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1. INTRODUCTION

This will be an expose of a previous work of the senior author [2], and of later joint

- work with J. Monterde. The starting problem was a question about the equation of continuity.
It was the study of the possibility of changing the usual variational setup for fluids in such a -

manner that the equation of continuity could be obtained as a consequence of the variational

principle Instead of imposing it from the beginning as an @ priorl constraint.

: So, let M be an oriented smooth n-dimensional manifold, which stands for spacetime.
We shall consider fluids as cross sections of the fibre bundle of vector densities

E=TM ® A"M—— M.
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This description of fluids as vector densities s certainly the usual thing since it
amounts to take them as densities of mass (this would be the time component) and of
momentum (the space component). Nevertheless, the praclice is to convert them into vector
" fields by evaluating upon a unit volume once a metric has been fixed for the spacetime. For
our approach, however, It Is essential to kéep densities as such.

We'll recall now some notations and concepts borrowed from Takens [4]. For the fibre

bundle m:E——— M we denote by T(E) the set of local smooth sections and put

to fix the notation about the space of o-Jets of local sections of T, J(E). lfse(E), then

J(s) : M —— J(E) will stand for its eo-jet. V(M) will be the Lie algebra of vector fields
on any manifold M.

“ForX e V(M) we put xHe V(J(E)) 1o denote its total vector field or horizontal lift.

Let V(E) be the Lie subalgebra of m-projectable vector fields on E Il Xe VK(E). then

n(X) € V(M) will be its projection and X e V(J(E)) Its natural lift or Integrable
vector field.

The bundle TJ(E) splits as TJ(E) = v @ 3L, where V s the p-vertical subbundle

and 3 s given at each point, u, as the horizontal lift of TP(U)M to u. The algebra of
ditferential forms on J(E) becomes thus bigraded. We put H’S(E) to denote the module of

(r+s)-forms on J(E) that are r times vertical and s times horizontal, and D, @ to denote
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the horizontal and vertical differentials. We have

D2=32- D3 +aD=0.

A source form Is an element o e H! n(E) suchthat Iy w=0 forany

po-vertical X e V(J(E)) . We have the fundamental result

Theorem (Takens): Each we H‘n(E) can be written uniquely as, o= 0+ 0y

where w4 Is a source form and wy € ImD.

~ 2. VARIATIONAL EQUATIONS FOR FLUIDS.

Now we shall state the variational problem. Let A be a regular compact domain of M

with boundary 9A, and let A e H,(E), the Lagrangian, be given. Then we have a functional :
~ se(Ela) ——s Jai(s)
and the problem is to look for its critical points when certain class of variations are allowed.

A big class of variations is given by m-projectable vector fields. If X e Vy(E) we have
another section s; = E:[-s-o_t defined on @(A) for t small enough, where 3( and ¢y are

respectively the flows of X and n(X) . Thus we must study the derivative
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whenever X=|yp =0. Let a€ H‘M(E) be such that dA = ® + Da, o being a source form

(o is thus uniquely defined, and in fact is determined by the classical Euler-Lagrange
operator).
Thus, integration by parts gives .

. Jj(s)*l
X A X“-'n(X)',"m

Now instead of taking X freely we make It lie in a subalgebra of Vp(E), that Is we

- impose a constraint upon the field s. This constraint makes all the difference between a fluid
and a physical field (in the usual variational treatment).

Let X e V(M). Then its flow lifls, via its differential, to the frame bundle, and
therefore X lifts to any tangent tensor bundle over M. In particular we denote by X s lift

to E. So we have VTM) < Vg(E), that Is a Lie subalgebra which will be our space of variations

for fluids. Since w Is @ source form, It Is obvious that there is @ unique 1-form wg on M such
that wg' U = ](s)'(lwm) for any u e T'(E), where the dot denotes full contraction, and

L:T(E) —— Vg (E) Is the vertical Injection. Also it s true almost by definition that

(xH =% - Lys)®)ils) = 0.
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After substitution and another integration by parts we get finally the variational
equations for fluids:

dms-s-ms-as=0, (1)
where & denotes divergence.

Corollary : If s satisfies (1), then &s = 0 in the open subset where wg* S+ 0 (equation
of continuity). '
Proof : Contract (1) with any vector field parallel to the vector part of s,

3. EXAMPLES.

X i n rvative fluid.
Let M=RxR3 be the Newtonian space-time with coordinates  (t,x8). Let

T =at Adx'Adszdxa, and let

s=(a‘;4t-+;‘:—x,)®‘r

be afluid . We put p =s!, pv3 =53 ang fix the lagrangian

A= (pv3R2 - (Vigp)t |,

where V and e are the potential and internal energy per unit of mass, and where the latter
Is supposed to depend only on the density.
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Then, equation (1) splits into

"3’.‘ +pgradV + gredP = (g—: + div(pv)) (2)

%Pg%z+v.(99radV*qrndP) = (%{ +div(pV))(%2+v +e+-§) (3)

where P = p2 de,dp is the pressure and d’dl is the Eulerian derivative . If we multiply (2)

by v and subtract from (3) we get the following equation of compatibility (cf. Corollary):

(ov2-p- p(wd)(j-;’ +div(pv)) =0 (4)

Thus, the equation of continuity holds in the points where
pV22 2 P+ (V + e)p. ' (5)

Otherwise, the fluid may not satisfy it.

We wish to remark two things. First, that the zero level of the potential or internal
energy Is not indifferent to our equations. And second, that (5) is the classical condition of the
no cavitation. We perhaps have thus in (4) a sort of classical foreboding of a creation and
annihilation mechanism. Of course, if the equation of continuity holds good, we have the usual
equations for the momentum and energy.

xampl rodi i
There is another Important equation of continuity in Physics, the conservation of
probability in Schrédinger equation. After a convenient choice of units, Schrédinger equation
reads

¥
19 = -ave Lvy : (6)
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If we put

¥ = [pew]%

’

so that p Is the density of probability, then (6) decomposes into

3—: +div(pgrade) =g

(&)
1 (gradp)?
iy

5 + 1 p(grad0)® 4y, 4 20

at -

Ap =

(8)

Now this is fantasticl The modulus of the square root of a complex function on R4
combines with the gradient of its argument to

give a veclor density with zero divergencel This
Is so queer that should deserve a look from another perspective. Let us take the Lagrangian
~density

2
A= (%va- Vp -%(—qr;dgp) ot

Then

P8 A0l 4 5
s

Ap (gredp)? ix?
" _(_p__% > _ivz-v]dt+vdx 3

We can recover (7) and (8) by a modifi

cation of our variational principle. Let
Z={ue rE)|su=

0). Then ViM)@.Z is a subalgebra of - V(E),
space of variations amounts to impose that, thou

fluid, the Induced variation of its divergence is. S

and to take It as the

gh the variation of s may not be that of a

0, we callthen s a prefluid .
A computation shows easily that then the variational equations

are
wg' 8s . 0
wg Is exact,

)
- and this Is (7) and (8) in the points where wg # 0.

So, one can adopt the unorthodox attitude of thinking that the possibility of a complex
linear description of Quantum waves is a mere coincidence for the case of the Newtonian

space-time. In other words, the complex wave function would be only a clever construction
for simplifying the true image which would be that of an abstract prefluid.
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4. ABSTRACT FLUIDS AS DIFFERENTIAL FORMS.

Our first attempt to Push forward this idea was to lry a relativistic generalization. We

can put, for a Minkowski metric g and a preflvid s ® 1 : p =0(ss)2 and

< 80y 5 q(qrad:; gredp) )<

as suggested by the Lagrangian for the Schrédinger equation.

In few words it can be said that this approach leads to a failure. Certainly one can get
plane wave solutions and also it is true that the solutions of our equaiion approach
Klein-Gordon's when g(grad p, grad p) Is almost constant. But in the search for solutions of
the hydrogen atom problem one is bound to hit against singularities, 3 :

The first idea that comes to the mind at this point is to ascertain whether a similar
variational treatment can be made upon spinors. However, the scisor author [3] showed that
they are not well fit for it due to the lack of a natural Lie derivative. With the precedent of
[1] we took general differential forms, that is, forms of all degrees, as the basic description
of our would-be alternative approach to wave mechanics.

Of course,"since there is a natural isomorphism between vector densities and
(n-1)-forms, it is easy to translate the preceding picture in terms of differential forms.
Classical fluids become 3-forms, which is a most natural thing to do. In fact they can be
Integrated over 3-dimensional spacelike surfaces, so giving the matter contents on them.
Also, the integration over a (1.2) hypersurface (1 time and 2 space dimensions) gives the
amount of fluid that crossed that space surface during that lapse of time. In this picture the
preceding variational equations are obtained in the same way and give, for each homogeneous
component s of the fluid, the following equation:

ds * wg -5 Sug = 0.
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Then, for any homogeneous component of s, the number of equatians Is n, the dimension
of M; that is too little a number in general. The need for more equations leads to the use of
deformations more than simply variations on the variational principle. A vector field

X e V(J(E)) is (essentially) called a deformation (cfr. [4]) if for any given s e TY(E), the

field X-J(s) can be locally put as Y*-j(s), for some vector field Y e Vo (E).

Now, in the preceding process of variation we have
* * : o
G oo hed G oo A =
IAJ(s) Lx A IAj(s) Lx g :

* ’l
fAJ(w Logom - fA;m £

where K e V(J(E)) is the deformalion defined by
Kej(s) = (v L x8)%-j(s).

In other words, we have a variation given essentially through the Lie derivative. The
obvious generalization of this is to take the derivations of the algebra of differential forms,
A(M), that commute with the differential, i.e. Nijenhuis operators.

Let VKM) = r(TM ® AKM), Ke VK(M). If we put

Ly = iged + (1) dig

then [’K is a derivation of degree k in A(M) that commutes with the differential in the

following sense:

Lyd = (-1 d- Ly -
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Let E = A(M) - M be the bundle of forms of any degree on M; if, as before,
Ke Vk(M), we define the vector field K e V(J(E)) by Res) = Ly §)%°+ |(s).
Then K is well defined and it is obviously a deformation. Let A e H°n(E) be a given

Lagranglan and s € T'(E). We define the variation &k of the functional by
§ = I H(D*L_a : ;
K A K 5
Note that here Lz is an ordinary Lie derivative.

After a similar (but longer) process of integration by parts, we get the desired
variational equations for abstract fluids as differential forms

n
pzo‘(d’(p)(;) “’3("”' 3(;)(.&)8‘”3"“’) =0 . Osksn (10)
where the letter p under the dot means a p-fold contraction and wg Is obtained as before but
now o n
S(p) € r(ApM @ A"M).
We have, after a lot of algebraic work :

Theorem : Lettt={me M[s(,)(m)aeo,ms(n) #0). Then ds=8wg=0IinU

if s satisfies (10).
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Notice that ds = dwg = 0 is always a sufficient condition for solving (10); in u itis

also necessary. The condition ds = 0 is the equation of continuity; and the condition Swg=0Is

almost the condition for having a prefluid (of course, in R4, where every closed form is
exact, both conditions coincide). So, we have a clean and nice generalization of Schrédinger

equation as far as its formal aspects are concerned.

We have begun to study the system ds = 8wg = 0 for the simplest case, thatisn =1+ 1.
The first thing to do is to choose the Lagrangian. For the better known field, the
electromagnetic one, F e r(A"’(M)) Wwe have that the energy is given by g(F,F); and it
must also be remarked that the equations ds = dwg = 0 are then Maxwell's equations for

empty space. So, we have chosen, for a form s = }:"p=° Sp) the Lagran’élan

A Cpu q(dppdp))T

where p = g(s,s) = Zp g(s(p),s(p)) is calculated as usual. Then, we have a classical term,
p, and the quantum one - g(dP'dP)lp. which is suggested naturally by the Schrodinger

equation. This last term would be very small in everyday units.

So, letn =2, and take g = dt - dx. We put

S = A+ (Bdt + Edx) + Fdt A dx
+-p.2 = A2 B2 . E2.F2

Q- I+(“tt'“xx)/u
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The equations become

A=kyeR QF =k, e R
B =y QE = v
E = uy QB = v,
S—— o R
ds=0 dwg = 0,

where u and v stand for two unknown functions on R2,
We look first for a static solution. Then us="fx +at v=nhx & bt. Therefore

k2 4 p2
thfa kfea?. 22
Q
Putting
k2 + b2 [
02m2= . £ p= kgfﬂz = z-% =
kg + a
0
. we get the equation
" m
zsut - le
il

There is one non-zero solution that tends rapidly to zero at infinity (lump solution).
lts exact expression varies heavily with the value of the parameter m. The formula for the
simplest case , m=3/4,(fig. 1) Is

1/2 =
z =(| -(3_2}‘])2) , where q= \}l«relanhz%
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There is also one solution of the kink type (fig. 2). It connects two different vacua at :

Infinity.

P A,

We have also found a non static solution (fig. 3 & fig. 4). We think it is interesting

because it connects also different vacua at space and time infinity. It seems to be the

description of two kink solitons crashing against each other.

Figure 3°

Figure 4

84




1at

ng

Of course, since we have relativistic invariance, all these solutions can be boosted into
a uniform movement,

For real spacetime (n=1+3), we know that at least there is a solution of the lump
type.
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