



# Tema 9C. Química del Cromo









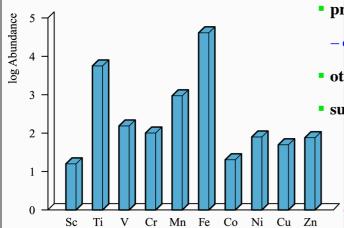
Imágenes tomadas de la WebElements publicada por la Royal Society of Chemistry (http://www.chemsoc.org/viselements/)

Prof. Responsable: José María Moratal Mascarell. Catedràtic de Química Inorgànica (jose.m.moratal@uv.es)





# Tema 9. Titanio, Vanadio, Cromo y Manganeso


#### Indice

- 9C. Química del Cromo
  - 1.- Abundancia y Estado Natural
  - 2.- EO's y reactividad del cromo
  - 3.- Obtención y aplicaciones del Cromo
  - 4.- Cromatos y dicromatos
  - 5.- Oxidos de cromo
  - 6.- Cloruro de cromilo
  - 7.- Haluros de cromo: cloruro de Cr(III)
  - 8.- Aplicaciones del cromo
  - 9.- Aspectos biológicos y toxicidad
- 9D. Química del Manganeso

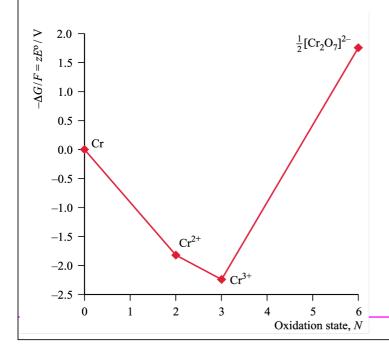
#### 1. Abundancia

# 1. Abundancia y Estado Natural

- 1.- descubierto en 1797 → Louis-Nicholas Vauquelin
  - denominación → Cromo
    - del griego croma que significa color
      - » debido a la variedad de colores que presentan muchos compuestos
- 2.- Abundancia → posición 21º
- 2. ¿cómo se encuentra en la Naturaleza?



- principal mena → cromita FeCr<sub>2</sub>O<sub>4</sub>
  - -óxido mixto de Fe(II) y Cr(III)  $\Rightarrow$  Cr<sub>2</sub>O<sub>3</sub>·FeO
- otros minerales: crocoita → PbCrO<sub>4</sub>
- subproducto en la producción de Cu


Abundancia relativa (en partes por millón,  $ppm \equiv g/T$ ) de los elementos de la  $1^a$  serie de transición.

(adaptada de: C. E. Housecroft, A. G. Sharpe. *Inorganic Chemistry*, 3rd ed, Pearson Prentice-Hall, 2008)

2

#### 1.E.O.'s

# 2. Estados de oxidación y Reactividad



- ¿principales EO's del cromo?
  - +6, +3 (y +2)
    - +5, +4 → inestables frente a dismutación, muy oxidantes
- E.O. +6
  - máximo E.O.
  - compuestos Cr<sup>VI</sup> ¿oxidantes?
  - más importantes:

(adaptada de: C. E. Housecroft, A. G. Sharpe. *Inorganic Chemistry*, 3rd ed, Pearson Prentice-Hall, 2008)

4

#### 1. E.O.'s

# 2. Estados de oxidación y Reactividad

- E.O. +3
  - pH =14
  - E.O. más importante del Cr
    - muy estable en medio ácido
    - en medio básico ¿el O<sub>2</sub> oxida Cr<sup>III</sup>?
    - $-E^{0}(H_2O/H_2) \approx -0.8 \text{ V}; E^{0}(O_2/H_2O) \approx +0.4 \text{ V}$
- $\operatorname{CrO_4^{2^-}} \xrightarrow{-0,11 \text{ V}} \operatorname{"Cr(OH)_3"} \xrightarrow{-1,33 \text{ V}} \operatorname{Cr}$   $-0,72 \text{ V} \qquad \operatorname{Cr(OH)_4^-} \xrightarrow{-1,33 \text{ V}} \operatorname{Cr}$ 
  - $pH = 14: \mathbf{Cr^{III}} \xrightarrow{O_2} \mathbf{Cr^{VI}}$
  - Cr<sup>III</sup> forma numerosísimos compuestos de coordinación
    - sólo superado por Co<sup>III</sup>
- E.O. +2
  - **■** E.O. +2 → se oxida fácilmente a Cr<sup>III</sup>
    - tomar precauciones con sus compuestos para evitar oxidación
    - amplia química en disolución
- se pueden obtener compuestos de cromo en E.O.'s más bajos,
  - relativamente escasos y poco relevantes

(\*) el Cr(OH)<sub>3</sub> no existe, es un óxido hidratado Cr<sub>2</sub>O<sub>3</sub>·nH<sub>2</sub>O;

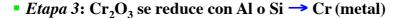
5

#### 2. Reactividad

# 2. Estados de oxidación y Reactividad

- 1.- A t<sup>a</sup> ambiente el cromo → resistente a los agentes atmosféricos
  - ¿por qué es poco reactivo?
- $Cr_2O_7^{2-} \xrightarrow{1,38} Cr^{3+} \xrightarrow{-0,424 \text{ V}} Cr^{2+} \xrightarrow{-0,90 \text{ V}} Cr$
- formación película adherente de óxido
- se utiliza para proteger otros metales más reactivos (cromado)
- metal Cr:
  - atacado lentamente por ácidos no oxidantes en frío (HCl, H<sub>2</sub>SO<sub>4</sub>)

$$\operatorname{Cr}(s) + 2 \operatorname{HCl}(ac) \rightarrow [\operatorname{Cr}(\operatorname{H}_2\operatorname{O})_6]^{2+}(ac) + 2 \operatorname{Cl}^- + \operatorname{H}_2(g)$$


- // no lavar cromados con salfumant!!
- -[Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>(ac) cinéticamente estable vs. H<sup>+</sup> pero fácilmente oxidado por O<sub>2</sub>
- -[Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>(ac) reactivo de partida para preparar complejos de Cr(III), pero evitar O<sub>2</sub>
- atacado rápidamente por los ácido HCl y H<sub>2</sub>SO<sub>4</sub> en caliente
- no reacciona con HNO<sub>3</sub> → se pasiva
- también resistente a los álcalis
- 2.- A ta elevada el metal es más reactivo
  - se combina con  $O_2$ , halógenos, y con la mayoría de los no metales

#### 1. Obtención del Cromo

### 3. Obtención del cromo

- Cr mayoritariamente se utiliza en una de estas dos formas:
  - aleado con Fe → ferrocromo
  - metal puro
- proceso de obtención depende de su futura utilización
  - 70% del ferrocromo producido → fabricación del acero inoxidable
    - reducción de cromita (FeCr<sub>2</sub>O<sub>4</sub>) con C en horno eléctrico → aleación Fe/Cr
  - cromo para cromado
    - electrodeposición a partir de una disolución de  $\rm Cr_2O_3$  en  $\rm H_2SO_4$
- Obtención del cromo metal
  - Etapa 1: Oxidación con O<sub>2</sub> de la cromita en Na<sub>2</sub>CO<sub>3</sub> (l)\*
    - extraer el Na<sub>2</sub>CrO<sub>4</sub> formado y acidificar







(adaptada de: R. H. Petrucci, W. S. Harwood, G. E. Herring, *General Chemistry*, 8<sup>th</sup> ed, Prentice-Hall, 2002)

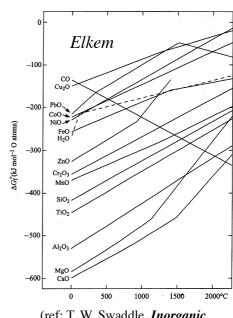
#### (\*) p. f. $[Na_2CO_3] = 856$ °C

#### 1. Obtención del Cromo

### 3. Obtención del cromo

 $\bullet$  Etapa 1: oxidación de la cromita en carbonato sódico fundido (tª  $\sim 1000~^{\circ}C)$ 

$$4 \ FeCr_2O_4(s) + 8 \ Na_2CO_3(l) + 7 \ O_2(g) \xrightarrow{\Delta} 8 \ Na_2CrO_4(s) + 2 \ Fe_2O_3(s) + 8 \ CO_2(g) \tag{*}$$


- Na<sub>2</sub>CrO<sub>4</sub> → se extrae con H<sub>2</sub>O
  - Fe<sub>2</sub>O<sub>3</sub> es insoluble
- se acidifica con  $H_2SO_4$   $\longrightarrow$  se forma  $Na_2Cr_2O_7$ 
  - se cristaliza (solubilidad moderada)
- Etapa 2: reducción con C

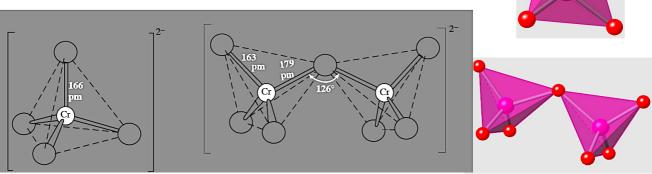
$$2 \operatorname{Na_2Cr_2O_7} + 3 \operatorname{C} \xrightarrow{\Delta} 2 \operatorname{Cr_2O_3} + 2 \operatorname{Na_2CO_3} + \operatorname{CO_2}$$

• Etapa 3: reducción con Al o Si

$$Cr_2O_3 + 2 Al \xrightarrow{\Delta} 2 Cr + Al_2O_3$$
 aluminotermia  
 $\Delta H = -536.3 \text{ kJ}$ 

(\*) estrategia para eliminar el hierro




(ref: T. W. Swaddle, *Inorganic Chemistry*, Academic Press, 1997)

#### 4. Oxoaniones de Cr(VI) Cromatos y Dicromatos • 1.- Equilibrio cromato/dicromato (ref: T.L. Brown. • anión cromato [CrO₄]²⁻ (amarillo) H.E. LeMay Jr., B.E. Bursten, - sólo puede existir en medio básico o neutro Química: la ciencia central, 7ª ed, Pearson, 1998) • en medio ácido → dicromato [Cr<sub>2</sub>O<sub>7</sub>]<sup>2-</sup> (naranja) $2 [CrO_4]^{2-} (ac) + 2 H^+(ac) \Leftrightarrow [Cr_2O_7]^{2-} (ac) + H_2O (l)$ • el equilibrio se alcanza muy rápidamente ▲ Figura 23.28 El cromato de sodio, Na<sub>2</sub>CrO<sub>4</sub> (derecha) y el dicromato de potasio, K2Cr2O7 $Cr_2O_7^2$ (izquierda), ilustran la diferencia de Log [Cr (VI)] especies predominantes color de los iones cromato y pK $CrO_4^{2-}$ $HCrO_4^- \Longrightarrow CrO_4^{2-} + H^+$ 6,49 $H_2CrO_4 \Longrightarrow HCrO_4^- + H^+$ HCrO<sub>4</sub>-0,74 $Cr_2O_7^{2-} + H_2O \Longrightarrow 2HCrO_4^{-}$ 2,2 $HCr_2O_7^- \Longleftrightarrow Cr_2O_7^{2-} + H^+$ 0,85 pН $2H_2CrO_4 \Longrightarrow HCr_2O_7^- + H^{++}|H_2O$ (adaptada de: G. Rayner-Canham, Química Inorgánica Descriptiva, 2ª edición, Pearson Educación, 2000) (adaptada de: N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed, Butterworth Heinemann, 1998.



# 4. Oxoaniones de Cr(VI)

- 2.- Estructuras:
  - [CrO<sub>4</sub>]<sup>2-</sup> → tetraédrica
  - **■**  $[Cr_2O_7]^{2-}$  dos tetraedros unidos por un puente oxo



(adaptada de: N. N. Greenwood, A. Earnshaw, *Chemistry of the Elements*, 2nd ed, Butterworth Heinemann, 1998.

- la química acuosa del Cr(VI) no es rica en la formación de polioxoaniones
  - diferencia con V(+5)
  - no obstante se han detectado polioxoaniones de Cr con 3 o incluso 4 unidades  ${\rm CrO_4}$  unidas por los vértices:  $[{\rm Cr_3O_{10}}]^{2-}$  o  $[{\rm Cr_4O_{13}}]^{2-}$  ¿cadenas abiertas o cíclicas? (\*)
- (\*) cadenas abiertas; si fueran cíclicos la composición sería Cr<sub>3</sub>O<sub>9</sub> /Cr<sub>4</sub>O<sub>12</sub> (sin carga, no serían oxoaniones)

#### Cromatos y Dicromatos

# 4. Oxoaniones de Cr(VI)

- ¿colores de cromatos y dicromatos? ¿transiciones d-d?
  - $Cr^{VI}$  es  $d^0 \rightarrow$  bandas TC del oxigeno al metal
- muchos cromatos son insolubles
- PbCrO<sub>4</sub>: (amarillo de plomo) muy insoluble
  - elevado índice de refracción, color amarillo
    - pintura amarilla de las carreteras

|                                  | K <sub>ps</sub> / (solub)                        |  |  |  |
|----------------------------------|--------------------------------------------------|--|--|--|
| PbCrO <sub>4</sub>               | 2,8·10 <sup>-13</sup>                            |  |  |  |
| Ag <sub>2</sub> CrO <sub>4</sub> | 1,1·10 <sup>-12</sup> / (6,5·10 <sup>-5</sup> )  |  |  |  |
| AgCl                             | 1,8·10 <sup>-10</sup> / (1,34·10 <sup>-5</sup> ) |  |  |  |

- $Ag_2CrO_4$ , color rojo ladrillo  $\rightarrow$  ligeramente más soluble que  $AgCl~[s_{Ag2CrO4}>s_{AgCl}]$ 
  - utilizado como indicador en determinación analítica de Cl<sup>-</sup> → método de Mohr
  - valoración de Cl<sup>-</sup> con AgNO<sub>3</sub>, y como indicador K<sub>2</sub>CrO<sub>4</sub>
    - cloruro reacciona con ión plata adicionado → AgCl ↓↓
    - punto final se identifica por color rojo ladrillo intenso
      - » formación de cromato de plata
    - método aplicable a muestras con concentraciones de cloruro > 20mg/L

11

### Cromatos y Dicromatos

# 4. Oxoaniones de Cr(VI)

- 3.- Propiedades redox del dicromato
  - dicromato,  $[Cr_2O_7]^{2^-}$  buen agente oxidante  $E^0(Cr_2O_7)^{2^-}$ 
    - $E^{0}(Cr_{2}O_{7}^{2-}/Cr^{3+}) \approx 1.4 \text{ V}$
  - se utiliza para la determinación del índice de alcoholemia
    - oxidación del etanol a etanal (con exceso de dicromato → ácido etanoico)
    - determinación colorimétrica [Cr(VI) amarillo → Cr(III), verde]
      - » etanol del aliento se burbujea a través de una disolución ácida de dicromato → cambio de color se detecta cuantitativamente
  - Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> → comercialmente compuesto más importante de cromo
    - Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> → más soluble que el potásico
    - pero es higroscópico → lo invalida como patrón primario
  - K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> se utiliza como patrón primario
    - no es higroscópico
    - puede obtenerse muy puro por recristalización

#### Cromatos y Dicromatos

# 4. Oxoaniones de Cr(VI)

- 4.- Obtención industrial del dicromato sódico
  - etapa 1: oxidación de la cromita en carbonato sódico fundido

4 FeCr<sub>2</sub>O<sub>4</sub>(s) + 8 Na<sub>2</sub>CO<sub>3</sub>(l) + 7 O<sub>2</sub>(g) 
$$\xrightarrow{\Delta}$$
 8 Na<sub>2</sub>CrO<sub>4</sub>(s) + 2 Fe<sub>2</sub>O<sub>3</sub>(s)+ 8 CO<sub>2</sub>(g)

- etapa 2: lixiviación (adición de agua) disuelve el cromato pero no el Fe<sub>2</sub>O<sub>3</sub>
- etapa 3: burbujear  $CO_2(g)$  a presión para acidificar  $\rightarrow$  favorece formación  $Na_2Cr_2O_7$

$$2 \operatorname{Na_2CrO_4}(\operatorname{ac}) + 2 \operatorname{CO_2}(\operatorname{ac}) + \operatorname{H_2O}(\operatorname{l}) \Leftrightarrow \operatorname{Na_2Cr_2O_7}(\operatorname{ac}) + 2 \operatorname{NaHCO_3}(\operatorname{s})$$

- $CO_2$  de la *etapa 3* → el producido en la *etapa 1*
- NaHCO<sub>3</sub> (poco soluble), para separarlo se filtra *a presión ¿por qué a presión?* 
  - evitar desplazamiento equilibrio hacia reactivos (solubilidad del gas↓ si ↓P)
  - con NaOH se regenera el carbonato que se recicla a la etapa 1
- ¿únicos reactivos consumidos? → la mena y NaOH (y aire)

#### Oxidos de Cr

• El Cr forma 3 óxidos de interés  $\rightarrow$  CrO<sub>3</sub>, CrO<sub>2</sub>, Cr<sub>2</sub>O<sub>3</sub>

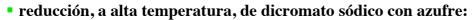
13

#### 1. Oxido de Cr(VI), $CrO_3$

# 5. Oxidos de Cromo

- sólido cristalino rojo; muy ácido, p. f. relativamente bajo 197 °C
- ¿tipo de enlace? esencialmente covalente
- ¿estructura  $CrO_3(s)$ ?  $\rightarrow$  cadenas de tetraedros que comparten 2 vértices
- Obtención:
  - disoluciones concentradas de dicromato tratadas con H<sub>2</sub>SO<sub>4</sub> (conc)

$$K_2Cr_2O_7$$
 (conc) +  $H_2SO_4$  (conc) +  $H_2O(l) \rightarrow K_2SO_4$  (ac) + 2 " $H_2CrO_4$  (ac)"   
2 " $H_2CrO_4$  (ac)"  $\rightarrow$  2  $CrO_3$  (s) + 2  $H_2O(l)$ 


- muy soluble en agua (169 g/100 g H<sub>2</sub>O) → forma ácido crómico "H<sub>2</sub>CrO<sub>4</sub> (ac)"
  - ácido crómico especie no aislable → realmente una mezcla de especies
- disoluciones acuosas son fuertemente ácidas y muy oxidantes
  - la denominada mezcla crómica K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> → (CrO<sub>3</sub>)
    - se utiliza para limpieza intensa de material de vidrio de laboratorio
    - ¡¡precaución!! Cr(VI) → carcinogénico y puede provocar reacciones redox fuertemente exotérmicas (riesgo de explosión)

#### 2. Oxido de Cr(III), Cr<sub>2</sub>O<sub>3</sub> (anfótero)

### 5. Oxidos de Cromo

- a t<sup>a</sup> algo mayor de 200°C el  $CrO_3(l) \rightarrow Cr_2O_3 y O_2$
- $Cr_2O_3 \rightarrow \text{ óxido más estable del cromo (p.f. 2320°, p.e.} \approx 3000°C)$
- ¿enlace? → iónico polarizado (óxido anfótero)
- sólido verde pulverulento, estructura corindón
- pigmento inorgánico verde más importante
  - billetes de dólar (greenbacks) utilizan este pigmento
  - mucho más estable que los colorantes orgánicos
    - el verde no se decolora
    - no afectado por ácidos/bases ni oxidantes/reductores





$$Na_2Cr_2O_7(s) + S(l) \xrightarrow{\Delta} Cr_2O_3(s) + Na_2SO_4(s)$$

- ¿cómo eliminamos el sulfato sódico?
  - -lavado con agua

15

### 2. Oxido de $Cr^{III}$ , $Cr_2O_3$

# 5. Oxidos de Cromo

- óxido anfótero → si está calcinado es *inerte* 
  - en medio ácido → [Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup>
  - ¿en medio alcalino?
    - $-\left[\mathbf{Cr}(\mathbf{OH})_{4}\right]^{2}$
- ¿qué ocurre al adicionar NaOH a disoluciones de Cr<sup>III</sup>?
  - precipita el óxido hidratado de Cr<sup>III</sup> (no existe el hidróxido)
  - en exceso de base se redisuelve  $\rightarrow$  [Cr(OH)<sub>4</sub>]

### 3. (Complementario) Oxido de Cr(IV), CrO<sub>2</sub>

- sólido negro-marrón con elevada conductividad metálica
- estructura rutilo distorsionada
- especialmente apreciado por sus propiedades magnéticas
  - es un compuesto ferromagnético (\*) → ampliamente utilizado en cintas magnéticas de grabación
- Obtención → descomposición controlada del CrO<sub>3</sub>
  - (\*) ferromagnético: efecto cooperativo entre los spines

#### Cloruro de cromilo, CrO<sub>2</sub>Cl<sub>2</sub>

### 6. Oxohaluros de cromo

- único oxohaluro importante del cromo, ¿E.O. Cr? CrVIO2Cl2
  - sólo tiene interés por constituir un ensayo específico de cloruro
    - permite diferenciar Cl<sup>-</sup> de los otros haluros
- liquido rojo aceitoso, bajo p. f. (-97°C) y p. e. (117°C)
- ¿tipo de compuesto?
  - compuesto molecular
- ¿estructura?
  - tetraédrica con 2 enlaces Cr=O
- sustancia extremadamente oxidante
- útil en la identificación de cloruros (ensayo específico)
  - en presencia de otros haluros que normalmente dan lugar al mismo tipo de reacciones, pero que no dan esta reacción
- procedimiento de dentificación de un cloruro iónico: p. ej. NaCl

17

#### Cloruro de cromilo, CrO<sub>2</sub>Cl<sub>2</sub>

# 6. Oxohaluros de cromo

- Procedimiento de identificación de un cloruro iónico:
  - adicionar H<sub>2</sub>SO<sub>4</sub> concentrado a una mezcla de K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>(s) y NaCl (s):

$$6 \text{ H}_2\text{SO}_4(\text{conc}) + \text{K}_2\text{Cr}_2\text{O}_7(\text{s}) + 4 \text{ NaCl (s)} \Rightarrow 2 \text{ CrO}_2\text{Cl}_2(\textit{l}) + 2 \text{ KHSO}_4(\text{s}) + 4 \text{ NaHSO}_4(\text{s}) + 3 \text{ H}_2\text{O}(\textit{l})$$

- se forma líquido rojo oscuro
- destilar con precaución → vapor producido rojo oscuro es tóxico
- condensarlo → líquido molecular rojo oscuro
- adicionar una base al líquido rojo oscuro
  - se hidroliza dando [CrO₄]²⁻ amarillo

$$CrO_{2}Cl_{2}(l) + 4OH^{-}(ac) \rightarrow CrO_{4}^{2-}(ac) + 2Cl^{-}(ac) + 2H_{2}O(l)$$

- prueba específica de cloruros
  - bromuros y yoduros no forman compuestos de cromilo análogos

Nota: Br o I no dan esta reacción; son oxidados a Br<sub>2</sub> e I<sub>2</sub> respectivamente. El Br<sub>2</sub> también destilaría vapor rojo (a menor  $t^a$ ) pero de Br<sub>2</sub> (g); y en medio básico dismutaría (Br + BrO<sub>3</sub> = *incoloro*).

#### Cloruro de Cr(III)

# 7. Haluros de cromo

• haluro de cromo más importante → tricloruro CrCl<sub>3</sub> (estructura en capas)

| p. f. (°C) de haluros de Cromo |                  |                                       |                    |                      |                  |  |
|--------------------------------|------------------|---------------------------------------|--------------------|----------------------|------------------|--|
| E.O.                           | Compuesto        | F                                     | Cl                 | Br                   | I                |  |
| +6                             | CrF <sub>6</sub> | t <sup>a</sup> desc -100°<br>amarillo |                    |                      |                  |  |
| +5                             | CrF <sub>5</sub> | +34°<br>rojo                          |                    |                      |                  |  |
| +4                             | CrX <sub>4</sub> | 277°<br>violeta                       | desc>600°          | ¿CrBr <sub>4</sub> ? | CrI <sub>4</sub> |  |
| +3                             | CrX <sub>3</sub> | +1404°<br>verde                       | +1150°<br>violáceo | +1130° verdes o      | CrI <sub>3</sub> |  |
| +2                             | CrX <sub>2</sub> | +894<br>verde                         | +820<br>blanco     | +842<br>blanco       | +868<br>marró    |  |

**Nota:** observar que sólo el F- es capaz de estabilizar los EO's altos (+6, +5).

 $CrF_6$  y  $CrF_5 \rightarrow$  compuestos moleculares ;  $CrF_4 \rightarrow$  enlace intermedio;  $CrF_3$  y  $CrF_2 \rightarrow$  esencialmente iónicos

#### Cloruro de Cr(III)

# 7. Haluros de cromo

- es el reactivo de partida en la formación de complejos de Cr(III)
- ullet se aisla como especie anhidra o hexahidratada  ${\rm CrCl_3\cdot 6H_2O}$
- CrCl<sub>3</sub> anhidro (violeta-rojizo):
  - se obtiene pasando cloro sobre Cr metálico muy caliente

$$2 \operatorname{Cr}(s) + 3 \operatorname{Cl}_{2}(g) \xrightarrow{\Delta} 2 \operatorname{CrCl}_{3}(s)$$

- por cristalización en disolución acuosa se obtiene el hexahidrato
  - CrCl<sub>3</sub>·6H<sub>2</sub>O color verde oscuro
- la adición de AgNO<sub>3</sub> a la disolución acuosa de CrCl<sub>3</sub>·6H<sub>2</sub>O
  - sólo precipita 1 ión cloruro → ¿formulación?
  - [CrCl<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]Cl ·2H<sub>2</sub>O
- recordar que hay 3 isómeros de hidratación del compuesto CrCl<sub>3</sub>·6H<sub>2</sub>O
  - [CrCl<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]Cl·2H<sub>2</sub>O (verde oscuro),
  - [CrCl(H<sub>2</sub>O)<sub>5</sub>]Cl<sub>2</sub>·H<sub>2</sub>O (verde claro), [Cr(H<sub>2</sub>O)<sub>6</sub>]Cl<sub>3</sub> (violeta)

# Aplicaciones del Cromo

# 8. Aplicaciones del Cromo

- cromo es duro, frágil, gris acerado y brillante
  - muy resistente frente a la corrosión
- se emplea principalmente en metalurgia (85%)
  - aporta resistencia a corrosión, dureza y acabado brillante (decoración)
    - en aleaciones
      - » p. ej. el acero inoxidable contiene más de un 8% en cromo
    - proceso de cromado (capa protectora mediante electrodeposición)
- los cromatos y óxidos se usan en → colorantes y pinturas
  - en general, las sales de cromo se emplean como *mordientes* 
    - fijadores de los colorantes sobre las fibras
- $K_2Cr_2O_7 \rightarrow$  oxidante que se emplea en,
  - limpieza de material de vidrio de laboratorio
  - análisis volumétrico como agente valorante



(adaptada de: R. H. Petrucci, W. S. Harwood, G. E. Herring, *General Chemistry*, 8<sup>th</sup> ed, Prentice-Hall, 2002)

21

### Aplicaciones del Cromo

# 8. Aplicaciones del Cromo

- cromo y alguno de sus óxidos se usan como catalizadores
- cromita se utiliza → fabricación de materiales refractarios
- hidroxisulfato de cromo (III)  $[Cr(OH)(SO_4)] \rightarrow$  en el curtido del cuero
- óxido de cromo (VI), CrO<sub>3</sub>, se suele utilizar para,
  - tratamiento protector de la madera
  - preparación disoluciones para cromado
  - oxidante en síntesis orgánica, generalmente disuelto en ácido acético
  - precursor para la síntesis de CrO<sub>2</sub>
- óxido de cromo(IV) (CrO<sub>2</sub>) para cintas magnéticas empleadas en las cassetes
  - mejores resultados que con óxido de hierro(III) (γ-Fe<sub>2</sub>O<sub>3</sub>)
    - debido a que presenta una mayor coercitividad
    - coercitividad: fuerza magnetica requerida para magnetizar un material

#### 1. Toxicidad

# 9. Aspectos biológicos y toxicidad del cromo

- cromo metálico → no se le considera un riesgo para la salud
  - pero ...., si hay sensibilización previa
    - puede producir ulceraciones o dermatitis alérgicas
- compuestos de Cr(VI)
  - carcinógenos → cuando se ingieren o por contacto con la piel
    - precaución con los ¡¡dicromatos!! en el laboratorio
  - la mayoría de los compuestos de cromo (VI) irritan ojos, piel y las mucosas
  - exposición crónica a compuestos de Cr(VI) puede provocar daños permanentes en los ojos
- riesgos industriales
  - inhalación de polvo y humos procedentes de la fabricación del dicromato
  - inhalación de nieblas de ácido crómico durante el cromado
  - contacto cutáneo con compuestos de Cr(VI) durante su fabricación o uso
  - exposición a humos con Cr(VI) durante la soldadura acero inoxidable

22

#### 1. Toxicidad del cromo

- la toxicidad del Cr(VI) es el tema central de la película Erin Brockovich
- la película relata la contaminación de aguas subterráneas por emisiones de Cr(VI) y el desarrollo de numerosos cánceres en la población circundante









# 9. Aspectos biológicos y toxicidad del cromo

### 2. Función biológica

- cromo (+3) → elemento esencial
  - aunque no se conocen con exactitud los mecanismos biológicos
- la insulina y el Cr(III) regulan los niveles de glucosa en la sangre
  - una deficiencia en Cr(III) o una incapacidad para utilizarlo
    - pueden causar diabetes
- no se ha encontrado ninguna metaloproteína de cromo con actividad biológica
  - no se conoce cómo actúa

25