = Hp,4, and then,
Heyy = Hpyy. Then iy dlxé+ ghity dlxed = dlxé .
By computation we get dCx_g#¢ = 0. From lemma 3.3, K — K¥ = a A Id with
da = 0. But
0=iK - K*w=i(aAldw=2aAw.

Using Lepage’s divisibility theorem ([3], p. 49) we get that if the degree of & = n—r
with » > 1 then condition a Aw = 0 implies & = 0; and that if the degree of a =n+1r
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with » > 0 then o may be written uniquely as @ = #Aw" where B € A"~"(M). In such
case, condition @ Aw = 0 implies that 2 is effective,([3], proposition 15.11, p. 46), i.e.,

~_. 8 &
Pl ) 20,
2 op; i )
On the other hand, [K — K#, H,] = 0 for every ¢ € AY(M). From proposition
1.1.2, we get
0=[aAld,Hy] = (-1)"Ly,a A Id.

Thus, 0= Ly, & = Ly, BAw" for every f € A°(M). Using Lepage’s divisibility theorem
we get that Lg, 8 = 0 for every f € A°(M). Finally, using the same techniques as in
lemma 3.3 we get 8 = 0.

In all cases we get o = 0 and then K — K# =0, so that P(K)=0. =

Corollary 3.5: GHam(M) is an ideal of LHam(M).

Theorem 3.6: Let (M, w) be a symplectic manifold. The following sequence is exact
and consists of graded Lie algebras, whose brackets are written under the spaces.

0 — H*(M) -t g—% &, Lham(M) 1 B (M) — 0
0 % % 0

All mappings are homomorphisms of graded Lie algebras. {, } is the induced graded
Poisson bracket.

Proof: If K € Ker v, as we have, by definition, that P(K) =0, K € Ker (y+ P).
By 2.3.2, we also have that K € Im H. And, finally, by 2.14, ¥([K, L]) = 0. The rest
is proved in [4]. =

As in the classic case ([1], p. 194, or also [3], p. 98) we have

Corollary 3.7: [LHam(M), LHam(M)] C GHam(M).

Proof: We know that if K, L € LHam(M) then [K, L] € LHam(M). On the other
hand i([K, L])w = dA(K, L)w, an exact form, whence [K,L] € Ker v. By the previous
theorem, [K,L] € Im H = GHam(M). =

Corollary 3.8: dimg‘,—z':}g% = bg+1(M), the (k + 1)-th Betti number.
Proof:

LHam*(M) _ LHam*(M) _ LHam*(M)
GHam*(M) = Im H¥(M) = Ker~y

=Imy=Ker0=H*"'(M). n

4.- Symplectomorphisms and Poisson automorphisms.

The characterization of Poisson automorphisms is a very hard problem, even for
zero degree. But the aim of the present work is not to study the automorphisms com-
pletely, but to find the orbits associated to the generating forms.
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Definition: An IR-linear automorphism S: A(M) — A(M) is called a symplecto-
morphism if Sw = w.

An IR-linear automorphism S: A(M) — A(M) is called a Z,-graded algebra au-
tomorphism if S(a A B) = S(@) A S(B) for all @, 8 € A(M).

An IR-linear automorphism S: A(M) — A(M) is called a Poisson automorphism
if S{a, 8} = {S(a),S(8)} for all o, B € A(M).

Any linear endomorphism 7' of A(M) can be uniquely written in the form T
Ty + Ty, where Tp preserves the Z,-grading and T reverses it.

Definition: We shall say that T' commutes with the exterior derivative if doT; =
(=1)'T; od for i = 0, 1.

From now on, we shall work with endomorphisms that commute with the exterior
derivative.

Let G, (resp. Ga, Gp) be the group of all the symplectomorphisms (resp. Za-
graded algebra automorphisms, Poisson automorphisms).

Remark: S € Gy, iff So Ly, 057! = Ly, for all « € A(M).

Let us recall the following result that characterizes the Z;-graded algebra auto-
morphisms of A(M) that commute with the exterior derivative:

Theorem 4.1: ([5],[6]). If S € G, there exists:

a) a unique diffeomorphism ¥: M — M, and

b) a unique section Kg) € A?*(M;TM), for all k > 0, such that S = B(yyo...0
Bg)0 By o (yﬂv")_l , where ¥* is the pull-back of ¥, and By = exp(ﬁx(m), and r is
the integral part of 2.

The following theorem characterizes the elements of G among those of Ga:

Theorem 4.2: If S € G,, then S € Gy iff K(2iy € LHam(M) for all i > 0 and
Y* € G,.

Proof: If S € G,, then S can be written in the form S = B)o.. .0B(2)0B(1yo(¥" e

As it is well known ([1], proposition 3.3.20), ¥ is a symplectomorphism of M, if and
only if {¢*a,¥*8} = ¢¥*{o,B} for all a, 8 € A(M). Then we can suppress P* without
loss of generality.

We will see now that an element K € LHam(M) of degree 2k satisfies

exp(Lx ){a, 8} = {exp(Lk)a, exp(Lk)B} forall o, € A(M) (4)

if and only if
[K,Hq) = Heyo for all o € A(M). (5)

Let a (resp. b) be the degree of o (resp. ). The term of degree a+ b of both sides
of (4) is {@, #}. Equating the terms of degree a + b + 2k of (4) we have

Lx LB = LHe ol + Lo LKP
which is (5).
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Conversely, this last equality implies

)8 = 3 (2) Caepa Ex) 8,

p=0

but this expression is the term of degree a + b + 2kn of {exp(Lx Ja,exp(Lx)B}.
By proposition 3.3, (5) holds if and only if K € LHam(M). Thus we can suppress
the factors exp(Lk) until the dimension of M is reached.m

Definition: A Poisson automorphism is said to be regular if there exists a diffeo-
morphism ¥: M — M such that, for any m € M, (Sa),, only depends on o in a
neighbourhood of 3(m).

We have the following relation between Poisson automorphisms and symplectomor-
phisms.

Theorem 4.3: Every regular Poisson automorphism that commutes with the exterior
derivative is a symplectomorphism.

Proof: Let S be a regular Poisson automorphism. For any p € M let V a contractible
open neighbourhood of p, and let ¥ be the diffecomorphism of M defined by S. Let ¢
be a differential form such that d¢ = w, in ¢=1(V). Then Lr, = —din ¢~1(V).

The condition that S be a Poisson automorphism is equivalent to So {$: }oS~ =
{54, }. In V we have that So{¢, }o§~! = —d = Lr, = LHs, . Thus w = d¢ = dS¢.
Since S commutes with d, then w = Sow — Sjw. However, S;w is of even degree, hence
it must be zero. Thus Sw = Sgw = w. =

5.- Orbits in the generalized Hamiltonian Mechanics.

In Hamiltonian Mechanics the orbits of the dynamics associated to a generating
function f are given by the flow, ¥, of the field H 7+ The pull-backs ¥} are a family of
linear automorphisms of degree zero, that integrate £ H, in the following sense:

di‘;:b:(ﬁ) = L, o¥;(B) forall B € A(M).

Or, in Poisson bracket form

TV = U9(®) foral 5 M),

which are the Hamilton equations.

Furthermore, v;(B) is, at the same time, a family of Z,-algebra automorphisms
and of Poisson automorphisms, since Lu, is a derivation on the Cartan algebra and
a derivation on the Poisson algebra, and a family of symplectomorphisms, because
JCH,w = Ww.

This example gives rise to the following definition: the orbit associated to a gener-
ating form a is the integral curve of the derivation Ly_. Let us recall some definitions
and results of [5].
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Definition: A curve of linear automorphisms of A(M) is a one-parameter family of
IR-linear isomorphisms Ty: A(D—¢) — A(D:), t € IR, where D is an open subset of M,
with the following conditions:

a) Do = M, To = Id, Uy Pt = UrcoDt = M, Dy, C Dy, if £y 2 15 2 0, or if
t; <13 <0, and {t € IR | m € D,} is an open interval for every m € M;

b) if @ € A(M), let us write T¢(a) = Ti(alp_,); then, if m € M, the curve
t — (Tya)(m) € AT*M, for t such that m € Dy, is smooth; and the map m €
Dy, — (&)t (Tea)(m), which we will denote by T}, belongs to A(D:).

A curve of linear automorphisms of A(M) is called a curve of symplectomorphisms
(resp. Z,-graded algebra automorphisms, Poisson automorphisms) if , for every ¢ € IR,
T, € G, (resp. Ga,Gp).

Let T} be a curve of linear automorphisms of A(M) and put D; = T,"'T!. Then
D, is a linear endomorphism of A(D_¢)). It is easy to check that when T is a curve
of Zo-graded algebra automorphisms (resp. of Poisson automorphisms), then D; is an
even derivation of the Cartan algebra (resp. of the Poisson algebra), i.e. Di(aAf) =
(Dia) A B+ a A (Df) (resp. Di{e,B} = {Da, B} + {a, D;3}). Therefore, we cannot
obtain the odd derivations (both Cartan and Poisson) as derivatives of curves of Zj-
graded algebra automorphisms or Poisson automorphisms. Since our wish is to include
even and odd derivations, we have chosen curves of symplectomorphisms instead.

We need the following

Definition: A linear endomorphism D is said to be localizable if there is a map
Wi M —s M such that, for each o € A(M) and m € M, (Da)(m) is determined by the
infinite jet of a at ¥(m).

" The following theorem assures the existence and uniqueness of integral curves:
Theorem 5.1: ([5]). Let D be a localizable linear endomorphism of A(M) such that

D=Dgy+ ...+ D)+ ..., (D) of degree P)

with Dyg) a Cartan derivation. Then there exists a unique curve T of linear automor-
phisms of A(M) such that T} = Tro D = DoTi, and Tp = Id. If D is an even Cartan
derivation (resp. even Poisson derivation), then T; is a curve of Zy-graded algebra
automorphisms (resp. Poisson automorphisms).

For the Poisson case, derive the expression Ti{a, 8} = {Tia, Tt8}.

Definition: We shall call orbit generated by o € A(M) the curve of linear automor-
phisms T; integral of Ly, i.e., such that in Poisson bracket form

T!(B) = {a, Ti(B)} and To(B)=pB, forall B € A(M).
Or by definition of the Poisson bracket
T{=Lg,oTy and Tp = Id.

If a is even then Ly, is, at the same time, a derivation of (A(M),A) and of
(A(M),{, }). Thus T, € Ga N Gy. But if a is odd then, in general, it is neither a
Z,-algebra automorphism nor a Poisson automorphism. However it is a symplectomor-
phism: T; € Gy, i.e. Tiw = w, because Lyg,w=0.
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We can say that T} = Ly, o T} is a generalization of Hamilton equations. In [5] is
shown how they can be integrated in a constructive way.

Proposition 5.2: Let T; be the orbit generated by a € A(M).

a) The flow T; preserves g iff {o, 8} = 0.

b) If [a] € %% is of even degree, then Ti[a] is well defined and is constant.
(“conservation of the energy”).

Proof: a) Is a consequence of £|;=oTy8 = Ty o Ly B = {a, 8}.

b) Is a consequence of {[a],[a]} = [{a,a}] = 0 if « is of even degree. (See 4.6.3

[4). =
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