

Tema 9D. Química del Manganeso

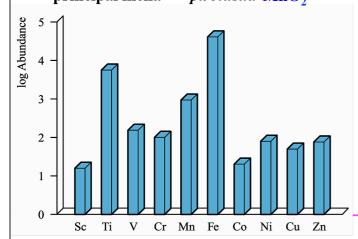
Imágenes tomadas de la WebElements publicada por la Royal Society of Chemistry (http://www.chemsoc.org/viselements/)

Prof. Responsable: José María Moratal Mascarell. Catedràtic de Química Inorgànica (jose.m.moratal@uv.es)

Facultat de Química

Tema 9. Ti, V, Cr y Manganeso

Indice


- 9D. Química del Manganeso
 - 1.- Abundancia y Estado Natural
 - 2.- EO's del manganeso
 - 3.- Reactividad del Manganeso
 - 4.- Obtención del Manganeso
 - 5.- Compuestos más importantes
 - 1) Permanganato potásico
 - 2) Oxidos de manganeso
 - 3) Compuestos de Mn(II)
 - 6.- Aplicaciones del manganeso y sus compuestos
 - 7.- Aspectos biológicos y toxicidad
 - 8.- Complementos formativos

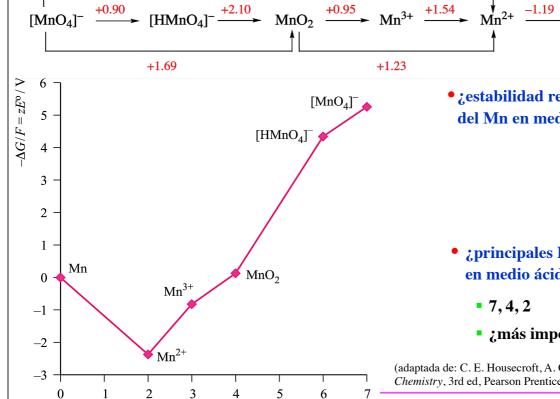
1. Abundancia

1. Abundancia y Estado Natural

- 1.- descubierto en 1774 \rightarrow J. G. Gahn
 - denominación → Manganizein
 - del griego (puro)
- 2.- Abundancia → posición 12º
 - tan abundante como C o P
- 2. ¿cómo se encuentra en la Naturaleza?

principal mena → pirolusita MnO₂

- otros minerales:
 - Hausmanita → Mn₃O₄ (óxido mixto)
 - MnO·Mn₂O₃
 - $-Rodocrosita \rightarrow MnCO_3$


Abundancia relativa (en partes por millón, ppm) de los elementos de la 1ª serie de transición.

(adaptada de: C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry, 3rd ed, Pearson Prentice-Hall, 2008)

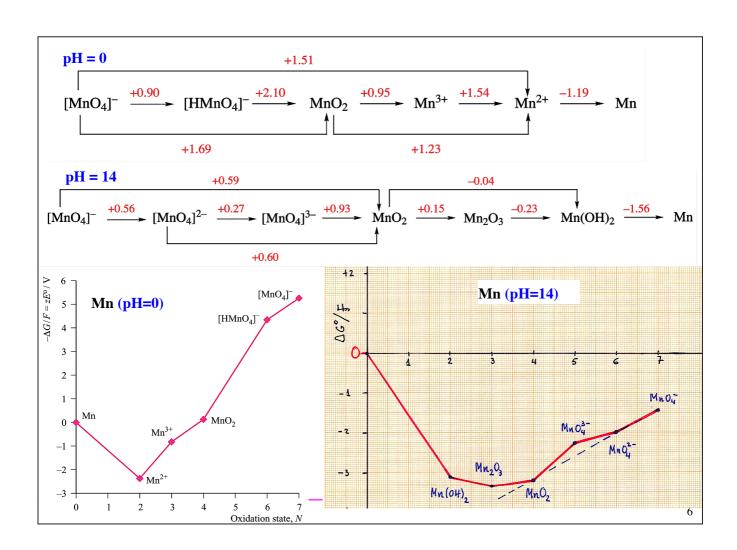
Estados de Oxidación pH=0

2. Estados de oxidación

pH = 0

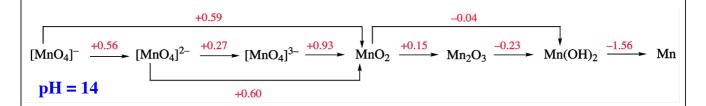
Oxidation state, N

+1.51


• ¿estabilidad relativa EO's del Mn en medio ácido?

- ¿principales EO's del Mn en medio ácido?
 - ¿más importante? +2

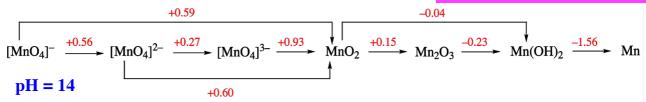
(adaptada de: C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry, 3rd ed, Pearson Prentice-Hall, 2008)


Estados de Oxidación pH=0

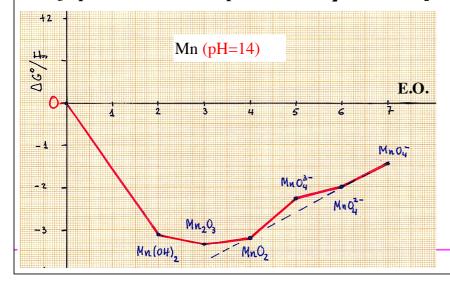
- Mn muestra la gama más amplia de E.O.'s que cualquiere otro metal común
- Principales EO's del Mn a pH=0 \rightarrow +7, +4, +2 (el más importante en medio ácido +2)
- Mn(VII): MnO₄-
 - muy oxidante en medio ácido; debería oxidar al H₂O en medio ácido (y en medio básico)
- Mn(VI) (verde intenso): MnO₄²⁻ (ión manganato)
 - muy oxidante en medio ácido
 - pero dismuta fácilmente a MnO₄ y MnO₂
 - EO poco importante (en medio ácido)
- Mn (IV): MnO₂
 - oxidante
- Mn³⁺ → dismuta; carece de interés (en medio ácido)
- Mn²⁺ → EO más estable en medio ácido y el más importante
- Mn → reductor

Estados de Oxidación: pH=14

2. Estados de oxidación


- pH básico → situación muy distinta a medio ácido
 - bajos EO's de Mn → hidróxido insoluble Mn(OH)₂
 - -y óxido-hidróxido [MnO(OH) \equiv Mn₂O₃·H₂O]
 - EO's más altos → menos oxidantes que en medio ácido
 - fuerte dependencia de E con pH → ecuación de Nernst
 - EO's muy inestables en medio ácido pueden existir en medio básico
 - ión "manganato" verde, $[Mn^{VI}O_4]^{2^-}$ → se estabiliza en medio básico
 - ión "manganito" azul, [MnVO₄]³⁻, se forma en medio muy básico

(*)
$$E^{o}(H_2O/H_2) \approx -0.8 \text{ V}$$
; $E^{o}(O_2/H_2O) \approx +0.4 \text{ V}$


7

Estados de Oxidación: pH=14

2. Estados de oxidación

- son estables el MnO_2 , MnO(OH) y el $Mn(OH)_2$
 - $-pH \ge 14$, MnO(OH) más estable que Mn(OH)₂
- ¿especie más estable en presencia de O_2 ? \rightarrow Mn O_2

$$E^{o}'(H_2O/H_2) \approx -0.8 V;$$

$$E^{o}(O_2/H_2O) \approx + 0.4 \text{ V}$$

Reactividad

3. Reactividad del Manganeso

- reactividad Mn → mayor que predecesores
- Mn metal atacado rápidamente por ácidos minerales

$$Mn(s) + 2 HCl(ac) \rightarrow [Mn(H_2O)_6]^{2+}(ac) + 2 Cl^{-}(ac) + H_2(g)$$

$$Mn(s) + H_2SO_4(ac) \rightarrow [Mn(H_2O)_6]^{2+}(ac) + SO_4^{2-}(ac) + H_2(g)$$

- atacado lentamente por agua $\rightarrow [Mn(OH_2)_6]^{2+}$ e H_2
- en estado masivo → no atacado por el aire en frío
 - superficie ligeramente oxidada
- finamente dividido → pirofórico
- A t^a elevada, Mn → más reactivo
 - reacciona con muchos no metales
 - se combina con O_2 → óxido mixto Mn_3O_4 (hausmanita, $MnO\cdot Mn_2O_3$)
 - N_2 (1200 °C) → nitruro Mn_3N_2 ¿EO del Mn? Mn^{II}
 - $halógenos <math>\rightarrow MnX_2$

С

Obtención del Manganeso

4. Obtención del Manganeso

- ~80% se destina a la industria del acero → ferromanganeso
 - para estos usos, basta con la reducción de MnO₂ y Fe₂O₃ con C

$$MnO_2 + Fe_2O_3 + 5 C \xrightarrow{\Delta} 5 CO (g) + Fe/Mn$$

- Mn puro → electrolisis de sales de Mn(II)
 - fundamentalmente de MnSO₄
 - método industrial habitual obtención Mn puro
- otra estrategia para obtener Mn relativamente puro
 - aluminotermia o silicotermia
 - reacciones bastante violentas

$$3 \text{ MnO} + 2 \text{ Al} \rightarrow 3 \text{ Mn} + \text{Al}_2\text{O}_3$$
; $\Delta H = -518 \text{ kJ}$

$$2 \text{ MnO} + \text{Si} \rightarrow 2 \text{ Mn} + \text{SiO}_2$$
; $\Delta H = -140 \text{ kJ}$

1. Permanganato de potasio, KMnO₄

5. Compuestos más importantes

- compuestos de Mn^{VII} → muy escasos
- KMnO₄ → compuesto de Mn^{VII} más común
 - sólido de color violeta oscuro, casi negro
 - disolución color púrpura ¿tipo de transiciones?
 - $-TC(d^0)$
- en medio ácido → buen oxidante, ¿a qué especie se reduce?
 - a Mn²⁺ (rosa tenue)
- medio básico → oxidante moderado ¿a qué especie se reduce?
 - reduciéndose primero a [Mn^{VI}O₄]²⁻ y finalmente a MnO₂
- Aplicaciones en el lab:
 - 1.- obtención de Cl₂(g):

$$[MnO_4]^-$$
 (ac) + 8 H⁺(ac) + 5 e⁻ \rightarrow Mn²⁺ (ac) + 4 H₂O (l)
2 HCl (ac) \rightarrow Cl₂ (g) + 2 H⁺(ac) + 2 e⁻

11

1. KMnO₄

- Aplicaciones en el lab:
 - 2.- Valoraciones redox con MnO₄:
 - a) estandarización de la disolución de KMnO₄ (*)
 - ¿por qué no es patrón primario?

- pH = 7 $E^{o}(V)$ MnO_4^{-}/MnO_2 ~ +1,1 O_2/H_2O ~ +0,8
- » no se puede garantizar su pureza \rightarrow contiene algo de MnO₂
- » sus disoluciones acuosas no son estables \rightarrow MnO₂ $\downarrow\downarrow$ (pardo)
- ¿cómo se estandariza?
- con el patrón primario ácido oxálico
- ¿indicador? → el propio MnO_4^- (tinte rosado)

$$[MnO_4]^-$$
 (ac) + 8 H⁺(ac) + 5 e⁻ \longrightarrow Mn²⁺ (ac) + 4 H₂O (l)

$$H_2C_2O_4$$
 (ac) \rightarrow 2 CO_2 (g) +2 H^+ (ac) + 2 e^- ; $[E^0(CO_2/H_2C_2O_4=-0.49 \text{ V}]$

- elevada energía de activación → calentar inicialmente disolución $H_2C_2O_4$
 - » el Mn²+ actúa de catalizador → reacción rápida
- (*) disoluciones de MnO₄⁻ (ac) se guardan en botella color *oscuro* ya que son afectadas por la luz

- 2.- Valoraciones redox con MnO₄:
 - b) determinación de hierro con KMnO₄ (*)
 - » no requiere indicador
 - » valoración de la disolución de Fe(II) con MnO₄- (ac) estandarizada (**)

$$[MnO_4]^-$$
 (ac) + 8 H⁺(ac) + 5 e⁻ \rightarrow Mn²⁺ (ac) + 4 H₂O (l)
Fe²⁺ (ac) \rightarrow Fe³⁺ (ac) + e⁻

- c) detección de Mn(II)
 - » adición de bismutato de sodio a la muestra de Mn(II) en frío
 - » formación de color púrpura → indica presencia de manganeso

$$Mn^{2+}$$
 (ac) + 4 H₂O (l) \rightarrow [MnO₄]⁻ (ac) + 8 H⁺(ac) + 5 e⁻
[BiO₃]⁻ (ac) + 6 H⁺(ac) + 2 e⁻ \rightarrow Bi³⁺ (ac) + 3 H₂O (l)

- (*) por ejemplo en productos alimenticios
- (**) la sal de Mohr, $(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$, es patrón primario de Fe^{II} para valorar MnO₄.

13

2. Oxidos de Manganeso

Fórmula	color	carácter ácido/base	p.f.(°C)
Mn ₂ O ₇	aceite verde	ácido	5,9
MnO ₂	negro	anfótero	535 (desc)
Mn ₂ O ₃	negro	básico	1080 (desc)
Mn ₃ O ₄	negro	básico	1705
MnO	gris-verde	básico	1650

- 1.- ¿tipo de enlace? ¿tipo de compuesto?
 - el carácter iónico del enlace aumenta al disminuir el E.O. (menor poder polarizante)
 - Mn₂O₇ es un óxido molecular
 - MnO₂ enlace iónico-covalente (enlace intermedio)
 - los demás son esencialmente iónicos (y básicos)
 - (*) ejemplo de óxidos metálicos donde el aumento del carácter covalente del enlace no conduce a una red covalente 3D [ver también óxidos de cromo (p. ej CrO₃)]

2. Oxidos de Manganeso

5. Compuestos más importantes

- 2.- Mn₂O₇ (heptaóxido de dimanganeso)
 - líquido aceitoso verde oscuro, p. f. = 5,9°C, soluble en CCl₄
 - ¿tipo de compuesto?
 - molecular
 - ¿estructura? → compartición grupo oxo entre 2 tetraedros
 - poderoso oxidante
 - reacciona explosivamente con compuestos orgánicos
 - inestable a $t^a > -10^{\circ}C \implies$ se descompone lentamente
 - a 95°C lo hace explosivamente
 - » para formar MnO₂ mucho más estable

$$2 \operatorname{Mn_2O_7}(l) \longrightarrow 4 \operatorname{MnO_2}(s) + 3 \operatorname{O_2}(g)$$

- Formación: (complementario y peligroso)
 - disolver KMnO₄ en H_2SO_4 concentrado → Mn_2O_7
 - ¡¡experimento muy peligroso!!

14

2. Oxidos de Manganeso

- 3.- MnO₂
 - único compuesto importante de Mn^{IV} y el óxido más importante de Mn
 - MnO₂ en la naturaleza → pirolusita
 - sólido negro insoluble con estructura iónica-polarizada (enlace intermedio)
 - ¿óxido ácido/básico? anfótero
 - buen oxidante en medio ácido
 - oxida al HCl ¿por qué? → Cl_2 (obtención de cloro en lab)

»
$$E^{0}(Cl_{2}/Cl^{2}) = 1,36 \text{ V}$$
; $E^{0}(MnO_{2}/Mn^{2+}) = 1,23 \text{ V}$

$$MnO_2(s) + 4 HCl (ac) \xrightarrow{\Delta} MnCl_2(ac) + Cl_2(g) \uparrow \uparrow + 2 H_2O(l)$$

3.1. Compuestos de Mn^{II}

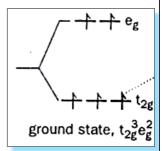
5. Compuestos más importantes

- E.O. +2 → el más estable en medio ácido
- extensa química acuosa
- \bullet $Mn^{\rm II}$ \Longrightarrow sales hidratadas con muchos aniones; suelen ser solubles en agua
- catión [Mn(H₂O)₆]²⁺ rosa tenue
 - presente en todas las sales comunes de manganeso: nitrato, cloruro, sulfato, ...
- oxidación Mn^{II} en medio ácido ¿es fácil?
 - difícil → requiere oxidantes potentes (tipo peryodato, IO₄⁻)
- medio básico → oxidación Mn^{II} ¿es fácil?
 - fácil oxidación por el O₂
 - al aumentar pH precipita inicialmente el Mn(OH)₂ (blanco-rosáceo)
 - pero en medio básico está favorecido el Mn^{III}
 - $-Mn(OH)_2 \rightarrow \text{ oxido hidratado de } Mn^{III} [MnO(OH)], [se oxida a MnO_2 con O_2]$

$$2 \operatorname{Mn(OH)}_{2}(s) + 1/2 \operatorname{O}_{2}(g) \longrightarrow 2 \operatorname{MnO(OH)}(s) + \operatorname{H}_{2}\operatorname{O}(l) \longrightarrow \dots$$

3. 2. Complejos de Mn^{II}

5. Compuestos más importantes


- ¿complejos de Mn^{II} (ión d^5)? \rightarrow numerosos
- bastante estables frente a reacciones redox
 - Mn^{II} químicamente más estable que Cr^{II} o Fe^{II}

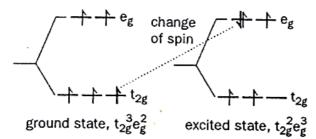
-
$$Cr^{II}$$
 → reductor

$$Fe^{II} \rightarrow oxidado por O_2$$

- complejos más estables → con ligandos quelantes
 - [Mn(EDTA)]²⁻

 $[Mn(en)_3]^{2+}$ $[Mn(ox)_3]^{4-}$

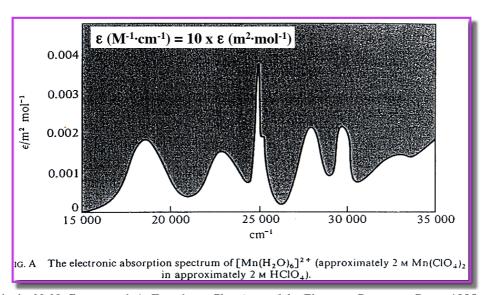
- complejos de Mn^{II} → mayoritariamente octaédricos de espín alto
 - ¿configuración electrónica? \rightarrow $(t_{2g})^3(e_g)^2$ ¿hay contribución orbital al μ ? No
 - ¿momentos magnéticos? próximos al valor de espín sólo (5,92 MB)
- EECC= 0: consecuencias
 - cinéticamente lábiles frente a reacciones de sustitución de ligandos
 - estereoquímica variable
- complejos octaédricos de Mn^{II} → ¿por qué son de color tenue o incoloros?


3.2. Complejos de Mn^{II}

5. Compuestos más importantes

- complejos octaédricos de Mn^{II} → color tenue o incoloros
 - contrasta con el intenso color de muchos otros complejos metálicos
- ¿por qué el color del ión [Mn(H₂O)₆]²⁺ es tan tenue?
 - ión d⁵ spin alto → transiciones d-d doblemente prohibidas
 - por la regla de selección de espín
 - por regla de *Laporte*
 - » transiciones muy poco probables → muy débiles

octahedral high spin d⁵


The change of spin is improbable, and only occurs in a very small fraction of the ions.

19

3.2. Complejos de Mn^{II}

5. Compuestos más importantes

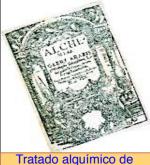
- ¿cuántas bandas presenta el espectro del ión [Mn(H₂O)₆]²⁺?
 - numerosas bandas, pero muy débiles
 - estados electrónicos de un sistema d⁵ (diagrama de Tanabe-Sugano)
 - » análisis diagramas T-S → QI-III

(adaptada de: N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon Press, 1985, p. 1232)

6. Aplicaciones del Manganeso

1. Aplicaciones del Manganeso y sus compuestos

- Aceros:
 - 75% de Mn se destina a aleaciones con Fe
 - acero Hadfield: 13% Mn, 1,25% C
 - utensilios sometidos a fuertes tensiones mecánicas
 - » excavadoras, raíles de trenes, cajas fuertes, barrotes cárcel
- Baterias no recargables
 - pila Leclanché, pila alcalina
- Fertilizantes:
 - Mn es esencial en la fotosíntesis
 - se añade en los abonos como MnSO₄ o como acetato $[Mn(CH_3COO)_2]$
- Aplicaciones del MnO₂:
 - uso principal → producción de acero
 - encontrado Mn en espadas espartanas famosas por su dureza
 - (*) MnO₂: egipcios y romanos lo utilizaron para decolorar vidrios



Aplicaciones del Manganeso

6. Aplicaciones del Manganeso

- Vidrio obtenido con MnO₂ → color violeta, marrón o negro
 - depende del modo de preparación y composición del vidrio
 - se añade para decolorar el vidrio con alto contenido en Fe^{II}
 - enmascara el color verde del $Fe^{II} \rightarrow vidrio de color gris$
- Colorante inorgánico
 - MnO₂ confiere un color marrón oscuro a la cerámica
 - en combinación con otros óxidos metálicos
 - fábricas de ladrillos → grandes consumidoras del óxido

Tratado alquímico de Jabir Ibn Hayyan describe el uso del MnO₂ en la fabricación de vidrio http://pubs.acs.org/cen/80th/manganese.html

Algunas aplicaciones de compuestos de Mn

KMnO₄ - algicida en las estaciones de bombeo depuradoras

- activador del blanqueo en detergentes
- depuración de aguas
- mordiente para caucho y plásticos

 MnO_2

- pigmento cerámica y vidrio
- agente absorbente en máscaras de gas

- fuente de Mn en abonos MnSO₄

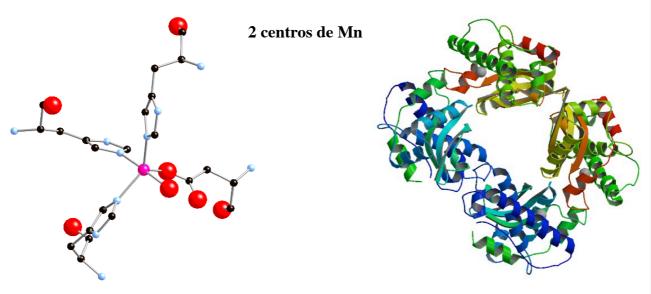
7. Aspectos biológicos y toxicidad del manganeso

1. Toxicidad

- contacto con Mn en concentraciones elevadas
 - problema serio para los trabajadores del acero, minería, soldadura, fabricación de baterías
- exposiciones muy prolongadas a compuestos de manganeso
 - de forma inhalada u oral
 - pueden provocar efectos adversos en sistema nervioso y respiratorio
- sintomas de envenamiento por Mn se asemejan al Parkinson
 - problemas de control muscular
 - Manganismo
- permanganato potásico, $KMnO_4 \rightarrow corrosivo$
 - hace años se usaron disoluciones diluidas como desinfectantes bucales

23

2. Función biológica


7. Aspectos biológicos y ...

- manganeso es un oligoelemento
- elemento químico esencial para todas las formas de vida
- necesario un aporte de entre 1 a 5 mg por día
 - cantidad que se consigue a través de ciertos alimentos: nueces, cacao, ...
- en humanos, el manganeso se absorbe en el intestino delgado
 - la mayor parte se almacena en el hígado
 - desde donde se reparte a diferentes partes del organismo
- parece que es importante en la funcionalidad de la vitamina B_{12}
- en las plantas juega un papel importante en la fotosíntesis
 - Fotosistema II: convierte H₂O en O₂
 - su déficit provoca un retraso del crecimiento
- manganeso está presente en distintos enzimas
 - Mn-catalasa \rightarrow cataliza la dismutación de peróxido, H_2O_2

2. Función biológica

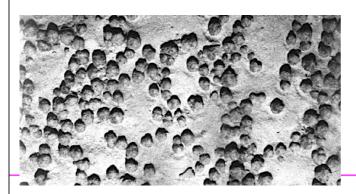
7. Aspectos biológicos y ...

- manganeso está presente en distintos enzimas
 - superóxido dismutasa de manganeso (Mn-SOD)
 - cataliza la dismutación de superóxidos, O₂-

Mn-SOD from thermus thermophilus (http://www.rcsb.org/pdb/explore/explore.do?structureId=3mds&)

25

Facultat de Químíca




8. Complementos formativos

2. ¿cómo se encuentra en la Naturaleza?

1. Abundancia y Estado Natural

- Nódulos de manganeso → minería marina
 - acumulaciones de elementos metálicos en los lechos de océanos
 - normalmente en forma de óxidos
 - composición variable: 15-20% (Mn); 20% (Fe)
 - en concentraciones menores →Ti, Ni, Cu, Co.
 - constituyen una potencial fuente de extracción de Mn y de otros metales
 - problema legal de la explotación de los fondos oceánicos

27

$1.KMnO_4$

- 3.- Uso en Química Orgánica
 - suele utilizarse en condiciones básicas
 - oxidación de alquenos a dioles

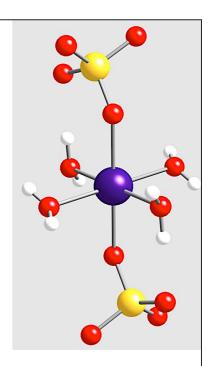
R-CH=CH-R' + 2 OH
$$^{-}$$
 (ac) \rightarrow R-CH(OH)-CH(OH)-R' + 2 e $^{-}$

- » MnO₄-(ac) púrpura se reduce primero a manganato verde MnO₄²⁻
- » y después a MnO₂ (s) café oscuro
- i) $[MnO_4]^-$ (ac) + $e^- \rightarrow [MnO_4]^{2-}$ (ac)
- ii) $[MnO_4]^{2^-}$ (ac) + 2 $H_2O(l)$ + 2 $e^- \rightarrow MnO_2(s)$ + 4 $OH^-(ac)$
- Otras aplicaciones:
 - potabilización de agua para consumo humano
 - elevado poder oxidante → destruye materia orgánica
 - formación de MnO₂ facilita coprecipitación de impurezas coloidales

2. Manganato potásico, K₂MnO₄

5. Compuestos más importantes

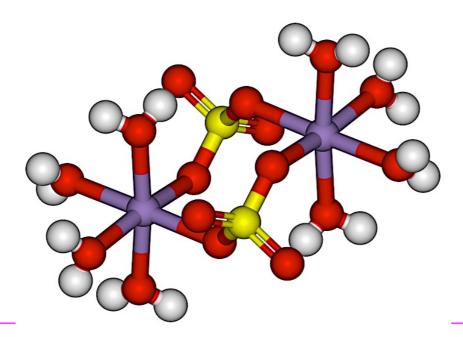
- K_2MnO_4 \rightarrow único compuesto común de Mn^{VI}
 - sólido verde oscuro
 - estable sólo en fase sólida o medio muy básico
 - medio ácido o neutro → dismuta


$$3 [MnO_4]^{2-} (ac) + 2 H_2O (l) \rightarrow 2 [MnO_4]^{-} (ac) + MnO_2 (s) + 4 OH^{-} (ac)$$

20

5. Compuestos más importantes

3.1. Compuestos de Mn^{II}


- $Mn(II) \rightarrow sales hidratadas con muchos aniones$
 - suelen ser solubles en agua
- $Mn(SO_4)$ ·5 H_2O :
 - más relevante comercialmente
 - fertilizante para suelos deficientes en Mn
 - reactivo de partida preparación compuestos de Mn
 - Mn entorno octaédrico distorsionado
 - "unidades" $[Mn(H_2O)_4]^{2+}$ cuadrado-planas
 - sal anhidra → particularmente estable frente a tratamientos térmicos
 - se puede llevar hasta el rojo vivo sin que descomponga
 - » contrasta con fácil descomposición de sulfatos de Fe(II), Co(II) y Ni(II)

$Mn(SO_4)\cdot 4H_2O \rightarrow [Mn(SO_4)(H_2O)_4]_2$

- realmente está constituído por unidades dímeras donde hay 2 puentes sulfato.
- en el cristal los dímeros se unen entre sí por puentes de hidrógeno.

Estuctura dímera del Mn(SO₄)·4H₂O (ref: Acta Cryst., 2009)

31

3.2. Complejos de Mn^{II}

5. Compuestos más importantes

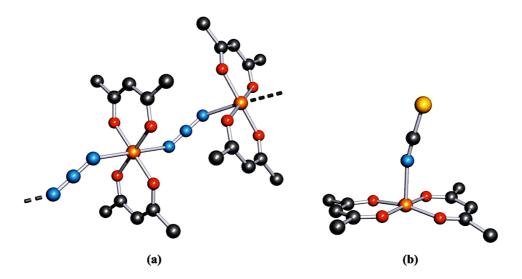
- Otros complejos de Mn^{II}
 - 1.- Octaédricos de spin bajo
 - muy minoritarios respecto a spin alto
 - » aparear electrones en un sistema d⁵ requiere una notable energía
 - sólo se forman con ligandos de campo fuerte como CN-
 - $> K_4[Mn(CN)_6] \cdot 3H_2O(\mu=2,18 MB)$
 - » sal eflorescente → pierde espontáneamente aguas de cristalización
 - K₄[Mn(CN)₆]·3H₂O se oxida rápidamente por el aire a K₃[Mn(CN)₆]·3H₂O
 - » se desestabiliza considerablemente Mn^{II} vs. Mn^{III} (d⁴ de spin bajo)
 - complejos de espín bajo → fuertemente coloreados y mucho más reactivos (menos estables) que los de espín alto
 - » $K_4[Mn(CN)_6]\cdot 3H_2O$ al ser oxidado \longrightarrow gana en EECC al cancelar una contribución de la energía de apareamiento (pierde -0,4 Δ_0)
 - » $K_4[Mn(CN)_6]$ · 3H_2O al ser reducido → completa el nivel t_{2g}

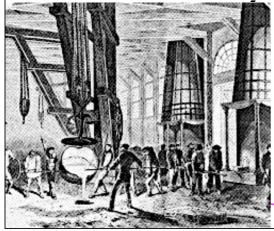
$$[Mn^{I}(CN)_{6}]^{5-} \xrightarrow{Zn} [Mn^{II}(CN)_{6}]^{4-} \xrightarrow{aire} [Mn^{III}(CN)_{6}]^{3-}$$

- Otros complejos de Mn^{II}
 - 2.- Complejos tetraédricos (muy minoritarios)
 - se pueden aislar de disoluciones etanólicas la serie de haluros
 - » $[MnCl_4]^2$, $[MnBr_4]^2$, $[MnI_4]^2$ (color amarillo-verde)
 - » se cristalizan como sales con cationes voluminosos
 - en disolución acuosa suelen coordinarse a $2H_2O$ o $2X^-$ para formar el complejo octaédrico MX_4L_2 → color cambia a rosa tenue
 - 3.- Complejos cuadrado-planos (muy minoritarios)
 - se conocen unos pocos complejos de Mn cuadrado-planos
 - » Mn(acac)₂ anhidro
 - » (acac = acetilacetonato)

33

22.21




Fig. 22.18 The structures (X-ray diffraction) of the Mn(III) complexes (a) [Mn(N₃)(acac)₂] which forms polymeric chains [B.R. Stults *et al.* (1975) *Inorg. Chem.*, vol. 14, p. 722] and (b) [Mn(NCS-N)(acac)₂] [B.R. Stults *et al.* (1979) *Inorg. Chem.*, vol. 18, p. 1847]. Hydrogen atoms are omitted for clarity. Colour code: Mn, orange; C, grey; O, red; N, blue; S, yellow.

Housecroft and Sharpe, Inorganic Chemistry, 3rd Edition @ Pearson Education Limited 2008

Manganeso y Aceros

6. Aplicaciones del Manganeso

- Todos los aceros contienen Mn
 - asegura el éxito del proceso Bessemer debido a una doble función:
 - 1) neutralizador de impurezas
 - desulfurizante: Mn combina con S → MnS que pasa a la escoria
 - » se impide así la formación del FeS que ocasiona elevada fragilidad en el acero y dificulta su forja
 - desoxidante: previene la formación de burbujas en el enfriado del acero
 - » se combina con el O2 formando óxidos de Mn.

- 2) aumenta la dureza del acero
 - acero tipo Hadfield
 - » Robert Hadfield, 1883
 - contiene 13% de Mn y 1,25% de C
 - el más utilizado
 - » excavadoras, railes de tren, ...