A property on singularities of NURBS curves

A. Arnall, A. Lluch!, and J. Monterde?

! Dep. de Matematiques,Universitat Jaume I
Castelld, Spain parnal@mat.uji.es,lluch@mat.uji.es
? Dep. de Geometria i Topologia, Universitat de Valéncia,
Burjassot (Valéncia), Spain monterde@uv.es

Abstract. We prove that if an open Non Uniform Rational B-Spline
curve of order k has a singular point, then it belongs to both curves of
order k — 1 defined in the k — 2 step of the de Boor algorithm. Moreover,
both curves are tangent at the singular point.

1 Introduction

There are some references in the literature (see [1],[7] or [2]) dealing with methods
and algorithms to detect singularities on Bézier curves and its generalizations.
Another approach to the study of singularities in polynomial curves is to deduce
some properties of the curve when a singularity is present. This is what is done
in [5] where an analysis of the behavior of rational Bézier curves under the
change of one of its control points was realized. One of the properties of singular
Rational Bézier curves shown in [5] is that given a nth degree singular Rational
Bézier curve the singular point belongs to the (n — 1)th degree rational Bézier
curve associated with the first n control points and the corresponding weights
and also to the (n — 1)th degree rational Bézier curve associated to the last n
control points and corresponding weights. Moreover, both curves, which are both
(n — 1)th degree rational Bézier curves defined in the (n — 1)th step of the de
Casteljau algorithm, intersect tangentially.

This note presents a generalization of some of the properties on [5] for the
case of B-Spline curves and Nurbs curves. In particular we obtain that if an open
Nurbs curve of order k has a singular point, then it belongs, analogously to the
rational Bézier case, to both curves of order k¥ — 1 defined in the k — 2 step of
the de Boor algorithm. Moreover, we found that both curves are also tangent at
the singular point.

2 Definitions and properties of Nurbs curves

2.1 Definition of Nurbs and B-Spline curves

According to [4] a B-Spline of order k is made up of pieces of polynomials
of degree k — 1, joined together with C*~2 continuity at the break points, so,
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corresponding to the set of break points fp <t <tz < .. < Ty < P ohf
B-Spline function, it’s defined the associated knot vector

T = (to,t1,t2 ---rtm—latm) .

We refer to the individual points ¢ of T' as knots.

Thus, given a knot vector T' = (fo,t1, .oy tn=1,bn,tns1s 0 tnek) the associ-
ated normalized B-Spline, Nj , of order k (degree k — 1) is defined to be the
following function:

= 1 for £{; <t <tiqa
Nia (1) = {0 otherwise ’
for k=1, and
(t = t:) (tive — 1)
N; )= ———N; - t) + ———————N; E=11(t), 1
*(0) (tivk-1 — ) 410 (tign — tis1) a0 ®

Vk>landVi=1,..,n.

The main properties of the basis functions we will use in this note are:

1. Nig (t) > 0 for t € [ti,tiex] and Ny (£) = O otherwise.
2 TioNik(t)=1 Vi€ [te—1;tnt1]-

Now, let us introduce the definition of a Nurbs curve. According to [6], a
Non Uniform Rational B-Spline curve of order k (Nurbs), is defined by

}:?_0 N; () wiD;

= — : - Z -

X (t) Z:;_D Ni,k (t) w; Yt e [tk lrtn-l-l.] and n = k-1 (2)
where the {D;}_, are the control points, the {w;}_, are the weights and the
Ni x are the normalized B-Spline functions of order k defined on the knot vector

= (B bivee, bneia tivs b yooss i) »
Along this note we have chosen the knot vector
T=(to=t1 = =th-1 <t < . <t <lpp1 =tp42 = ... = tnak) (3)
to get an open and clamped Nurbs curve of order k with endpoints Dy and Dy,

Remark 1. Tf we choose weights w; = 1 Vi, then, from the second property of the
basis functions we get that Nurbs curves are a generalization of B-Spline curves.

Therefore a B-Spline curve is defined as follows:
Given the control points{D;}., a B-Spline curve of order k, k <n —1,
associated to the knot vector, T, as above, is defined as

n
X (t) = Z Ni,k (f) D,‘, Vi € [tk-—lutn+1] .
i=0



2.2 The de Boor algorithm for Nurbs curves

For the practical evaluation of Nurbs curves with given weights, we can use the
de Boor algorithm, (see [4]), which allows the computation of points on a
Nurbs curve without explicit knowledge of the B-Spline basis functions {Nj}.
The algorithm construction is based on the recursive definition of the normalized
B-Spline.

Taking the initial values

D? (ﬂ) = DJ', w_‘?? (‘t) — 'H}j,

and defining

the scheme of computation is the following
w! (6) D} (1) = (1 - of ) wiZ} () DI (&) +of (B wi™ () DI~ (1)
wl (1) = (1-od () wiz} () +of O wi™ (1) i>0

where, in addition to the weighted de Boor points, we also apply the algorithm
to the weights.
Then, after k — 1 steps, it finally leads to

wi! (t) DE (1)

i e o

=t ), t € [ty tpia]. (5)

On the other hand, according to [6], we will express the first derivative of a
Nurbs curve
X () = Dico Nik (t) wiD; _A®
Do Nigk (t) w; w(t)’

by the following formula

A () —w' (8) X (&)

x'(= =020 ©)
where
()= (k~ 1)2 R AP N (0 ™)

w () = (k-nz —ZL N1 (0).

bifk=1=
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2.3 The blossoming principle for Nurbs curves

According to the blossoming principle for B-Spline curves at [4], we can state
a generalization for Nurbs curves. This blossoming principle is based on the
construction of the polar form associated to the B-Spline basis functions, and it
uses its recursive formula (1).
If we define 2
w] [ug,uq,ey tj_q] i=

(bigk—j = i) W2 [0, un ey tja] + (ujmy — ) wi ™" [uo, s, o, u52]
tiin—g =k &

and D's? [ug, 11, ..., 15_1] such that

w] [uo, 1, ..., u5-1] Df [uo, uy .. uj1] =

{ti+k—j iy Uj_l) w‘::; [uﬂwul."-l“j—ll Dg:; [ug,uil...,u}-_g]
bitk—j — i

+(u,-_1 —t,:)wf_l [uo,ul,...,uj_l] D';-_l [ug,uly...,u,-_‘g]
tije—j — b

then, the blossoming principle asserts that the Nurbs curve is given by

_wL [, =0, ¢ DR, -0, 4

Xt
© T [t, G0, ]

=DF g 05 @)

3 Singularities of Nurbs curves

A differentiable curve a : I —IR™ is said to be regular if o' (¢) # 0 for all
t € I. Otherwise, the curve is said to be singular, and then, if o' (i) = 0 for
t € I, the image for this parameter value, a (7) , is said to be a singular point
or singularity.

Singular point Regular curve

Figure 1
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Given the control points {D;}}. , and weights {w;}!_; , let X (¢) be the open
and clamped Nurbs curve of order k associated to a knot vector

F=ilgiety= W= hof iy € e i e g i T s e tn+k)-

In this section we will found that if a Nurbs curve has a singular point X (f) ,

at the parameter value f € [t,, {r41], then it belongs to both previous curves of
order k — 1 at the de Boor algorithm, i.e., D= (t) and D}~ (t).

Theorem 1. Let X (t) be an open and clamped Nurbs curve of order k with
control points {D; }a—n , weights {w;}i, and associated to a knot vector T.
If X' () =0 for t € [tr,t,41] wherer € {k —1,...,n}, then

X (1) = D5 () = D2 () = DA2 7).

Proof. First of all, we apply the recursive definition of the normalized B-Spline
functions N;; to the definition (2) of a Nurbs curve, then, shifting the indices
in the second term by ¢ = i — 1 and taking D_; = Dy41 = 0 we get

Lizo wiDiNix (t)

XAty =
KU >3 A0
¢ Dy —wi_ 1 Di_ ~1Dj~ —1—wiD
t(Z?:J %&r‘_& k1 (t)) I ?_1;]1 Wi—1 'ti:£:+:—lt; wi Dity Ns‘,k—l (t)

n+1 wy—w; n+1 wigbipn—1—wit
t(Z'—D Gih— l—taN“‘ 1( )+Z tith—1—t1 “Nig-1 ()

(9)
Having in mind (7), the de Boor algorithm and property 1 of the normalized
B-Spline functions, we evaluate (9) at f € [t,,#,+1] and we obtain that:

X@® = E‘:—'(lﬁ + 2 im w; (0) D5 (0) Nig—s (f)
h:_—(;l + Xy w] (0) Nijg—1 (7)

Moreover, formula (6) let us assert that if X (7) is a singular point at the
parameter value € [tx—y,tnt1], then

so we can establish the following relation

i(ﬂ-l-z 11111(0 DI(O) k- l(t)_A’(E)
W0 O N ) PO

hence

_ Xizy wi (0) D} (0) Nie—1 (F)
&)= Yo wtO N ()



Now if we apply again the recurrence formula for the normalized B-Spline
functions and we use the blossoming principle we get
X ()= 221w (0) Dj (0) Nie—1 ()
Yimi wi (0) N1 (F)

tirk—a—E)wl_ (0)D!_, (0)+(T-t;)w}(0)D} (0
S e E e s )

yor | (e el OHER)EO )

i= tith-2—1;
_ Xz w? [0,7] DF [0,7] Nige—2 ()
S, 07 0.1 Nesoa ()
Therefore, the re-indexing can be continued by repeated insertion of the

recurrence formula for the basis functions, and also, we can apply the blossoming
principle for the k — 1 steps, so we obtain

X(@)= Lo wi™ [0, 7 DET [0,7,.42)..,7] Nia (7)
% Yoow (0,200 0 N T)

= D¥-! [o,i, ..(*"2>..,E] .

Hence, the above result let us to establish the following relation
X () = D [E, W0 = pl [o,z, ..(*—2>..,z] ; (10)
Taking into account the symmetry of the blossom functions
oLt [O,E,..(“—'*’)..,i] = Dk [E,..(*“’)..,E, o] ,
and otherwise its recursive definition, then, from the equality
DE-1 [E,..(’“”..,E] = Dk-1 [E,..(’“?)..,“f,o] ,
we can obtain the following relation
D2 [f, ..“f—?)..,f] = Dk-2 [i, k=) E] :
On the other hand, applying again the symmetry at (10), we get
X (f) = Dt [i,..(’H)..,E] = Dk-1 [z, =2 g o] =

g (el [0 — Lt 0 s SN D Y o 03]
trpawt=F [t,.0-D) 8] - owk? 8, (6-2),, 1]

= Dk-2 [z, s




Therefore
X (@ =D [f 000 = 0 [1. 09, = D [1,.079.,1],

that is
X (=D @) =D ()= DE2 ().

Figure 2 illustrates an open B-Spline curve X (¢) of order 4 with control
points {Dg}i:n and uniform knot vector T' = (0,0,0,0,1,2, 3,3, 3, 3) which has
a singular point for the parameter value ¥ € [t4,15] = [1,2].

Pe

Figure 2

Figure 3 illustrates both previous curves to X (t) = D (t) in the de Boor
algorithm. These curves, D? (£) and D2 (t), are represented in this picture only
for parameter values on the interval [ty,¢5] = [1,2], and we can observe that
they are tangent at the singular point X (%).

D30 te(12)

D, ..ni_{p te [__t,a'_j

Figure 3



Figure 4 illustrates the three curves described above, X (t) = D (1), the
B-Spline curve and also, D3 () and D2 (¢) for the parameter values at [ts,15] =
(1,2].

Do

Do

Dy

te[12]
1c1,21
Oy 5 oo e L e o2 icit2)

Figure 4

The following theorem proves that, also in the Nurbs curves case, both pre-
vious curves to a singular curve X = D¥~1 in the de Boor algorithm are tangent
at this point.

Theorem 2. Let X (t) be an open and clamped Nurbs curve of order k with
control points {D;},, weights {w;};_, and associated to a knot vector T.

Let us suppose that X (t) is singular at the parameter value § € [ty,try1],
then if the curves §y = D¥=2 and B = D=2 are regular at T, they are tangent
at that point.

Proof. The last step of the de Boor algorithm for constructing Nurbs curves
involves

(1= a}~! (1) wyf () DRZF (t) + of~* () wh—2 (1) DE2 (1)

R T ) P = [ T T

where
t—t,

trp1 — by
An straightforward computation at ¢ =  of X', applying Theorem 1 (that is
DE-2 (1) = DEZE (1)), we get

a(®) (D}2) (&) +0 () (k1) () =0

Qk—l N

o

where

a(t) = (1-ak™' ()" k2 (1)’

+(1-af ' (1) a.g‘l () wiZf (&) w2 ()

b(t) = (1-af™' (@) e~ W wfz] @) wk™? () + o}~ (1)
that is B () and B} (f) are proportional, so 8, and S, are tangent at X ().
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Taking into account that Nurbs curves are a generalization of B-Spline curves
choosing weights w; = 1 Vi, we can assert the following corollaries for B-Spline
curves and so for Bézier curves.

Corollary 1. Let X (t) be an open and clamped B-Spline curve of order k with
control points {D;}1, and associated to a knot vector T.
IfX'(t) =0 for t € [t,,t,1] wherer € {k—1,...,n}, then

X (7) = D1 () = D52 () = DA2 9.

i.e, the singular point belongs to both previous curves to X (t) at the de Boor
algorithm, and moreover if both curves are regular at t = T, then they are also
tangent at that point.

Remark 2. Along this note we have considered a non uniform and clamped knot
vector to get an open Nurbs curve, nevertheless, we could also consider open
curves with unclamped knot vectors. In fact, all the results obtained above can
be easily generalized for non uniform and unclamped Nurbs curves.

The following corollary, proved in [5], particularizes the Nurbs case theorem
to Bézier curves.

Corollary 2. Let us suppose that the Bézier curve a = B[PR,...,P,] is not
regular and let o (f) be a singular point, then

@ () = B[Poy-rr Paca] () = B[Pty o Pl (B)

t.e., the singular point belongs to both previous curves to B [Py, ..., P,] in the de
Casteljau algorithm, and moreover if they are regular at the parameter value %,
then they are tangent at that point.

4 Conclusions

The main results on this note let us assert that if an open Nurbs curve of order
k has a singular point, then it belongs, analogously to the rational Bézier case,
to both curves of order k — 1 defined in the k — 2 step of the de Boor algorithm,
and also that these curves are tangent at the singular point. These results are
generalizations of some of the properties obtained in [5] for rational Bézier curves.

Differently from previous works which aim is to detect singularities, this
note characterizes them in terms of the control points involved in the de Boor
algorithm. This new approach results in the possibility of constructing curves
with such singular points.

Then, one of the applications of these results, would be the possible con-
struction of a singular shape using just one Nurbs curve (or B-Spline curve),
instead of obtaining the desired singularity by joining regular Nurbs curves with
the singular point at the juncture, and this would lead us to a computational
saving. The following figure shows how using one Bézier curve, instead of two
regular Bézier curves to obtain a singular shape, would let to reduce the number
of points required to define the curve.
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