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The energy-momentum tensor of perturbed Friedmann universes in the longitudinal gauge (depending
on only one gravitational potential) is obtained in order to clarify the physical meaning of two important
cases: (1) conformally static perturbations (when the potential is independent of time), and (2) nonstatic
perturbations in the case where the potential allows a particular separation of time and space coordi-
nates. The statement according to which the longitudinal gauge allows a description of high-density-
contrast regions is analyzed. In the conformally static case we suggest interpreting the energy-
momentum tensor as representing a set of particles in gravitational interaction, suitable for describing
the post-recombination epoch. It is suggested that the second case be interpreted as a plasma in equilib-
rium with radiation, suitable for describing the period just before the recombination epoch.

PACS number(s): 98.80.Hw, 04.25.Nx
I. INTRODUCTION

Potential perturbations to Friedmann universes [see
Eq. (1) below] are frequently used in cosmology. The per-
turbation is expressed by a Newtonian-like potential ¢,
which is assumed to be small. The aim of this paper is to
discuss the meaning of these metrics, analyzing the
energy-momentum tensor obtained from Einstein’s equa-
tions. In Sec. II the energy-momentum tensor corre-
sponding to the form metric of the potential approxima-
tion is obtained without assuming ¢ to be small. In Sec.
III we study the case where ¢ is independent of time, i.e.,
when we have a conformally static metric. In this space-
time, there exists a shear-free and vorticity-free observer
n, and according to well-known results [1], any photon
distribution which is isotropic with respect to the ob-
server n will be a solution to the Liouville equation, even
if the mass distribution is not homogeneous. Therefore,
if the distribution of photons was isotropic with respect
to the observer n, at some epoch it will remain isotropic
in the future. The relevance of this fact in cosmology has
been considered elsewhere (2], where we have outlined
the necessity of a revision of the Sachs-Wolfe effect [3].
In Sec. III A we consider high-density-contrast regions.
In this case the square of the spatial gradients of ¢ may
be of the same order as ¢, forcing us to keep second-order
terms in the development of the energy-momentum ten-
sor. In Sec. III B we show that the potential approxima-
tion, with ¢ independent of time and low density con-
trast, coincides with the Sachs-Wolfe solution [3], which
is a pressureless solution in comoving coordinates. In
Sec. IV the energy-momentum tensor corresponding to
the case ¢=W(x')/a(7) is analyzed. Dautcourt [4] used
this kind of metric, in order to determine the effect of the
reionization on the cosmic microwave background, tak-
ing $=W(x‘)/a(7n) and k =0, instead of the Sachs-Wolfe
metric. McVittie [5] used ¢=—Gm /a(n)r and k=0 to
describe a pointlike inhomogeneity immersed in an
Einstein—de Sitter universe. More recently, Martinez-
Gonzalez, Sanz, and Silk [6] have proposed using them to
compute anisotropies in the cosmic microwave back-
ground (CMB) produced by the effect of high-density re-
gions. They based this on the fact that ¢ may be small
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even in regions of high density contrast. Here we show
that the Dautcourt metric has a different meaning than
the Sachs-Wolfe metric.

II. COMPUTATION
OF THE ENERGY-MOMENTUM TENSOR

In this section we shall compute the energy-momentum
tensor for the metric form

ds*=a%{—(1+2¢)dn*+(1—2¢)h;dx'dx'} , (1)

a =a(mn) being the expansion factor of a Friedmann back-
ground, ¢=¢(7n,x’) an arbitrary potential, and h; a
metric of constant curvature,
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We assume that —1 <¢ < 1, but at present ¢ is not neces-
sarily considered small. Synge [7] calculated the energy
tensor of a similar metric, with Minkowskian space-time
as the background, assuming ¢ independent of time.

Let us consider the timelike vector field
n=a"'(1+2¢)7'/23, normal to the slices n=const.
The induced metric and the extrinsic curvature of a slice
are

yij—az(l 2¢)h’l ) (3)
1 —
K o 2¢a,,1n(a 1=2¢)y;; . (4)

These expressions imply that the metric (1) admits an
umbilical synchronization (the vector field n defines a
shear-free and vorticity-free congruence). Recently, we
studied [8] the energy tensor of this class of space-times.
We shall write the energy-momentum tensor correspond-
ing to the metric (1) in the form

Tﬂvzpn#nv+q#nv+qvn# +py#"+7rﬂv ’ 5)

where q, is orthogonal to n“=( —aVv'1+24,0,0,0) and
T,y is the orthogonal traceless part of T,,. Taking into
account the results by Ferrando, Morales, and Portilla
[8], we get
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where (d¢)?=h"3.¢d.¢6, A=h'V,V
t J i

; 1s the Laplacian operator for the metric 4;;, and the overdot means a derivative

with respect to the conformal time 1. The quantities py and pg are the energy density and the pressure of the Fried-

mann background:

3 a?
= “—tk |,
Ps 87Ga? | a?
1 i a?
= 2=————+k
Pr 87Ga® | a a?

(10)

(11)

III. CONFORMALLY STATIC PERTURBATIONS

Let us assume ¢ independent of time; then, (1) turns out to be a conformally static metric. In this case, Egs. (6)-(9)

can be written as

8wGa? a’ 24 1 2 2k¢
7€ (p—pg)=——"= + ZAp+ + , 12
) 1 44 a 1 +4Q+12Q2 _ 2k¢
—pg)= 22 |p————— [89AG+ (d ) 13
8mGa“(p—pg) 1524 . e ¢ 31—29)? oAd Yy (d¢)? 1—2¢ (13)
87Gag, = — —2'—— 3.4, (14)
T (1 2er
2 1 +4¢+ 124> 1 )
8rG ;= vy 24 |V,0,6— 5 Adh, +__QZ¢_2¢_ 8,986~ S (do)h; 1 (15)
[
One feature of this metric is the existence of an energy n't=y(nt+Ve#), 16)

flux g; collinear with the gradient d;¢. This flux may be
interpreted as the collective motion of matter with
respect to n insofar as there exists a new observer
n'=y(n+Ve) measuring zero energy flux. But what
does the vector field » mean? When ¢ is independent of
time, the metric (1) admits the conformal Killing vector
d,; according to well-known results (see [8] and refer-
ences therein), this property allows the existence of iso-
tropic radiation with respect to the observer n collinear
with the conformal Killing vector. So the flux g; is inter-
preted in a very natural way as the collective motion of
matter with respect to an observer measuring isotropic
radiation.

The vector field representing the motion of matter will
just be the vector field n'# for which there is no energy
flux. In order to determine it, let us consider a boost with
velocity Ve*:

e'F=y(Vnt+et).

The energy density, mean pressure, and energy flux with
respect to the observer n'# are

p'=vip—2qV+Vir), 17
=p+%y2V2 p+w—2iV (18)
—y {—qu—k Vt,e'+y*V? ptm—q 1+VV2 i
+y*Vip+aVi—2g9V)e, | , (19)

where we have introduced ¢
and g =gq,e".

= = LoV
v pyw-%-‘rruv, T=t,e"e”",
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Equating g, to zero, one gets

yoetr [, [ |” 20)
2q (p+m)?
and substituting the above into (17) and (18) we have
p'=p—qV, (21)
p'=p—1qV . (22)

Until now, we have given exact expressions for the
energy-momentum tensor, but we have obtained only an
implicit equation for determining the direction e* of the
matter velocity. In order to get more tractable formulas,
we shall consider ¢ to be an infinitesimal quantity. Let us
introduce three quantities €, €, €, such that ¢ and its two
first derivatives verify |¢|=0(g,), |9;6|=0(¢,), and
18,0;6|=0(g,), where g,<<1, g;<<1. In some cases ¢,
will not be considered small—see below, Sec. III A. By
considering Eq. (19) again, as well as (12)—(15), we get a
manageable expression for the matter velocity:

(p+p)Ve,=q,+0(e))+0(ge,) . (23)

In the next subsections, we shall study two realistic situa-
tions in more detail: In Sec. III A we shall consider
high-density-contrast regions (we mean &~1) at scales
smaller than the horizon; in Sec. III B we shall consider
low-density-contrast regions (8 << 1), but with no restric-
tion on their sizes.

For the sake of simplicity, we shall consider a zero-
curvature and zero-pressure background (Einstein—de
Sitter universe). In this case the expansion factor can be
written as a(n)=2n%/H,, with H, as the present value of
the Hubble constant.

A. High-density-contrast small-scale inhomogeneities

We shall derive here expressions for the energy tensor
and the expansion of matter valid for regions with high
density contrast (i.e., 5~ 1). In this case we have, accord-
ing to Eq. (12), ,~ 1. Furthermore, we shall assume that
¢ varies significantly at scales smaller than the horizon.
In this case €2 may be of the same order as €,, and there-
fore we should keep second-order terms in the first
derivatives. Neglecting €3 and €4¢; in (21) and (22) (but
not €3) and taking into account expressions (12), (14), and
(23), with pg =0, one gets

1+4 9 1| (d¢)
r=(1—28)pp+ 1 pg+ |2 L ,
P ¢l 47Ga? ¢ 4 1498 | 67Ga?
(24)
i 1 7 1 (d¢)?
=— Ap— |-+
P e ™ v T 30 ]67rGaz @

and the matter velocity with respect to the observer
measuring isotropic radiation is

y=—=2 (26)
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We can use (24) to determine ¢ from p’. At the first ap-
proximation, we have

Ap=47Ga’(p'—pp)=47Ga’dpy .

With an Einstein—de Sitter background, as ¢ is indepen-
dent of time, one gets the evolution of the density con-
trast 8=728,, where 8, is the density contrast at the
present time (9=1). This allows us to write the mean
pressure (25) in the form

7, 1

7 (d¢)*
4 3(1+8)

6mGa?

Now let us study how the expansion of matter is per-
turbed. The four-velocity of matter is n,, =(a(1+¢),V;).

Taking into account expression (26) and using the formu-
la =0,V —gn'*)/V —g, we get

1— 78, "I48ijai513j¢
3(1+9%8,)  18(1+79%,)?

0=3—
a?

] . (28)

It is manifest that it is smaller than the background ex-
pansion. Let us illustrate this with an example assuming
a power law for the density contrast §,=(r./r)?. This
may represent the external part of a cluster of galaxies.
One has in this case @=6r28,/(3—y)2—y),
(d¢)?=36r283/(3—y)?, and 988,0;6=—y8/(3—y).
Before we proceed, it is appropriate to point out that
(d¢)? is certainly of the same order as ¢ when 8, is of or-
der 1, as we stated at the beginning of the section. Tak-
ing these expressions into account, the expansion (28)
turns out to be

77281 "7475%

o=3-L |1— -
2 3(1+79%,)  183—y)(1+7%,)*

a

l . (29)

For 3>y = 3 one has 6 <0 when r tends to zero.
In its turn, assuming a power law &,=(r,/r)?, Eq. (27)

gives, for the pressure,

- _.___8____
P B—y)2—y)
1 1 4 2 252
4+ 31+8) | 3=y ) N°ppr<di . (30)

At first sight, the pressure (27) has two ill characteristics:
(1) It does not correspond to any reasonable equation of
state, and (2) it may even become negative, as Eq. (30) il-
lustrates for ¥ >3 or ¥ <2. Both discard the interpreta-
tion as a gas in thermodynamic equilibrium. However,
let us suggest that it could have a meaning in the frame-
work of statistical mechanics. So we shall think of a set
of particles (galaxies) with long-range interaction forces
(gravitation). In this case we do not expect a perfect fluid
energy-momentum tensor, and the possibility of negative
pressures is quite naturally related to the gravitational in-
teraction between the particles. Let us explain this im-
portant point in more detail. The system is described by
n-particle  distribution functions, satisfying the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy of equations, and the energy-momentum tensor
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is a statistical average. It is known [9] that the mean
pressure can be split into two components p =pg +pp,
Pk being the purely kinetic pressure and p;, being the dy-
namic pressure due to two-body interactions. The dy-
namic pressure depends on the two-particle distribution
function, and it is negative when the interaction is attrac-
tive and the statistical dependence is positive (we mean
the difference between the two-particle distribution and
the product of two one-particle distribution functions).
We know from early studies [10,11] that a consequence of
the gravitational interaction between galaxies is a certain
degree of statistical dependence in its spatial distribution.
Therefore a system of self-gravitating pointlike particles
will usually have negative dynamic pressure and it could
even have negative total mean pressure if the random
mean-squared velocity is sufficiently small.

To interpret all the components of the energy-
momentum tensor in the framework of statistical
mechanics is a hard task with many unsolved theoretical
problems. One must prove that there exists a solution of
the BBGKY hierarchy of equations to which an energy-
momentum tensor of the given form corresponds. This is
far from the aim of this paper. We have given some steps
in this direction elsewhere [12], and here we advance a re-
sult to suggest the kind of solution of the hierarchy need-
ed. Let us consider a finite region, large enough to be
considered a fair sample of the Universe. Taking the spa-
tial average of Eq. (27) and assuming that a statistical in-
terpretation is possible, we get 2K + W =0, where K and
W are the kinetic and gravitational potential energies per
unit of mass, respectively. From this result and taking
into account the Layzer-Irvine equation
d(K+W)/dt+HQ2K +W)=0, we conclude that any
sufficiently large region of the Universe is virialized, in
the sense that the total energy K+ W is stationary.
Hence we arrive at the conclusion that if a suitable sta-
tistical interpretation of the energy-momentum tensor
(12)-(15) could be set up, it would correspond to a viri-
alized universe.

B. Small-density-contrast large-scale inhomogeneities

In the case where ¢ varies significantly at scales of the
order of the horizon, we have g,~¢~¢,; in consequence
we shall keep only first-order terms in our general expres-
sions. So neglecting second-order terms one has

p'=(1—2¢+1nAd)py , 31)

p'=7;=0, (32)
2

V.= —%—a,.qs . (33)

Introducing [13] new coordinates (7,% °) defined by

7=(1+1¢)m,

iy iy 1.2 (34)
X'=x'+1n%0;¢,

one gets the Sachs-Wolfe [3] solution
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ds*=a*(7) {—d7’+

10
1— “5‘4’ Sij

_ %

_ 1,
37 dx ‘9x /

dx "dffl . (35)

Taking into account the relation pg(%9)=pg(n)(1—2¢),
we can write Eq. (31) in the form

p'=(1+172A8)pp(7) . (36)

The density contrast § in the comoving reference system
is defined by 8=[p'—pp(7)]1/pp(7). Taking into ac-
count that ¢ is independent of time, one gets =7 28, and
Eq. (36) can be written as

Ap=68, . (37)

We have seen that the potential perturbation (1), with ¢
independent of time and assuming low density contrast, is
equivalent to the Sachs-Wolfe metric. The results ob-
tained in the previous subsection may then be considered
as an extension of the Sachs-Wolfe metric to regions of
high density contrast. Let us outline here that expression
(33) for the collective motion of matter should be
changed by expression (26) when reaching high-density
regions. This is meaningful in cosmology for the study of
distortions in redshift space [13].

IV. NONSTATIC PERTURBATIONS

Let us assume now a particular time dependence for
the potential =W(x‘)/a(n), which was first considered
by Dautcourt [4]. In this case we shall consider low den-
sity contrast; then, ¢y~¢,~¢,. As before, we shall take

k=0. Substituting ¢ into (6)-(9) and neglecting
second-order terms, we have
47Ga*(p—pp)=Ad , (38)
p=pp(1—d)—ppéd, (39)
8wGm; =0, (40)
q;=0. (41)

Kodama and Sasaki [14] and Mukhanov, Feldman, and
Brandenberger [15] have given first-order energy tensor
expressions for a general Friedmann perturbation. Equa-
tions (38)—(41) are compatible with their results. Howev-
er, our expression (39) for the pressure is different from
that given by Dautcourt [4].

As in this case we have no energy flux, we can take the
vector n® as representing the mean motion of matter.
Then its expansion will be given directly by the trace of
the extrinsic curvature: 6= —trK. A simple calculation
gives 8=3a /a’+0(e3). Therefore it is a perturbation
that leaves the background expansion unchanged.

Let us interpret the pressure (39) as corresponding to a
plasma (electrons and protons) close to the equilibrium
with radiation. So let us split the background density
and pressure into radiation and plasma components:
P8 =Pp TPpm and pgp=pp, +pp,, With pp,=3pp,. Ex-
pression (39) then becomes
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P=pp(1—4¢)+pp,(1—¢)—pp, ¢ . (42)
Now, assuming pg,, <<ppg,,, the pressure turns out to be
p=pBr(1“4¢)+me —me¢ . (43)

The first term means that the radiation temperature
should be of the form T,=Tg,(77)(1—¢). The two
remaining terms can be derived [16] from a Boltzmann

R . —E7/T, .
distribution function f(x,k)=Ce ™, taking T,,=T,,
considering the nonrelativistic limit (E=m +k?/2m),
and assuming m¢/T,, <<1.

V. CONCLUSIONS

We have obtained the energy-momentum tensor corre-
sponding to the metric form known as the potential per-
turbation of a Friedmann universe. Two particular cases
have been considered in detail, outlining their cosmologi-
cal meaning. ‘

(i) Potential of the form ¢=¢(x’'). When ¢ varies
significantly at scales of the order of the horizon, the
metric (1) represents, in regions of low density contrast, a
pressureless perturbation of an Einstein—de Sitter
universe. This solution was obtained first by Sachs-Wolfe
in other coordinates (comoving and synchronous gauge).

When ¢ varies significantly at scales much smaller than
the horizon, in regions of high density contrast, the
metric (1) represents a Friedmann perturbation with
non-null pressure. This one does not satisfy any reason-
able equation of state and may even be negative. We
have suggested interpreting it in the framework of statist-
ical mechanics, considering a system of self-gravitating
particles. This interpretation would be suitable for the
present Universe if matter were mainly contained in
galaxies.

(i) Potential of the form ¢=%(x")/a(7n), in the limit of
low density contrast. In this case we have an inhomo-
geneous perfect fluid energy-momentum tensor, describ-
ing a plasma close to the equilibrium with isotropic radia-
tion. So this metric form is suitable for representing the
Universe just before the decoupling process of matter and
radiation.
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