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Radial conformal motions in Minkowski space—time
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A study of radial conformal Killing fields (RCKF) in Minkowski space—time is
carried out, which leads to their classification into three disjointed classes. Their
integral curves are straight or hyperbolic lines admitting orthogonal surfaces of
constant curvature, whose sign is related to the cansal character of the field. Oth-
erwise, the kinematic properties of the timelike RCKF are given and their applica-
tions in kinematic cosmology is discussed. © 1999 American Institute of Physics.
[50022-2488(99)00507-1]

[. INTRODUCTION

The study of vector (and tensor) fields in a Lorentzian metric is a key issue, both from the
theoretical and practical points of view. Infinitesimal transformations, fluid flows, eigendirections
of a given 2-tensor field, critical points, continzous symmetries, directions attached to coordinate
systems, light propagation and polarization in a medium, geodesic and accelerated observers are
some examples of basic concepts which are described using vector fields. This work is devoted to
analyzing in the Minkowski space—time the main properties of a particular type of fields that we
have called radial conformal motions.

There are several reasons for carrying out such a study: (i) homothetic and hyperbolic radial
motions belong to this kind of fields, (ii) conserved quantities along null geodesics are obtained
from conformal Killing vectors, with particular expressions for the radial case, (iii) isotropic
distribution functions of photons verifying the Liouville eguation can be built from these con-
served quantities and, (iv) this study can be easily extended to any conformally flat space—time
and used to obtain its conformal factor imposing a given kinematic property of the field (geodesic,
homogeneous expansion, etc.); in fact, Infeld—Schild work on kinematic cosmology® tacitly in-
volves the concept of timelike radial conformal Killing field (RCKF) in the geodesic case.

Firstly, in Sec. I, we introduce the concept of RCKF and obtain its general expression and the
type of subalgebra generated by them; we also present a study of their causal character according
to the different domains of the space—time. We continue with a classification of these fields related
to the sign of a quantity invariant by internal conformal transformations of the Minkowski mefric
(Sec. ). The associated integral curves are plotted in Sec. IV and we show that the orthogonal
hypersurfaces of the field have constant curvature whose sign is related to its causal character
(Sec. V). In Sec. VI, we focus on timelike RCKF and discuss their kinematic properties pointing
out their connection with the Milne’s interpretation of the cosmological recession velocity in the
Minkowski space—time.? Finally, in Sec. VII, we comment on several applications of the present
study, Some of these results have been presented, without proof, in the ER.E., annual Spanish
relativity meeting.?

Il. RADIAL CONFORMAL KILLING FIELDS
Let us consider a radial vector field
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in the Minkowski space—time,
p=—~dt®@dt+drodr+rih, (1)

with h=d 8®d 8+ sin® 8 dg®de, the metric on the 2-sphere.

The equation £, 7 expresses that £ is a conformal Killing field {or conformal motion) of #,
where L; represents the Lie derivative with respect to & This condition leads to that the functions
a and f3 are independent of the angular coordinates & and ¢, resulting in

a(t,ry=a(t*+r¥)+bt+ec, B(t,ry=r(2at+h), (2)
where g, b, and ¢ are arbitrary constants.
Proposition 1: In the Minkowski space—time, the general form of a RCKF is

3 3
§=(a(t2+r2)+bt+c)-5;+r(2at+b)E, (3)

with a, b, and ¢ as arbitrary constants.

Consequently, £ can be obtained as linear combination of (the generators of} the timelike
translation &, =(4/Jt), the dilation &=¢(d/dt)+r(d/dr), and the special nonlinear conformal
teansformation along the t-axis &= (¢*+r2)(a/dt)+2tr(/dr), that is

§=a&3+bétedy.
The Lie brackets of these generators,
[€1.6:,1=81, [£.61=28, [£.6]1=&
give us the type of the Lie algebra generated by RCKF. In fact, if we consider the vector fields
e1=&— 183, =&, ex=—§—1é,
then, their comumutation relations are
fer.es]=—e3, [es,e5]=¢;, [e3,e1]=ey

showing that this Lie algebra is isomorphic to the pseudo-orthogonal algebra AO(1,2); then we
have the following result:

Proposition 2: RCKF generate a three-dimensional Lie algebra of Bianchi type VIII

Note that using nuofl coordinates, u=f+r and v=¢—r, expression (3} is writien in a com-
pletely symmetric form

J J
— 2 . 2 —_
é=(aun +bu+c)au+(av +bv+c) = (4)

where each null coordinate appears separately and in the same way in the comresponding compo-
nent of the field &
From (3) and (4} we have

P=—qp(&,&)=[a(t*+r)+bt+c]*—r*(2at+ b)Y =(au’+bu+c)avi+bv+e). (5

The discussion of the sign of P will give the causal character of £ in the different regions of the
space—time (domains of causality of &. It is convenient to introduce the guantity

Az=pi—tgc

that make this discussion easier. The results are shown in Table I and plotted in Fig. 1.
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TABLE I Cansal character of the field £ given by (3) or (4) for the different values of the constants ¢ and A=p?
—4ac.

Causal character of a radial conformal Killing vector

a=0 b=0 timelike everywhere
b#0 null on the light cone at the point (#=—{c/b}, r=0),
timelike inside of the light cone and
spacelike outside of the light cone. See Fig. 1(i)

a¥0 A<0 timelike everywhere
A=0 timelike everywhere except for the light cone on (= - (&/2a), r=0)
where it is nuil. See Fig. 1(ii)
A>0 null on the light cones at the points (. ,7r=0), t.=(—b=JA)/2a,

timelike inside or outside of the two light cones and
spacelike in other domains. See Fig. 1(iii)

lll. A CLASSIFICATION OF THE RADIAL CONFORMAL MOTIONS

In order to classify the RCKF in equivalence classes, it is convenient to take in account the
degree of freedom of the null coordinates {u,v}. Then we consider the coordinates

g=ua(u), 7=0(v), 0=0, g=¢

verifying the condition

(6)

fi)Case a =0 and b # 0

' N
(i) Case 6 # 0 and A > 0
FIG. 1. Domains of causality of 2 RCKF & according to the values of the coafficient ¢ and A=h?—4ac. The different

possibilities for the causal character, Timelike, Spacelike or Null, in each domain, are abbreviated with the capital letters
T, S, or N, respectively. ’
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&

1 -7\
n=F(&,7) —E{dﬁ®dﬁ+dif®dii)+( 5 ) h},

where the internal conformal factor, F, is

1
F= ﬁuﬁv—ugvg (7)

with subindexes denoting derivation with respect to the coordinates.
The integration of Eq. (6) with respect to #(u), considering the v-coordinate as a parameter,
gives

ITU(M_U)

Tr=oa " ®

mu)=

where A is an arbitrary function of v. Now, taking into account that # does not depend on v, the
derivative of (8} with respect to v gives the following system of equations for A and D:

AT, — AT, +Azﬁv:0
245, +7,,=0. ©)

If A=0 the solution of Egs. {8) and (9) is linear, #(u#)=pu+q and #(v)=pv+g, where p#0
and g are arbitrary constants. In the generic case, A # 0, the solution has the form

ﬁ(u)=uqu+m, 6(U)=U_f-5+m’ (10)

where p#0, g and m are arbitrary constants; the internal conformal factor F results from Eq. (7),

P2

BU)= 7.
F(z.0) {B—m)“(T~m)
Therefore, taking #=7+7 and 0=¢—F, we obtain the following proposition:

Proposition 3: The nonlinear coordinate transformations t=t(t,r), F=F(t,r), that maintain
invariant the diagonal form of the Minkowski metric, except for an internal conformal factor F are
given by

- —p(ttq) . e P
A=) P =(rtg)?

with p#0, g and m as arbitrary constants. Then, this factor is

p2

F(t,f)=——.
P -mp?

Note that, these internal conformal transformations in the Minkowski space—time, given by
(10}, also maintain invariant the form (4) of the RCKF, that is

where the new constants @, », and ¢ are obtained from the following matricial relation:
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a a . -g* g -1
b|=M|b| with ME; 2q(p+mq) —(p+2mq) 2m |. (11)
¢ ¢ —(pt+mgq)’ m(p+mq) —m*

Moreover b*—4ac="5?—44ar and we have the following proposition:

Proposition 4: The form of a RCKF is invariant by the internal conformal transformations
given in Proposition 3. Moreover, the quantity A=b*—4aqc is also invariant by these transfor-
mations.

Since det( M) =1, the internal conformal transformations of the Minkowski metric are repre-
sented as orthogonal transformations on the algebra of the RCKF, considering its Killing form K
as a metric. Hence, A is invariantly defined from the scalar product associated with XC, that is A
= K(£,£). The invariance of this quantity suggests us the possibility of a classification of the
RCKF depending on the sign of A, which will be used to denote these classes. The classes A
=0, A>0 and A<C0 can be represented by the fields £;, &, and &3+ &;, respectively.

Note that the fields & and & belong to the class A=0 because the internal conformal
transformation from Proposition 3 with p=—1, g=0 and m arbitrary lets us write the field £; as
a timelike translation field in the new coordinates

£ _(t2+ 2 i+2 i-—-i=_
3= ro) tr—=—=§
at ar g1

as it follows from expression (11). The metric 7 in these coordinates has the form

NG )=———1————diag(—1 1,7%,7* sin” 6) (12)
7.8, - N )
¢ [#—(f—m)?]?

Another interesting example is the equivalence between the fields &, and &— £; in the class
A>0. From Proposition 3 and Eq. (11), an internal conformal transformation with p=—2m+0

and g=1 lets us write £&;— ¢, as the dilation field in the new coordinates (7,7},

&— & =2+ 1)5+2: O iy I3
—Gp= r— — t—=t—4r—=
3o g ar gr oF
and now the metric # is written in the form,
4m? . 22 2
Nerap=————diag(— 1,177 sin" 4). (13)

[7 (7= m)*P?

Then, as it is shown in last examples, we have the following result:

Proposition 5: The fields &y k&, with k=0,+1,— 1, may be taken as representatives of the
equivalence classes A=40, A>0, and A<<0, respectively.

Note that the representatives taken in the above proposition are obtained only from the fields
&, and &5, and then, they are not a basis of the radial conformal Killing algebra. But they generate
by commutation the complete algebra, because &, is, up to a constant factor, the Lie bracket of any
pair of these representatives.
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(i) Case b= 0 (if) Case b # 0

FIG. 2. Integral curves associated with a RCKF £ given by expression (3) with a=0.

IV. INTEGRAL CURVES ASSOCIATED WITH A RADIAL CONFORMAL MOTION
The integral curves of a RCKF £ given by (3) are the solution of the differential equation

dt _ dr 14
a(tP+r¥)+bt+c r(2at+h)’ (14)

which has the following implicit form:
alP—r?)+bt—wr+c=0. (15)

So, the integral curves are a cne-parameter family of straight or hyperbolic lines, depending on the
constants 4, b, and ¢ of the field and on the parameter w. When a=0, Eq. (15) represents straight
lines in the {£,r}-plane (Fig. 2). When a#0, Eq. (15) can be written in the form

o] e
t+—| —lrt—| = :

2a 2a 442

which represents a hyperbolic line for each vaiue of the parameter @ except when w?=A that
corresponds to the light cone at the point (t=—b{2a, r=—wf2a). The vertexes of each hyper-
bola are the points [r= — (b/2a), r+=(~w=* Jo?—A)/2a] if A<0 or @>>A>0 and the points
[t.=(—b*+JA—w))/2a, r=—w/2a]if A>0 and w><A. We must consider only the part of the
hyperbolic branches with r>0. Some of these integral curves are plotted in Fig. 3 for the different
values of A. Note that in the case A>0 there exist a double family of hyperbolic lines, Fig. 3(iii).
The vector field &,={d/dt)+r(d/dr} is called (the generator of} a dilation transformation
since its integral curves are a radial congruence of straight lines [Figs. 1{i) and 2(ii)]. And the
vector field & =(t2+r2)(/31)+2tr(d/dr) is identified as (the generator of) an acceleration
transformation along the f-axis, because each integral curve for w+ 0 can be seen as a hyperbolic
relativistic motion whose acceleration a has constant length, |2| = 2|a/@| [Figs. 1(i) and 3(i))].

V. ORTHOGONAL SURFACES TO A RADIAL CONFORMAL KILLING FIELD
Let us consider the covector &, associated by the metric to a RCKF £ given by (3), that is
£,=—(a(tP+rt)+bt+c)dt+r(2at+b)dr.
This 1-form is integrable, £, Ad&, =0, and admits as a potential the following function:

b(2—rD+2ct if a=0

s(t,r)=1{ a(t*—r*)—c | (16)
BTy if a#¢
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(i) Case A< O

(ii) Case A=0

(iii) Case A > 0

FIG. 3. Integral curves associated with a RCKF £ given by expression (3} with a+0, according to the sign of
A=b'—4ac.

that is, £, >ds and the surfaces 2 ={(t,r, 0, @)/s=constant} are orthogonal to the field & Let us
consider a domain where the field is not null on any point. The metric may be written using the
coordinate 5 and another coordinate w orthogonatl to & n(de,£)=0. Such a coordinate has the
expression

a(t*—rH+bt+c
w(t,r)= (17)

r

for any value of a, according to Eq. (15). In order to express the flat metric in these coordinates,
we need the inverse transformation of Egs. (16} and (17), which is

(i) For a=0,
. if b=0
2¢ o=
s, )=
(s,@) c o [bs+ct
_E—%E‘ ‘m if b#0,
bs+c?
r(s, @)=\ 77 (18)

(i) For a#0,
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1 b w
(s, 0)= —r——3| (A= 0’)s— 5 (a*~A) = V(oZ—A)(w = A} |,

JoT—A
r(s,w)=§~a(—:_2?m[—a\/w2—tliw\/a'zmA], {19)

where o=2as+b and the + (=) sign in the £ coordinate corresponds to the + (—) sign in the r
coordinate.
Then #, written in the coordinates (s,,8,¢), has the following diagonal form:

br-w? 1
4(bs+c?)? o’ —b”
A—w?
d(as?+bs+e)r w'—A

rz(s,w)diag( 1,sin? 9) if a=0

Ns,0.0,0) (20)

rz(s,w)diag( ,1,sin” 9) if a#0.

Note that these coordinates (s, w, 8, ) are not, in general, conformally flat coordinates. If we
consider the coordinate transformations (18), (19) and Proposition 3, the resulting relation between
(s,w) and (7,7) allows us to recover, from expression (20), the mefric forms {12) and (13)
presented in Sec. IIT.

From (20), the induced metric on the surfaces 3., by the Minkowski metric has the form

1
Yo, 8,¢) = rz(s,m)diag(m,l,sinz 3) .

The Riemann double 2-form of curvature R of this induced metric can be expressed as R
=[K(s)}/2]yn7y, where A denotes the exterior product of double 1-forms and K(s) is given by

—p?
el for a=0
K(s)~ (21)

—d
arbste AT

Therefore each surface X, (s=constant) has constant sectional curvature, K(s). If we take into
account expressions (5) and (16), we obtain

bs+c? if a=0

P={ as*+bs+c (223
————(2at+b)* if a¥0

and the sectional curvature of 3, can be written in the form
1
K(s)=— F(Zaﬂ“b)z

whose sign depends on the causal character of the field £ and the following result follows.

Proposition 6: In the Minkowski space—time, the surfaces orthogonal to a RCKF are three-
dimensional spaces with constant curvature, which will be negative or positive if the field is
timelike or spacelike, respectively; except for the field §=(d/dt) (timelike everywhere), whose
orthagonal 3-spaces are flat.
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Vi. TIMELIKE RADIAL CONFORMAL MOTIONS

The case of timelike RCKF is specially interesting because they are associated with particular,
but in general noninertial, observers in Minkowski space—time. We are going to study their
kinematical properties. The shear and the vorticity of (the unit vector u associated with) a timelike
RCKF are zero. The expansion is

3(2at+b
g J2attb)

VP

with P given by (5), and the acceleration has the form
2ar
a= —I;*(~r(2at+b)dt+(a(t2+r2)+bt+c)dr).

Note that n(a,a)=4a’/(w*—A) is constant along each integral curve, as we can see from
(15). This agrees with the fact that the integral curves associated with a timelike RCKF describe
hyperbolic or inertial motions. Then we have the following proposition in the Minkowski space—
tine:

Proposition 7: In the Minkowski space—time, the acceleration of a timelike RCKF has con-
stant length on each integral curve, that is

2[a|

o=

where @ is given by (15).
Note that, in inertial coordinates, a timelike RCKF (3) is geodesic iff =0. And it will have
nufl expansion (that is, it will be a Killing vector field) iff the constants & and b are equal to zero.
Let us consider the 4-velocity of a timelike RCKF,

&1 (a a)
“_\/_F___—T—? 5;4-\7;,

the velocity v relative to the inertial observer 8/df is given by the quotient between the compo-
nents £ and &2 of the field,

r(2at+b)

VA bt (23)

From Fig. 1, we can clearly see that when we are approaching (inside the timelike regions) to
the light cones where the field £ is null, the relative velocity v—1. In particular, when a=c=0 we
have v=r/t. This corresponds to the geodesic field &, and adapting coordinates to it, the
Minkowski metric is written

vy

g=—d7r+ (—7255-)7[61;)2%- pH(d 6 +sin® 6d¢?)], (24)
which has the form of a Robertson—Walker metric with expansion factor R( 7) = 7. This is Milne’s
expression of the flat metric used to give a kinematic interpretation of the Hubble law.” The
timelike coordinate 7 represents the proper time of the geodesic radial congruence associated with
the field &,=d/dr; and, according to Proposition 6, the surfaces 7=constant are spaces of nega-
tive constant curvature, ™
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~ Expression (24) can be obtained from (20) redefining the (s, w) coordinates in the following
way:
p 1

S:-'Tz, co=4—+5.

In this sense, Milne’s interpretation of the recession velocity of galaxies can be understood adapi-
ing coordinates to a RCKF in Minkowski space—time.

VI. DISCUSSION AND COMMENTS

We have analyzed the main properties of the RCKF in Minkowski space—time. In a confor-
mally flat space—time, whose metric can be locally written as g =¢** 7, the form of the RCKF will
be given by the same expression (3) or (4) as for the Minkowski space~time. But the acceleration
and expansion of these fields will depend on the function X and its first derivatives. So, additional
conditions imposed on these kinematic properties lead to a differential equation for this function A
that can be used to determine it. For instance, imposing that a conformally flat space—time admits
a geodesic RCKF, the corresponding differential equation allows one to obtain the conformal
factor of the Robertson—Walker metric found by Infeld and Schild! in their work on kinematic
cosmology.

Therefore, it is natural to wonder whether the existence of a RCKF with certain kinematic
properties can characterize the Robertson—Walker metrics and other generalized noohomogeneous
conformally flat cosmological models. In fact, Robertson—Walker universes are those conformally
flat space—times which admit a timelike geodesic RCKE.? Other kinematic properties over these
RCKF (nongeodesic with homogeneous expansion or admitting homogeneous orthogonal
3-spaces) could be used to chatacterize generalized conformally flat cosmologies. We shail soon
develop this idea further.*
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