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Abstract. We study some metheds of obtaining approximations to sur-
faces of minimal area with prescribed border using triangular Bézier
patches. Some methods deduced from a variational principle are pro-
posed and compared with some masks.

1 Introduction

In this note we address the problem of finding the triangular Bézier patch mini-
mizing the area, and saving then material costs, of the corresponding triangular
Bézier surface with prescribed border. As it is well known, the border of a trian-
gular Bézier surface is determined by the border control points. So, the problem
can be reformulated as follows: Given the exterior points of a triangular control
net, find out the inner ones in such a way that the resulting triangular Bégier
surface had minimal area among all the triangular Bézier surfaces with the same
border. Let us call this problem as the triangular Bézier-Plateau problem.

The theory of minimal surfaces shows that in order to prove the existence
of minimal surfaces, one can replace the area functional, a highly non linear
functional, by another one having the same extremals. The common substitute
is the Dirichlet functional, so called in the mathematical literature, also called
the stretch functional in the CAGD literature (see [6]).

The advantage of the use of the Dirichlet functional is that the determination
of extremals becomes just a linear problem. Moreover, if a triangular Bézier
chart is harmonic and isothermal it is extremal both of the area and Dirichlet
functionals. At this point, we can compute the extremal for cubical triangular
Bézier surfaces and to use the solution as a mask for obtaining approximations in
higher degrees, or we can try to obtain the extremals of the Dirichlet functional
in higher degrees directly.

The use of masks is due to the fact that the system of linear equations to
solve is easier with their use, it is a sparse system, than the system deduced from
the Dirichlet equations, which has no null coefficients.
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There is a difference with the same problem for rectangular Bézier surfaces -
(which has been treated in [5]). For usual Bézier surfaces, there is a very clear
association between rectangular control nets and charts of the Bézier surface. In
the triangular case, things are not so easy. The most direct association between
triangular control nets and charts of triangular Bézier surfaces is the one obtained
after the substitution of one of the barycentric coordinates by an expression
depending of the other two having in mind the relation u-+v+w = 1. For example,
if ¥ (u,v,w) is the chart in barycentric coordinates, then we shall work with the
chart 7 (u,v) = ¥ (u,v,1 — u — v). Moreover, if we suppose now that (u,v)
are cartesian coordinates, or equivalently, that the triangle used to define the
barycentric coordinates is the non equilateral one whose vertices are (0,0), (1,0)
and (0,1), then this association has a serious drawback: the breakdown of the
symmetry. Even if the control net is symmetric (P,(i)g(j),,(k) = P, for any
permutation o), the Bézier surface does not preserve the symmetry.

Nevertheless we have followed this non symmetric approach due to the fol-
lowing facts:

1. Our approximations, although the use of non symmetric methods, seem to
be at least as good as than other results deduced from symmetric methods.

2. We have checked that when the control net verifies some condition at the
three corner points (isothermality) then our method shows, in general, a

. significative improvement.

3. For degree 3, there is a well known polynomial minimal surface, the En-
neper’s surface. It is possible to show that fixing the border control points as
the ones of an arbitrary triangular piece of the Enneper surface, our asym-
metric mask gives always exactly the inner control point. Moreover this is
no longer true for any symmetric mask, and even it can be shown that there
are pieces of the Enneper surface for which the inner control point cannot
be obtained by applying a symmetric mask to the exterior control points.

4. Symmetric masks are deduced after some arguments on the control net,
but not on the Bézier surface. Our methods are based directly on the Bézier
surface because what we want is to minimize some functional directly related

with the surface.

When isothermality at the three corner points is not satisfied, then the Dirich-
let extremal considered as an approximation to the area extremal, presents an
intrinsic error due to the method. In the last section we propose an improvement
of the approximation based on geometric principles which maintain the use of
linear systems. Now, the surfaces we obtain are of lesser area than the surfaces
obtained by the other methods for the same border configurations.

2 Notation, Definitions, and Preliminary Results

2.1 Triangular Bézier Surfaces

Consider a triangle with vertices A, B, C and a fourth point P, all in R3. Then,
it is always possible to write P as a barycentric combination of AR

P =uA+vB+wC requiring that w+v 4w =1.
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The coefficients u = (u, v, w) are called barycentric coordinates of P respect
to A, B, C. To build a triangular Bézier surface of degree n we have to repeat
the barycentric interpolation analogously as we repeat the bilinear interpolation
in the Casteljau Algorithm for constructing a Bézier surface.”The control net for
a triangular Bézier surface of degree n consists of L'iléw points arranged in
a triangular grid. If I = (i,7, k) each point of the triangular control net will be
denoted by Pr. We will use also the following notation e; = (1,0,0), e2 = (0,1,0),
es =(0,0,1) and |T| =i+ j+k.

We can express a triangular surface in terms of trivariate Bernstein polyno-
mials: if |7| # n, then B} (u) =0, else, ie, if |I| = n then

n SOATUN R e g S e T i,k
Bf(u) = (I)u o = Tk utv? wh.

These Bernstein polynomials, although they look trivariate, they are not, since
w+v+w = 1. We will denote by R the region R = {u = (u,v,w)/utv+w=
landu,v,w > 0} and by 7 theregion 7 = {(u,v) € R?:0 < u,0 < w,utv <1}

Definition 1. Given a triangular control net in R®, P = { P} 1j=n, the trian-
gular Bézier surface of degree n associated to P, T : T — R3 is given by:

Z(u)= Y PBf(u).

[7|=n

A surface S is minimal if its mean curvature vanishes. Equivalently, S is a
minimal surface iff for each point p € S one can chose a neighborhood, Uy, which
has minimal area among other patches V having the same boundary as Up.

A chart @ : U — S of a surface is said to be isothermal if £ = G, F =0,
being E, F,G the coefficients of the first fundamental form associated to the
chart 7.

Proposition 1. If a chart, T U — S, of a surface, S, is isothermal, then
T (U) is minimal if and only if the chart is harmonic, i.e., AT =0.

3 The Dirichlet Functional Results

To solve the triangular Bézier-Plateau problem we have to try to minimize the
functional area among all the triangular Bézier Surfaces with prescribed border
determined by the exterior control points. Nevertheless, due to its high non
linearity, the problem of minimizing the area functional is hard to manage with,
so we shall work instead with the Dirichlet functional:

D(P) = 5 [ (P + [P )eudo

There are two reasons for doing such a substitution: the first one is given by the
following fact relating the area and the Dirichlet functional:
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(EG - F?)i < (EQ)t < (E + G)/2. (1)

Therefore, for any triangular control net P, A(P) < D(P). Moreover, equality
can occur only if E = G and F = 0, i.e.: for isothermal charts. .

The second one is related with the Euler-Lagrange equation associated to
the Dirichlet functional defined not on control nets, but on charts

1 S
e j (Z2l? + 1720 du d.
T

This equation is just AZ = 0. Therefore, if the extremal of the Dirichlet func-
tional is an isothermal chart, it is automatically a harmonic chart, and then the
surface is minimal. Nevertheless, we are not working with charts. We are working
instead with triangular control nets. So, our aim is to find the minimum of the
real function P — D(.’._L‘)‘p), being Z'p the triangular Bézier chart associated to
the control net P.

Proposition 2. A triangular control net, P = {Pr}i11=n, is an extremal of the
Dirichlet functional with prescribed border if and only if:

—1
= Z '%%%22"(&1 +az+2a3—b13 —523) PI
| T|=n (.H-fu)

for all | Iy = (40, jo, ko)| = n with ig, jo, ko > 0 and where:

{o i=0, {D j=0, {0 k=0,
a = o : az= e : a3 = i

N Il T L e SR L A
GFo)Gre=n ¢ >0 GFo)+e=1.4 >0 ko) (hiko=T) & > 0

— __%oj+tjoi — __tpktkoi 2 jok+koj
b2 = GESGR) bis = GGk b2s = G5y (k 1ko)
In particular we give the general result for the case n = 3.

Proposition 3. A triangular Bézier surface of degree 3 is an extremal of the
Dirichlet functional with prescribed border if and only if

1
Py = 1 (2 Poos — Po21 + Poso + Piao — Pao1 + Paro + Psgg).

4 Triangular Permanence Patches Related with the
Bézier-Plateau Problem

Farin and Hansford define in [2] the triangular permanence patches as those
triangular patches that satisfy the permanence principle: given a triangle 7 in
the domain U of a triangular Coons patch, the three boundaries of this subpatch
will map to three curves on the Coons patch, then the triangular Coons patch of
those three boundaries is the original triangular Coons patch. This permanence
principle can be established by using a mask like:
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with 3a+68=1 (ie:a= 1:56-9} Let us denote this mask by M.

It can be found in [2] that the mask Mj is the discrete form of the Laplacian
operator when the control net is considered as a discretization of the Bézier sur-
face. Such a mask is used in the cited reference to obtain control nets resembling
minimal surfaces that fit between given boundary polygons.

Another main masks are: M% that can be deduced by asking the quadrilat-
erals associated to the interior edges of the triangular patch to be as close as
possible to parallelograms and mask M 1 that is the dual of My in the sense that
for & = + we have 8 =0.

From the condition obtained in Proposition 3 we can try to generate, given
the exterior control points the whole triangular net by solving a linear system
where the equations are:

4P; jk = 2 Piy2j—1k-1 — Pij-1k41 — P; jy1k-1 + Pic1g42.k-1
+ Pi_yji1k + Picrgesr + Pie1,i-15+2)

being P; ; x a inner control point. This equation can be expressed as the following
mask, which will be called the Dirichlet mask:

As we can see, the Dirichlet mask is not a mask like Farin-Hansford’s mask
because it is not symmetric. The asymmetry of the Dirichlet mask is due to the
fact that the triangle on which we define the Bernstein polynomials is not an
equilateral triangle, (see [7]). Applying a symmetrization process to the Dirichlet

mask we obtain one of the masks worked in [2], that with a = 3.

5 Comparison between Masks

As it is said in [3], the natural question: there is or not a better mask, has a
negative answer. It depends on the boundary conditions. In this section we will
show some examples with simple boundary curves.

Case n = 3. Let us start the comparison by studying some examples in the
cubic case. We fix the three boundary curves with its control points and we
construct the triangular Bézier surface computing the inner control point using
the masks M, and the Dirichlet mask. We have chosen some examples with
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their border control points: along the border of a piece of the Enneper’s surface
in the first example; along two straight lines and a circle of radius 1 in NII;
along three circles of radius 1 in NI2, border Is is built in such.a way that at the
corner points any associated chart would be isothermal and finally border HNI is
such that the isothermality conditions at its corners are far of being fulfilled. The
following figures show the borders and the triangular Bézier surfaces constructed
by means of the Dirichlet mask.

Fig.I: Surfaces NI1, NI2, Is and HNI by its Dirichlet Extremal.

In table I the areas of the corresponding triangular Bézier Surfaces are shown:

Method Enneper| NI1 NI2 Is HNI
My 4.67858 [0.99685(1.21350(2.99046(13.22692
M% 4.67835 (0.99631]1.20844(2.88558(12.66618
M% 4.67899 {0.99563]1.20275|2.76656]11.67948
Dirichlet mask [4.6777810.99793]|1.20277|2.76957]12.22934
Dirichlet Correction|4.67778 |0.99546(1.20216|2.75167|11.36520

Table I: Comparison between different masks for degree 3.

As we will introduce later the method that we have called Dirichlet correction,
let us first analyze the results for the M, masks and the Dirichlet mask. We can
find that for these cubical examples the lesser areas are obtained by M 1 mask
with the exception of the Enneper case that we will study in a later section.

Case n = 10. Let us see in this section how things change with more degrees of
freedom. The following examples for the case n = 10 are similar to the cubical
examples NI2, Is and HNI. In NI2 we have chosen equally spaced border control
points along the circles described before. At the other cases the choice of the
borders has been done with the same configuration than before but with a slight
modification in order to assure the isothermality at the corners in Is and the non
isothermality in HNI. Table II shows the areas of the corresponding triangular
Bézier surfaces by using the masks M, the Dirichlet mask and the area of the
Dirichlet extremal, that is, the area of the triangular Bézier surface which inner
control points are obtained by applying the Dirichlet equations in Prop. 2.

f
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Method NI2 Is HNI
Moy mask 1.342473.54592(12.61296
My mask 1.34009(3.49978{12.53044
My mask 1.33864 (3.47307|12.47569
Dirichlet mask | 1.33961(3.43799|12.68629
Dirichlet extremal |1.33963 3.43659 12.68513
Dirichlet Correction|1.33623 [3.41091[12.42494
Second step 1.33625 (3.37410{12.255681

Table II: Different masks and the Dirichlet extremal areas for n = 10.

In the NI2 and the HNI cases the best area is the one obtained using the
My mask, but now when we have the isothermality at the corners, case Is, the
Dirichlet extremal is the one that give us the lesser area, even the use of the
Dirichlet mask represents a significative improvement. An explanation of why
the Dirichlet extremal has less area in Is will be given in section 7.

Figure II: Left M, and right Dirichlet mask control nets for Is surface.

Note the non regular shape of the control net of the right hand figure, the one
obtained using the Dirichlet mask for degree 10, in comparison with the left
hand figure, the one obtained by using the mask My, that is the mask for the
discrete form of the Laplacian operator on the control net. The control net is not
regular, but the associated Bézier surface is a better approximation fo the mini-
mal surface. Recall that we are looking for triangular Bézier surface minimizing
some functional related with the surface, and not for triangular control nets
minimizing some functional related with the net. The same fact also happens for
rectangular Bézier surfaces.

6 The Enneper’s Surface as a Testing Model

The first non trivial example of minimal surface with polynomial coordinate
functions is the Enneper’s surface (see [3] or [1] for some plots of this surface),
T :R?2 — R® defined by
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_, ud v3 X
Z ) = (u~?+uv2,v—§-+vu2,u2—v2). @) °

Therefore, it can be used to test the masks we have used. Moregver, as the chart
(2) is isothermal, then it is an extremal no just of the area functional, but also
of the Dirichlet functional. This means that, if we take a triangular piece of the
Enneper’s surface, we determine its control net, and we look for the extremal of
the Dirichlet functional with that border control points, then the inner control
point Py1; is always given by the formula given in Proposition 3.

Nevertheless, there are cases where all symmetric masks fail to reobtain the
inner control points. For example, let us consider the chart,

Y (u,v) = Z(u+1,v), (u,v) € T.

It is again an isothermal and harmonic chart, so it is a chart of a minimal
triangular surface and the area of this triangular Bézier surface is 4.67778. The
control net is

2,0,1) (2,2,1) (1,3,2)

(_%101 4)

It is easy to check that this control net verifies the formula in Proposition
3. So, the inner control point P17 can be reobtained using the corresponding
asymmetric mask.

Nevertheless, for a symmetric mask, the computation of the inner control

points gives
13—9% 1f =216 5

e
and there is no value for « such that Pyqq = (—32-, 1 %)

Moreover, the minimum of the area of the associated triangular Bézier surface
with inner control point Pfy; is attained at o = 0.12833 and its value is 4.67834.
A possible explanation of the fact that in this case a non symmetric method gives
better results that any symmetric method is the following: Let us recall first
that the definition of triangular Bézier patches heavily depends on the triangle
defining the barycentric coordinates. In this case, the coordinates u,v in the
chart of the Enneper’s surface are rectangular coordinates. After polarization,
coordinates u,v,w are the barycentric coordinates with respect to triangle 7
which is not an equilateral triangle, and this fact breaks down the symrmetry
between the barycentric coordinates.

=1 ),

7 Correction of the Dirichlet Extremal

The obtainment of an approximation of the minimal Bézier surface according to
the previous method has a serious drawback: the first fundamental form at the
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corners of any triangular Bézier surface with prescribed border is determined by
the border control points. For example, at the point Z(0,0) the three coefficients
of the first fundamental form are determined by the control points Fo0.n, F0,1,n-1
and Pjgn-1. Therefore, since the three points are border control points, the
coefficients E, F' and G at T (0,0) of any triangular Bézier chart with the same
border will be always the same, even for the Dirichlet extremal, no matter which
are the imner control points.

Let us recall that the Dirichlet method is based in the fact that the substi-
tution of the area functional by the Dirichlet one will cause a negligible error.
Moreover, both functional agree for isothermal charts. But if the configuration
of the border control points is such that at the corner points the chart is always
non isothermal, then the inequalities in (1) are strict. The non isothermality at
corners points will produce an error when substituting the area functional by
the Dirichlet one. At different points from the corner points, the configuration of
the Dirichlet extremal tends to the isothermality of the chart. But at the corners
points, isothermality or not is fixed from the border control points and it can
not be modified. This is why the Dirichlet extremal does not improve the results
of the harmonic mask in some cases.

We will propose along this section a method that will obtain, from the Dirich-
let extremal as a first approximation to the minimal Bézier surface, a new and
better approximation trying to avoid this problem and maintaining the fact that
the new approximation is computed thanks to a system of linear equations.

Let us recall the following fact about the Dirichlet functional. As we have
mentioned before, the Euler-Lagrange equation of the Dirichlet functional de-
fined on the set of all differentiable charts with prescribed border is

=
Feetk

where A is the usual Laplacian operator. This equation is related to minimal
surfaces thanks to Proposition 1. But there is another main result that does not
mention the isothermality condition.

Proposition 4. A chart T is minimal iff AIT = 0 where g represents the
first fundamental form of T and A? is the associated Laplacian operator: for a

function f:
Agf: (qu"fUF) + (—qu+va)
vEG-F2/, vVEG —F2 |’

It is easy to check that, for a given metric, g, with coefficients E, I’ and G,
the equation A9 = 0 is the Euler-Lagrange equation of the functional

s T UZulPE—2<F u, TW > FHI|TL|I*E
DAT) = [, ( TBO—FT dudv

= fT gﬁl(d?s d?f)!-"g:

where jt, = VEG — F?dudv is the metric volume element.
Note that for a given g, the extremal of the functional D9 is a chart that can

be computed thanks to a linear system. Therefore, the correction of the Dirichlet
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method is the following: let g be the Dirichlet extremal and let go be its ﬁrst ‘
fundamental form. The new approximation is the extremal of the functional D%,
this is, using the Dirichlet extremal as the fixed metric. Note that the functlonal
7 — D%(7) is quadratic in Z. Therefore the extremal equations are linear.

Proposition 5. A triangular control net, P = {P1}|1j=n, is an extremal of the
functional D% with prescribed border if and only if:

E
e 2n—2 0 2n—2
s 2n 2 ( BID-I-I 2e; f ‘u‘ Bfo+f —2e3
m—n (747) 2
Gog — 2Fy + E[} Bin—2 Go ng pn-2
g In+I 2es 132 1T e1—ea
0
FO 2n—2 By — FD 2n—2
s g bl? BIQ+I eyj—es o+ T 623 Bfu-i-f—eg—eg,) PI
0 0

for all | Ty = (g, jo, ko)| = n with ig, jo, ko > O and where a; and b,, were defined
in Proposition 2.

The formulas obtained in Prop. 5 give us a system of linear equations for the
interior points of the triangular net given its border. Now if we have a look at the
last row in Table I and Table II, we can see that this method improves the results
obtained through all the other methods, and moreover we get this improvement
for all the examples, even when we deal with non isothermal charts.

Finally we have gone one step forward, if 7', is the Dirichlet extremal of the
functional D9 and g, is its first fundamental form the new approximation is the
extremal of the functional P91. The results obtained from this last method are
shown in the last row at Table I, and from them we conjecture that, specially for
highly non isothermal charts, the improvement given by the correction method
can be even enhanced by repeating the process.
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