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Abstract. We study the Plateau problem restricted to polynomial sur-
faces using techniques coming from the theory of Computer Aided Ge-
ometric Design. The results can be used to obtain polynomial approxi-
mations to minimal surfaces. The relationship between harmonic Bézier
surfaces and minimal surfaces with free boundaries is shown.

1 Introduction

This work deals with polynomial surfaces of minimal area. It seems to be a very
simple question but we will try to study such kind of surfaces from a non usual
point of view: the Bézier description of polynomial surfaces.

People working on minimal surface theory know very well that S. Bernstein
was a prolific researcher on this subject at the beginning of the XXth cen-
tury. The same people probably know that he found an alternative proof of
the theorem of Weiertrass about the approximation of arbitrary functions with
polynomial functions. What is possibly unknown is that the basis of polynomial
functions he used in their proof, nowadays called Bernstein polynomials, is a
fundamental component of CAD (Computer Aided Design).

From the very beginning of CAD, polynomial functions are considered the
most easy way to construct curves and surfaces from the point of view of com-
puter science. Nevertheless, the coeflicients of a polynomial function in the usual
basis of powers of the variable have no geometrical meaning. It is hard to control
the shape of a polynomial curve or surface just from this set of coefficients.

The alternative basis of Bernstein polynomials solves this drawback because
now the coeflicients, called control points, have a very intuitive and clear geo-
metric information. It is easy to control the shape of the designed objects just
by variations of the control points.

In particular, the end points of a Bézier curve are two of the control points,
and the border curves of a Bézier surface can be controlled by a subset of control
points.

Like discrete surfaces (see [10]), Bézier surfaces have finite dimensional spaces
of admissible variations, therefore the study of linear differential operators on
the variation spaces reduces to the linear algebra of matrices.

We start by stating the corresponding Plateau problem for this kind of sur-
faces: Given the border, or equivalently, the boundary control points, of a Bézier
surface, the Bézier-Plateau problem consists in finding the inner control points
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in such a way that the resulting Bézier surface be of minimal area among all
other Bézier surfaces with the same boundary control points.

As it also happens in the theory of minimal surfaces, the area functional is
highly nonlinear, so we start by studying instead the Dirichlet functional. We
obtain the existence and uniqueness of the Dirichlet extremals and we show how
to obtain a sequence of Dirichlet extremals whose areas converge to the area of
a previously given minimal surface.

Nevertheless, the Bézier Dirichlet extremals are not harmonic charts. So, in a
second part, we give the conditions that a Bézier surface must fulfill in order to
be harmonic. The result is very surprising because it has a close relation with the
theory of minimal surfaces with free boundaries. We show that harmonic Bézier
surfaces are totally determined by the first and last rows of control points. As
these two rows determine two of the boundary curves, what we get is that given
two opposed boundary curves of a harmonic Bézier surface, the whole surface is
fully determined.

2 The Dirichlet functional for Bézier surfaces

Let P = {F;;};iZ, be the control net of a Bézier surface. Let us denote by
X :[0,1] x [0,1] = R®, the chart of the Bézier surface.

X (u,v) = ZZB’" )Bj (v) Pij,

f=f)gus()

being B}'(t) the ith-Bernstein polynomial of degree n

B = (?)t‘(l -t fori€ {0,...,n},

otherwise B(t) = 0.
The area of the Bézier surface is

A(P) = /;1 IR A3, [[du do = /R (EG — F*)du dv,

where R = [0,1] x [0,1] and E, F,G are the coefficients of the first fundamental
form of

Since the border of a Bézier surface is determined by the exterior control
points we can state a kind of Plateau problem, that we will call the Bézier-
Plateau problem: Given the exterior control points, {Pj;} with i = 0,n or j =
0,m, of a Bézier surface, find the inner ones in such a way that the area of the
resulting Bézier surface be a minimum among all the areas of all Bézier surfaces
with the same exterior control points.

The first non trivial example of polynomial minimal surface is the Enneper’s
surface. For its description as a bicubical Bézier surface, ie., its control net,
we address the reader to the references [4] or [1]. Note that the Bézier surface



defined by such control net is not an approximation of the Enneper’s surface, like
it happens with the discrete Enneper surface (see [10]), it is the same Enneper’s
surface.

In general, just a few configurations of the border points will produce a
polynomial minimal surface. So, for arbitrary configurations we need to develop
general methods for obtaining the extremal of the area functional. Nevertheless,
as usual, we do not try to minimize directly the area functional due to its high
nonlinearity. We shall work instead with the Dirichlet functional

1
DP) =5 [[AIRulP + 1Ru]P)du o @
Let us recall the following fact relating the area and Dirichlet functionals:
(BG - )} < (@)} < ZEE. 2)

Therefore, for any control net, P, A(P) < D(P). Moreover, equality in (2) can
occur only if £ = G and F = 0, i.e., for isothermal charts.

Anyway, both functionals have a minimum in the Bézier case due to the
following facts: first, they can be considered as continuous functions defined on
R3(m=1(m=1) Indeed, the functions depend on the inner control points and its
number is (n — 1) x (m — 1) and each inner control point belongs to R*. For
example, if n = m = 2 there is just one free control point. So, the area functional,
or the Dirichlet functional, are just real functions defined on R3.

Second, as a consequence of E > 0,G > 0 and EG — F? > 0, both functionals
are bounded from below.

Third, the infima are attained: when looking for a minimum, we can restrict
both functions to a suitable compact subset. If a control point goes far away,
then the same happens with a portion of the surface and then, the area, and
then the sum of F and G, increases. So, we can choose a compact subset such
that, if one of the inner control points is outside the compact subset, then the
area functional, and then the Dirichlet functional too, are greater than some
bound. Finally, if we restrict both continuous functions to a compact subset we
can affirm that the infima exist and they are attained.

2.1 Extremals of the Dirichlet functional

The next result translates the condition “a control net P is an extremal of the
Dirichlet problem” into a system of linear equations in terms of the control
points. Let us say that we are not computing the Euler-Lagrange equations of
the Dirichlet functional. We will simply compute the points where the gradient
of a real function defined on R3("=1{m=1) yanishes.

Proposition 1. A control net, P = {P;;}]",, is an extremal of the Dirichlet
functional with prescribed border if and only if
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foranyi€ {1,...,n—1} and j € {1,...,m — 1} where AX, is defined by

e )
(n—i)(2n—-1—i—k) (iink_f[)

Proof: Let us compute the gradient of the Dmchlet functional with respect

to the coordinates of a control point P;; = (zl;,%;, 7). For any a € {1,2,3},
i€{l,...,n—1}and any j€ {1,...,m —1}
aD(P ax% R
ng‘_l:[( = :,? Zoh s ﬂ",? >)du dv
ij

Let us compute now the partlal derivatives

Ry, 8 a
8:“ Bz“ Bu Bu 8.1: ?

= £ BMu)B} (v)e” = n(B5 (u) — B (u)) BT (v)e?,

i—1

where e® denotes the a-th vector of the canonical basis, i.e, ¢! = (1,0,0),¢? =
(0,1,0),e* = (0,0,1). Analogously

%,
du?. !

=mB}(u)(B]7' (v) — B}~ (v))e”.

Therefore

agx(;) o /}; (n(Bi"_—ll(u) 2 B?_l(u))B;“(v) <e ?u s

+ mB}(u)(B'7' (v) — B (1) < €%, Xy >) dudv

n—1m
f (n(BP7} (w) — Br~' (w))B"(v) < e®n S B~ (u) B (v) A Pey >
k=0
n,m—1
+mBP (u)(B], (v) =B ' (v)) < e®,m Y Bp(u)B ' (v)A% Py >)dud.
k=0

Applying now that for any n € Nand forany i =0,...,n, [y BP(t)dt = -1,
we get

aD(P) _ 2 -1m (GZDCE) GO i 0
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#*D(P
dzfx
constant. Indeed, it is a consequence of the fact that the chart depends linearly

on the control points.

Remark 1. A simple computation shows that the second derivatives are

Let us recall that the Weiertrass approach to the theory of minimal surfaces
points out that any minimal surface is related with some complex functions on a
variable z = u + iv, being u, v the parameters of the surface. When dealing with
polynomial complex functions, the degrees of the resulting minimal surface in
the variables u and v are the same. So, this seems to indicate that Bézier surfaces
with a squared control net are more suitable in this setting. In the squared case,
equations (3) are simpler.

Corollary 1. A squared control net, P = {P;};'/L,, is an extremal of the
Diriehlet functional with preseribed border if and only if

n—-1,n (“) n,n—1 (n)

b= Z e O Fye + Z 5~ Cr i A% P, (4)
k=0 (j+t’) k,£=0 (%
byl k _ (n—=1)i—-nk (’Hl
foranyi,j=1,...,n—1, where C}, = g—i_*%(,{;ﬁ%.

Let us recall that, as we have said before, a minimum of the Dirichlet func-
tional with prescribed border always exists. So, fixing the exterior control points
and taking as unknowns the inner control points, the linear system (3) and, in
particular, the linear system (4), always is compatible and it can be solved in
terms of the exterior control points.

2.2 TUniqueness of the Dirichlet extremal

We have seen that the extremals of the Dirichlet functional always exists. Let
us now prove the uniqueness.

Theorem 1. The Dirichlet extremal is unique.

Proof. We know that Dirichlet extremals are computed as solutions of the
linear system (1). Let us write it as

A+P=B: (5)

where B is a column vector computed through the boundary control points, P
is the column vector of the inner control points, and A is a square matrix whose
entries are independent of the control points, they just depend on the dimensions
of the control net.

Let us check that the rank of A is maximal, i.e., the linear system has a
unique solution.



A well known theorem of Bernstein ([9], page 38) aftirms that the only mini-
mal surface being the graph of a function is a plane. So, let us choose the control
net

e fft :
P= {[E, E?O) :j’:D‘

The associated Bézier chart is X (u,v) = (u,v,0). This is the so called linear
precision property of the Bézier surfaces. It is minimal and isothermal, therefore,
P is a Dirichlet extremal for the same boundary conditions.

Let us check that it is the unique Dirichlet extremal. Any other configuration
Po of the inner control points with at least a control point with nonzero third
coordinate will produce a non planar associated Bézier surface, and then

D(P) = A(P) < A(Po) < D(Po).

Any other configuration of the inner control points with zero third coordinate
will produce a planar surface but a non isothermal parametrization, and then

D(P) = A(P) = A(Po) < D(Po).

Therefore, P is the only Dirichlet extremal. This implies that Eq. (5) has an
unique solution for the boundary conditions given by P. Therefore the matrix
A is of maximal rank. |

Note that the situation in the Bézier case, and for the Dirichlet functional, is
rather different than in the discrete surface case for the area functional. In this
case, as in the differentiable surface case, given a prescribed border, there could
exist more than just one surface with minimal area.

3 Convergence results

In this section, we will study how to reach the minimal area with prescribed
boundary by a sequence of Bézier surfaces which are Dirichlet extremals.

Theorem 2. Let ¥ :[0,1] x [0,1] — B® be an isothermal chart of a surface of
minimal area among all surfaces with the same boundary.

Let ¥, be the Dirichlet extremal of degree n with boundary defined by the
exterior control points of the control net Py, = {?(ﬁ, =110 o

Then,

lim A(Y n) = A(R).

Proof: Let ?n be the associated Bézier chart to the control net P,. The
Bernstein’s proof of the Weiertrass theorem indicates that the sequence {?n}ﬁ":l
is uniformly convergent to X. Moreover,

lim A(Xn) = AX) = D(X) = lim D(Xn), (6)
where the equality A(¥) = D(¥) is a consequence of the fact that the chart is
minimal and isothermal.



Let Z, be a chart of the surface with minimal area and with the same
boundary than ¥ ,. Therefore, A(Z,) < A(¥4).

Moreover, due to the fact that area functional is always lesser than the Dirich-
let functional, we have that for any n € N, A(?ﬂ) = D(?n).

And, recalling that ¥, is the Dirichlet extremal of degree n and that it
has the same boundary than the polynomial chart ¥ ,,, we have that D(¥,) <
D(X ).

Resuming, we have for any n € N

A(Z,) < AV ) < D(Fa) < D(Xn). (7)

Now, according to the results on the boundary behaviour of minimal surfaces
(see [8], paragraph 327), as the boundary of Zn converges uniformly to the
boundary of X then

Tim A(Z,) = AR). (8)

On the other hand, due to the fact that ¥, C'-converges to X, (see [6], Th.

1.8.1) then
lim D(Z,) =D(X) = AX). (9)
n—oo

Therefore, the result follows from Eqs. (7), (8) and (9). o

Nevertheless, the previous result is not useful to obtain good approximations
of low degree. The reason of this is a consequence of a property of Bézier curves
that has a correspondence in Bézier surfaces. For example, if we take the control
points on a circle, the resulting Bézier curve is a bad approximation to the circle.
In order to obtain better approximations with the same degree one has to solve
a least square problem.

A good approximation to the catenoid can be obtained with a degree 7 Bézier
surface solution of the Dirichlet problem. In Figure I, the depicted Bézier surface
has an area exceeding the area of the corresponding half catenoid in 0.05%.

Figure I: If we take suitable control points such that the corresponding Bézier
curves are a good approximation of the border of a half catenoid, then the
resulting Bézier surface obtained as the minimum of the Dirichlet problem is a



good approximation to catenoid. Left, the border conditions. Right, the degree
7 Bézier surface.

A degree 8 x 8 Bézier surface can be built resembling the minimal surface
obtained by Schwarz (see [8], page 75) by placing the exterior control points on
some of the edges of a cube (Fig. II).

Figure II: An approximation to a Schwarz’s surface. Note that the control
points (0,0,0) and (1,1, 1) are repeated 7 times.

4 Bézier harmonic charts

The Euler-Lagrange equations defined by the Dirichlet functional (1) are AR =
0. So, in the unrestricted case, extremals of the Dirichlet functional are harmonic
charts. But harmonic charts are not polynomial in general and then, they can
not be solutions of the Bézier-Plateau problem.

The Dirichlet principle for domains bounded by a Jordan curve says that har-
monic functions are the infima of the Dirichlet functional among all functions
defined on the same domain and with the same values on the border. (See [8],
paragraph 229). In our case the Jordan curve is the square [0,1] x [0, 1], there-
fore, if a polynomial chart is harmonic, then it is an extremal of the Dirichlet
functional for Bézier surfaces with prescribed border.

A natural question is then to ask for the conditions that a Bézier surface
must fulfill in order to be harmonic. To answer this question, we will compute
the Laplacian of a Bézier chart .

Theorem 3. Given a control net in R*, {Pg_,-}?;f_ju, the associated Bézier sur-
face, R : [0,1] x [0,1] = B3, is harmonic, i.e, AX = 0 if and only if for any



te{l...,n} and g e{l, ... ,n}

0= nn—1)(Pit2,j0in + Pit1,j(bi-1,n — 20in)
+ Pt g (Bimin—26i-2.n) + Fi-2,6-2.n)
+m(m — 1)(P; j+2aim + P j+1(0j-1,m — 20jm)
+ Pij-1(bj-1,m — 2¢j-2,m) + P j-2¢j-2,m)
+P;i((ain — 2bi_1,n + Ci—2,n)n(n — 1)
+ (@jm — 2bj—1,m + Cj—2,m)m(m — 1)),

where, for i€ {0,...,n—2}
gin=Mm—-1)n—i—-1), bn=2(+1)n—2-1), cin=0E+1)({E+2),
and ain = bin = cin = 0 otherwise.

For the proof, see [1].
In the case of a quadratic net (n = m) we can state the following corollary

Corollary 2. Given a quadratic net of points in R?, {P;j}1 j=0, the associated
Bézier surface, ¥ : [0,1] x [0,1] = R?, is harmonic, i.e, AX = 0 if and only if
for anyie€ {1,...,n}

0 = Piyoiain + Pip1,j(Bi—1,n — 2ain) + Pic1,j(bi—1,n — 2¢i—2,n)
+Pi_3 jCi—2,n + Pijt2jn + Pijy1(bj—1,n — 26;n)

(10)
+Fo1(bj1m — 26_an) + Pijaci an

+Pij(in — 2bi—1,0 + Ci—2,n + @jn — 2bj_1.n + Cj—2,n)-

An analysis of Equations (10) for degree n = 3 (the control net has sixteen
points) shows that all the equations can be reduced to a system of just eight
independent linear equations. Moreover, it is possible to show that the linear
system can be solved by expressing the eight control points in the two middle
rows as functions of the other eight control points in the first and last rows. This
was done in [1]. So, our aim in the rest of the section is to show that this is
true for any dimension, i.e., that the first and last rows of control points fully
determine the harmonic Bézier surface.

In order to do that, it is better to come back to the usual basis of polynomials.

Lemma 1. Let f(u,v) = 3} 40 ageu*vt be @ harmonic polynomial function of
degree n > 2, then,

1. If n is odd, then all coefficients {ake}f_q —o are totally determined by the
coefficients {age, are}y_g-

2. If n is even, then all coefficients {axe}i_, s and also the coefficient a1,

are totally determined by the coefficients {aos}}_, and {alg}j::ﬂl.



Proof: The harmonic condition Af = 0 can be translated into a system of
linear equations in terms of the coefficients {are}} ,_

(k+ 2)(k + Dagsze + (€ +2)(€+ Dagero =0, k€=0,...,n,

but with the convention @,y1.¢ = Gpt2.6 = @n42 = Aner1 = 0.

This means that any coefficient ag, with k > 1 can be related with ax_s 442
and so on until the first subindex is 0 or 1, or until the second subindex is
greater than n. In this second case, a;; is directly 0. Indeed, if £ + 2k > n then
Qg ¢ = Aopy1,¢ = 0, otherwise

2k+¢ 1 2k + ¢
a2kt = (“‘l)k( ’ )ﬁo,zk+c, A2k+1,6 = (—l)k—( ¢ )al‘gk.”. (11)

2k +1
So, when n is odd, the result is proved. When n is even, we have that, in
addition, coefficient a,, vanishes. ]

As we have said before, the next result was conjectured and checked for low
dimensions in [1]. We can now give the general result.

Proposition 2. Let X (u,v) = >k ¢=0 BR(w)B}(v)Pye be a harmonic Bézier
chart of degree n with control net {Pkf}}:,g:o, then

1. If n is odd, control points in the inner rows {Pie}p—, Yo are determined by

the control points in the first and last rows, {Po¢}}_o and {Pne}}_,.

2. Ifn is even, control points in the inner rows {Pkf}:;ll"?:g and also the corner

control point P,, are determined by the control points in the first and last
rows, {Poe}i_o and {Pne}) =, -

Proof: Let us write the Bézier chart in the usual basis of polynomials

R(u,0) = > ubv’(are, bie, cre).

k,£=0

Let us consider the case n odd. Note that the first and last rows of control
points determine the two opposed border curves ?(01 v), ?(1, v), v € [0,1]. The
first border curve is

n

R(0,v) = 3 v¥(aoe, bos, cor), (12)
=0
and the second one is
X(,v) = Z‘UE Z(ﬂm, bre, Cre)- (13)
=0 k=0

From Eq. (12) we can obtain coefficients (aoe, bog, cos) for £ = 0,...,n. By
the previous lemma, all coefficients (age, brs, cre) are determined by the coeffi-
cients (ag¢, bos, coe) and (ayg, big, e1¢). In particular, thanks to Eq. (11), we can



reduce Eq. (13) to just a system of linear equations involving the coefficients
(a1, b1e, c1¢). Moreover, the matrix of coefficients of this system is triangular and
with the unit in the diagonal entries. Therefore, the knowledge of the first and
last rows of control points, implies the knowledge of the coefficients (ao¢, boe, coe)
and (aye, bie, c1¢) and then, the knowledge of all the coefficients, i.e., of the whole
harmonic chart, or equivalently, of the whole control net.

For the even case, the arguments are similar. o

5 The Gergonne problem revisited

The result shown in Proposition 2 is analogous to what happens with prob-
lems about minimal surfaces with free boundaries: To find minimal surfaces the
boundary of which (or part of it) is left free on supporting manifolds. With
Bézier surfaces we have seen that given two disjoint border curves, i.e., given
two border lines of control points, the other lines are determined thanks to Egs.
(10), and then, the whole Bézier surface is determined.

A typical problem of minimal surfaces with free boundaries is the well known
Gergonne problem giving raise to a surface (see [8], page 79, or [5]) that should
be no confused with another surface called the Gergonne surface. The original
problem was stated as follows: “Couper un cube en deux parties, de telle maniere
que la section vienne se terminer aux diagonales inverses de deux faces opposées,
et que l'aire de cette section, terminée & la surface du cube, soit un minimum”.

The solution was finally found by Schwarz in 1872 (see Fig. III, right). What
is remarkable is that given the inverse diagonals of two opposed faces of a cube,
the Gergonne surface is fully determined.

In the Bézier case, given two opposed lines of border control points, the
harmonic Bézier surface is fully determined. A degree 6 harmonic Bézier ap-
proximation of the this surface can be seen in Fig. III, left.

Figure III: Right, the Schwarz solution to the Gergonne problem. Left, an
approximation found as a harmonic Bézier surface of degree 6 x 6.

The border control points to generate such a surface has been chosen as
follows:



The bottom row is

Py = (0,0,0), Por = (a,a,0), Pz = (
Pog = (1‘-‘5,1—5,0),334 = (1—(1.,1—[1,0),}305 =(

and the top row,

Py =(150:1)1 Py = (l_ﬂaa-‘]—):Pf}Z % (l—b,b,l),
Fs;3 =(b,1—b,1),P54=(a,1—a,1),P55=(0,1,1).

The choice of the parameters a and b can be made according to different prin-
ciples. For example, we can ask for a uniform distribution of the control points
by taking @ = £,b = 2. The resulting Bézier surface is a hyperbolic paraboloid
and its area is 1.28079. Or we can ask for isothermality of the Bézier surface on
the corners. Then the values are (a = ﬁ/% ~0.22,b = 32249 ~ (0.40.) and the
resulting Bézier surface is an approximation to a portion of helycoid. The area
of the restriction of the helycoid to the cube [0, 1]* is 1.25364.

But there is a choice of the parameters a and b minimizing the area of surface
inside the cube. An approximation of these values is a = 0.41,b = 0.51 and the
resulting Bézier surface, plotted in Figure IV, left, shows a shape resembling the
Gergonne surface. The area is 1.24294.
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