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Abstract

We consider the question of properly defining energy and momenta for non asymptotic

Minkowskian spaces in general relativity. Only spaces of this type, whose energy, linear 3-

momentum, and intrinsic angular momentum vanish, would be candidates for creatable universes,

that is, for universes which could have arisen from a vacuum quantum fluctuation. Given a uni-

verse, we completely characterize the family of coordinate systems for which one could sensibly say

that this universe is a creatable universe.
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I. INTRODUCTION: GENERAL CONSIDERATIONS

Which is the most general universe with null energy, null linear 3-momentum, and null

intrinsic 3-angular momentum, and why could such a question be of interest?

From the early seventies, people have speculated about a Universe which could have

arisen from a quantum vacuum fluctuation [1], [2]. If this were the case, one could expect

this Universe to have zero energy.

But, then, why should we consider only the energy? Why not expect that the linear

3-momentum and angular intrinsic 3-momentum, of a Universe arising from a vacuum fluc-

tuation, to be zero too? And finally: why not to expect both, linear 4-momentum and

angular intrinsic 4-momentum, to be zero?

So, in the present paper, we will consider both: linear 4-momentum, P α = (P 0, P i), and

angular 4-momentum, Jαβ = (J0i, J ij). In all: it could be expected that only those universes

with P α = 0, and Jαβ = 0, could have arisen from a quantum vacuum fluctuation. Then,

we could say that only these ones would be ‘creatable universes’.

Now, as it is well known (see, for example, [3] or [4]), when dealing with an asymptotically

flat space-time, one can define in a unique way its linear 4-momentum, provided that one

uses any coordinate system which goes fast enough to a Minkowskian coordinate system in

the 3-space infinity.

Nevertheless, if, to deal with the Universe as such, we consider non asymptotically flat

space-times, in such space-times these Minkowskian coordinate systems do not exist. Then,

we will not know in advance which coordinate systems, if any, should be used, in order to

properly define the linear and angular 4-momentum of the Universe. This is, of course a

major problem, since, as we will see, and it is well known, P α and Jαβ are strongly coordinate

dependent, and it is so whatever it be the energy-momentum complex we use (the one of

Weinberg [3], or Landau [5], or any other one).

As we have just said, this strong coordinate dependence of P α and Jαβ is very well known,

but, in spite of this, in practice, it is not always properly commented or even taken properly

into account. This can be seen by having a look at the different calculations of the energy

of some universes, which have appeared in the literature (see for example, among other

references, [6], [7]) since the pioneering papers by Rosen [8] and Cooperstock [9].

Even Minkowski space can have non null energy if we take non Minkowskian coordinate
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systems. This non null energy would reflect the energy of the fictitious gravitational field

induced by such non Minkowskian coordinates, or in other words the energy tied to the

family of the corresponding accelerated observers. So, in particular, to define the proper

energy and momentum of a universe, we would have to use coordinate systems adapted, in

some sense, to the symmetries of this universe, in order to get rid of this spurious energy

supply. We will address this question in some detail in the present paper, the summary of

which follows.

First, in Sections II and III, we look for the family of good coordinate systems in order to

properly define the energy and momenta of the considered universe. Then, given an arbitrary

space-like 3-surface, we uniquely determine the family of coordinate systems, which are, in

principle, good coordinate systems corresponding to this space-like 3-surface. In Section IV,

under reasonable assumptions, we show that if a given universe has zero energy and momenta

for one coordinate system of the family, then, it has zero energy and momenta for all

coordinate systems of the family. Furthermore, in Section V, under reasonable assumptions,

we show that this “creatable” character of a given universe is independent of the above

chosen space-like 3-surface. In Sections VI and VII we consider some simple examples in

which we calculate the universe energy and momenta: the Friedmann-Robertson-Walker

(FRW) universes, on one hand, and a non-tilted Bianchi V universe, on the other hand.

Finally, in Section VIII, we summarize the main results and conclude with some comments

on open perspectives.

Some, but not all, of these results have been presented with hardly any calculation in the

meeting ERE-2006 [10].

II. WHICH COORDINATE SYSTEMS?

We expect any well behaved universe to have well defined energy and momenta, i. e., P α

and Jαβ would be finite and conserved in time. So, in order for this conservation to make

physical sense, we need to use a physical and universal time. Then, as we have done in [10],

we will use Gauss coordinates:

ds2 = −dt2 + dl2, dl2 = gijdxidxj, i, j = 1, 2, 3. (1)
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In this way, the time coordinate is the proper time and so a physical time. Moreover, it is

an everywhere synchronized time (see for example [5]) and so a universal time.

Obviously, we have as many Gauss coordinate systems in the considered universe (or in

part of it) as we have space-like 3-surfaces, Σ3. Then, P α and Jαβ will depend on Σ3 (as the

energy of a physical system in the Minkowski space-time does, which depends on the chosen

Σ3, i.e., on the chosen Minkowskian coordinates).

Now, in order to continue our preliminary inquiry, we must choose one energy-momentum

complex. Since besides linear momentum we will also consider angular momentum, we will

need a symmetric energy-momentum complex. Then, we will take the Weinberg one [3].

This complex has the property that it allows us to write energy and momenta as some

integrals over the boundary 2-surface, Σ2, of Σ3. Then, any other symmetric complex with

this property, like for example the one from Landau [5], will enable us to obtain essentially

the same results as the ones we will obtain in the present paper.

Then, taking the above Weinberg complex, one obtains, in Gauss coordinates, for the

linear 4-momentum, P α = (P 0, P i), and the angular one, Jαβ = (J0i, J ij), the following

expressions [3]:

P 0 =
1

16πG

∫
(∂jgij − ∂ig)dΣ2i, (2)

P i =
1

16πG

∫
(ġδij − ġij)dΣ2j , (3)

J jk =
1

16πG

∫
(xkġij − xj ġki)dΣ2i, (4)

J0i = P it −
1

16πG

∫
[(∂kgkj − ∂jg)xi + gδij − gij]dΣ2j , (5)

where we have used the following notation, g ≡ δijgij, ġij ≡ ∂tgij, and where dΣ2i is the

surface element of Σ2. Further, notice, that without losing generality, the angular momentum

has been taken with respect to the origin of coordinates.

There is an apparent inconsistency in Eqs. (2)-(5), since we have upper indices in the

left hand and lower ones in the right side. This comes from the fact that, when deducing

these equations (see Ref. [3]), starting with the Einstein equations in its covariant form,

Gαβ = χTαβ , indices are raised with the contravariant Minkowski tensor, ηαβ . Then, in the

right side, one can use indistinctly upper or lower space indices.
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The area of Σ2 could be zero, finite or infinite. In the examples considered next, in

Sections VI and VII, we will deal with the last two possibilities. In the first case, when

the area is zero, the energy and momenta would be trivially zero (provided that the metric

remains conveniently bounded when we approach Σ2).

III. MORE ABOUT THE GOOD COORDINATE SYSTEMS

From what has been said in the above section, one could erroneously conclude that, in

order to calculate the energy and momenta of a universe, one needs to write the metric in

all Σ3, in Gauss coordinates. Nevertheless, since, according to Eqs. (2)-(5), P α and Jαβ can

be written as surface integrals on Σ2, all we need is this metric, in Gauss coordinates, on

Σ2 and its immediate neighborhood (in this neighborhood too, since the space derivatives

on Σ2 of the metric appear in some of these integrals).

Furthermore, since P α and Jαβ are supposed to be conserved, we would only need this

metric for a given time, say t = t0. Nevertheless, since in (3)-(5) the time derivatives of

the metric appear, we actually need this metric in the elementary vicinity of Σ3, whose

equation, in the Gaussian coordinates we are using, is t = t0. Thus, we do not need our

Gauss coordinate system to cover the whole life of the universe. Nevertheless, in order to

be consistent, we will need to check that the conditions for this conservation are actually

fulfilled (see next the end of Section IV in relation to this question).

Now, the surface element dΣ2i, which appears in the above expressions of P α and Jαβ,

is defined as if our space Gauss coordinates, (xi), were Cartesian coordinates. Thus, it has

not any intrinsic meaning in the event of a change of coordinates in the neighborhood of Σ2.

So, what is the correct family of coordinate systems we must use in this neighborhood to

properly define the energy and momentum of the universe? In order to answer this question,

we will first prove the following result:

On Σ2, in any given time instant t0 there is a coordinate system such that

dl2
0
|Σ2

= fδijdxidxj , i, j = 1, 2, 3, (6)

where f is a function defined on Σ2. That is, the restriction to Σ2 of the 3-metric

dl2
0
≡ dl2(t = t0) may be expressed in conformally flat form.
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The different coordinate systems, in which dl2
0
|Σ2

exhibits explicitly its conformal form, are

connected to each other by the conformal group in three dimensions. Then, one or some of

these different conformal coordinate systems are to be taken as the good coordinate systems

to properly define the energy and momenta of the considered universe. This is a natural

assumption since the conformal coordinate systems allow us to write explicitly the space

metric on Σ2 in the most similar form to the explicit Euclidean space metric. But, which of

all the conformal coordinates should be used? We will not try to answer this question here

in all its generality, since our final goal in the present paper is to consider universes with

zero energy and momenta. Instead of this, we will give some natural conditions to make sure

that, when the energy and momenta of the universe are zero in one of the above conformal

coordinate systems, these energy and momenta are zero in any other conformal coordinate

system.

So, according to what we have just stated, we must prove that dl2
0
|Σ2

has a conformally

flat form. In order to do this, let us use Gaussian coordinates, (yi) in Σ3, based on Σ2.

Then, we will have

dl2
0

= (dy3)2 + gab(y
3, yc)dyadyb , a, b, c = 1, 2. (7)

In the new (yi) coordinates the equation of Σ2 is then y3 = L, where L is a constant.

Then, taking into account that every 2-dimensional metric is conformally flat, we can

always find a new coordinate system (xa) on Σ2, such that we can write dl2
0

on Σ2, that is

to say, dl2
0
|Σ2

, as:

dl2
0
|Σ2

= (dy3)2|Σ2
+ f(L, xa)δabdxadxb. (8)

Finally, we introduce the new coordinate

x3 =
y3 − L

f
1

2 (L, xa)
+ C, (9)

with C an arbitrary constant, which can be seen to allow us to write dl2
0
|Σ2

in the form (6),

as we wanted to prove. (Notice that even though, in the general case, f depends on xa, by

differentiating Eq. (9), one obtains on Σ2, that is, for y3 = L, dy3|Σ2
= f 1/2(L, xa)dx3).

Furthermore, if r2 ≡ δijx
ixj in the coordinate system of Eq. (6), and we assume that

the equation of Σ2 in spherical coordinates is r = R(θ, φ), we can expect to have in the

elementary vicinity of Σ2:

dl2 = [0gij(r − R)n + · · · ] dxidxj , (10)
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where n is an integer greater than or equal to zero and where 0gij are functions which do

not depend on r. Furthermore, according to Eq. (6), on Σ3, that is, for t = t0, it must be

0gij(r − R)n|t=t0 = fδij. (11)

If, leaving aside a boundary at r = 0, the equation of the boundary, Σ2, is r = ∞, we

must put 1/r where we have written r − R in the above equation, that is, we will have

instead of (10) and (11):

dl2 = [0gijr
−n + · · · ] dxidxj , 0gijr

−n|t=t0 = fδij , (12)

for r → ∞.

The 0gij functions will change when we do a conformal change of coordinates. But, this

is the only change these functions can undergo. To show this, let us first check which

coordinate transformation, if any, could be allowed, besides the conformal transformations,

if the explicit conformal form of dl2
0
|Σ2

is to be preserved. In an evident notation, these

transformations would have the form

xi = xi′ + yi(xj)(t − t0) , (13)

in the vicinity of Σ3. But it is easy to see that here the three functions yi(xj) must all be

zero, if the Gaussian character of the coordinates has to be preserved. That is, the only

coordinate transformations that can be done on the vicinity of Σ2, preserving on it the

metric conformal form (6) and the universal character of the Gaussian coordinate time, are

the coordinate transformations of the conformal group in the three space dimensions. Thus,

we can state the following result.1

Given Σ3, that is, given the 3-surface which enables us to build our Gauss coordinates,

we have defined uniquely P α and Jαβ, according to Eqs. (2)-(5), modulus a conformal

transformation in the vicinity of Σ2.

So, the question is now: how do P α and Jαβ change under such a conformal transforma-

tion? As we have said above, we are not going to try to answer this general question here.

1 Actually, proving this uniqueness leads us to consider a family of infinitesimal coordinate transformations

on the vicinity of Σ2, which, although preserving the conformally flat character of the 3-metric on Σ2,

introduce changes in the space derivatives of this metric on Σ2: see the Appendix, at the end of the paper.
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Instead of this, since we are mainly concerned with ‘creatable universes’, we will explore

under what reasonable assumptions the energy and momenta of a universe are zero for all

the above class of conformal coordinate systems.

IV. ZERO ENERGY AND MOMENTA IRRESPECTIVE OF THE CONFORMAL

COORDINATES

The first thing that can easily be noticed concerning the question is that the global

vanishing of P α and Jαβ is invariant under the action of the groups of dilatations and

rotations on Σ3.

It is also easy to see that the global vanishing of P α and Jαβ will be invariant under the

translation group on Σ3, provided that one assumes the supplementary condition
∫

ġijdΣ2j =

0, which is slightly more restrictive than P i = 0. Actually, this supplementary condition

will be fulfilled in our case, as a consequence of the assumptions we will make below, in the

present section, in order to have P α = 0, as we will point out at the end of the section.

In all, we can say that, in the case we are interested here, of vanishing energy and mo-

menta, P α and Jαβ are invariant under the groups of dilatations, rotations and translations

on Σ3. But all these three groups are subgroups of the conformal group of coordinate trans-

formations in three dimensions. Then, we are left with the subgroup of the group elements

that have sometimes been called the essential conformal transformations. But it is known

[11] that these transformations are equivalent to applying an inversion first, that is, r going

to 1/r, then a translation, and finally another inversion. So, in order to see how P α and Jαβ

change when we do a conformal transformation, one only has to see how they change when

we apply an inversion, that is, r going to r′, such that

r′ =
1

r
, r2 ≡ δijx

ixj . (14)

Assume as a first case that the equation of the boundary Σ2 is r = ∞ plus r = 0. In

this case, the 2-surface element, dΣ2i, which appears in the Eqs. (2)-(5), can be written as

dΣ2i = r2nidΩ, where ni ≡ xi/r, and dΩ is the elementary solid angle.

Now, let us consider the energy first, P 0. How does it change when we apply an inversion?

This leads us to see how its integrand,

I ≡ r2(∂jgij − ∂ig)nidΩ = r2(ni∂jgij − ∂rg)dΩ, (15)
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changes. After some calculation, one sees that the new value, I ′, for I is

I ′ = r3(r∂rg − rni∂jgij + 2ninjgij + 2g)dΩ. (16)

But, the integrands I or I ′ are both calculated on Σ2. Then, according to Eq. (12), I ′ on

Σ2 can still be written for t = t0 as

I ′|Σ2
= r3(r∂rg − rni∂jgij + 8f)dΩ. (17)

In this expression of I ′ there is a r3 common factor. Thus, if we want P 0′ to be zero, it

suffices that r3f goes to zero when r goes to ∞ and when r goes to zero. In particular, this

means that f must go to zero at least like r−4 when r goes to ∞. Then, according to Eq.

(12), the functions gij − fδij , which must go to zero faster than f , will go at least as r−5. In

a similar way, in order that r3f goes to zero for r going to zero, f must decrease, or at most

cannot grow faster that r−2. In a similar way, gij − fδij must decrease for r going to zero,

or at most cannot grow faster than r−1. Of course, this asymptotic behavior of gij makes

the original P 0 equal zero too. Thus, on the assumption that the equation of Σ2 is r = ∞

plus r = 0, we have proved that this behavior is a sufficient condition in order that P 0 = 0

be independent of the conformal coordinate system used.

This natural sufficient condition is not a necessary one, since it is possible that P 0 could

vanish because of the angular dependence of I. An angular dependence which would make

zero the integral of I on the boundary 2-surface, Σ2, independently of I going to zero or

not when r goes to ∞. But, in this case, from (17) and (15) one sees that the sufficient and

necessary condition to have P 0′ equal zero is that the integral of f on Σ2 be zero because of

the special angular dependence of the function f .

Also, one can easily see that, under the above sufficient conditions, that is, gij goes to

zero at least like r−4 for r → ∞, and does not grow faster than r−2 for r → 0, we will

have P i = 0 and Jαβ = 0, independently of the conformal coordinate system used. This is

so, because, according to (12), this asymptotic behavior for gij entails the same asymptotic

behaviour for ġij.

All in all:

Under the assumption that the equation of Σ2 is r = ∞ plus r = 0, the linear and

angular momenta given by expressions (2)-(5) vanish, irrespective of the conformal
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coordinates used, if the following sufficient conditions are fulfilled: the metric gij of

Eq. (12) goes to zero at least like r−4 for r → ∞ and, on the other hand, the metric

does not grow faster than r−2 for r → 0.

In Section VI, we will see that all this can be applied to the closed and flat Friedmann-

Robertson-Walker (FRW) universes, whose energy and momenta then become zero.

Let us continue with the question of the nullity of energy and momenta, leaving now the

special case where the equation of Σ2 is r = ∞ plus r = 0 and considering the complementary

case where this equation is r = R(θ, φ). Then, a natural sufficient condition to have energy

zero, irrespective of the conformal system used, is that the exponent n in Eq. (10) be greater

or equal to n = 2. This is a sufficient condition similar to the one which was present, in a

natural way, in the above case, i.e., when the equation of Σ2 was r = ∞ plus r = 0.

But, according to Eq. (10), the above asymptotic behavior, n ≥ 2, extends to ġij. Then,

it can easily be seen that this entails not only the vanishing of the energy of the consid-

ered universe, but also the vanishing of its linear 3-momentum and angular 4-momentum

irrespective of the conformal coordinate system used.

All in all, we have established the following result:

Under the assumption that the equation of Σ2 is r = R(θ, φ), the linear and angular

momenta given by expressions (2)-(5) vanish, irrespective of the conformal coordinates

used, if the following sufficient condition is fulfilled: the metric gij of Eqs. (10) and

(11) vanishes fast enough in the vicinity of Σ2. More precisely, the exponent n in Eq.

(10) is greater than or equal to n = 2.

In some particular cases, a more detailed analysis, than the one we have just displayed,

enables not only sufficient conditions to be given, but also necessary and sufficient ones, to

have zero energy and momenta irrespective of the conformal coordinate system used. But

we are not going to give these details here since, in any case, the point will always be to

write the space metric, gij, in the elementary vicinity of Σ2 and Σ3, in the form of Eqs. (10)

and (11) or, alternatively, in the form of Eq. (12). Once one has reached this point, one

could readily say if, irrespective of the conformal coordinate system used, the energy and

momenta of the universe vanish or not.

Finally, we must realize that, from the beginning of Section III, all what we have said

about the proper definition of energy and momenta of a given universe lies on the basic
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assumption that these are conserved quantities. Then, it can easily be seen that a sufficient

condition for this conservation is that the second time-time and time-space derivatives of

the space metric gij vanish on Σ2 for the generic constant value, t0 of t. But this is entailed

by the asymptotic behavior of gij assumed in Eq. (10) or Eq. (12). This is the answer to the

consistency question raised at the end of the second paragraph, at the beginning of Section

III.

To end the section, notice that the above assumed behavior of ġij(t = t0) near Σ2 (going

like r−4, or like (r−R)2, or even at most like r−2 for r → 0, according to the different cases

we have considered) makes not only P i = 0, but also
∫

ġijdΣij = 0, as we have announced

at the beginning of the section.

V. THE NULLITY OF ENERGY AND LINEAR MOMENTUM AGAINST A

CHANGE OF Σ3

Let us look back at Section II, where we have selected a space-like 3-surface, Σ3, from

which to build a coordinate Gauss system. The energy and momenta of the considered

universe are then in relation to the selected 3-surface, that is, depend on this selected 3-

surface. This is not a drawback in itself, since, as we put forward in that section, the

energy of a given physical system in the Minkowski space also depends on the Minkowskian

observer, and so it depends on the space-like 3-surface associated to the coordinate system

used through the equation t = t0. Nevertheless, when this energy and the corresponding

linear 3-momentum are both zero for a Minkowskian system, then they are obviously zero

for any other Minkowskian system.

Thus, if the definition of null energy-momentum for a given universe that we have given

in the last section is correct, one could expect that P α = 0 should remain valid irrespective

of the 3-surface Σ3 used.

We will prove this, first in the case where the equation of Σ2 is r = ∞ plus r = 0, and

then in the complementary case where the equation of Σ2 is r = R(θ, φ).

In the first case, we will assume that the space metric gij goes to zero at least like r−3

when r → ∞ and that it also behaves conveniently for r = 0. Here, “conveniently” means

that the metric decreases, or at most grows no faster than r−1, when r goes to zero. We can

take these assumptions for granted since in Section IV, in order to have P 0 = 0 irrespective
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of the conformal coordinate system used, we had to assume, as a sufficient condition, the

behavior r−4 for r → ∞, besides the above convenient behavior for r = 0. Notice that

the above r−3 asymptotic behavior, as any other faster decaying, when completed with that

convenient behavior for r = 0, allows us to have P α = 0. Indeed, with these assumptions,

in Eq. (2), the integrand of P 0, for r going to ∞, will go like r−4, and the one of P i like

r−3. This sort of decaying, plus the above convenient behavior for r = 0, will make P 0 and

P i vanish.

Now, imagine that we slightly change Σ3, from the original Σ3 to a new Σ̃3 = Σ3 + δΣ3.

Then, we will have the corresponding elementary coordinate change between any two Gauss

systems associated to Σ3 and to Σ̃3, respectively:

xα = xα′

+ ǫα(xβ), (18)

where |ǫα| << |xα|, and where the absolute values of all partial derivatives of ǫα are order

|ǫ| << 1.

Taking into account that g00 = −1 and g0i = 0, we will find for the transformed 3-space

metric, to first order in ǫ:

g′
ij = gij + gik∂jǫ

k + gjk∂iǫ
k. (19)

Now, to calculate the new energy, P̃ 0, corresponding to this transformed metric, we will

need g′
ij(t

′ = t0) in the vicinity of Σ̃2 (the boundary of Σ̃3). According to Eq. (19), we will

have to first order

g′
ij(t

′ = t0) = (gij + ǫ0ġij + gik∂jǫ
k + gjk∂iǫ

k)(t = t0), (20)

for any value of t0 and everywhere on Σ3.

From this equation we see that g′
ij(t

′ = t0) goes to zero as least like r−3, when we approach

Σ2 through r going to ∞, provided that, as we have assumed, gij(t = t0) goes this way to

zero. Similarly, for r → 0, g′
ij(t

′ = t0) will decrease, or at most will grow no faster than r−1,

provided we have assumed that decreasing or this growing respectively, for gij(t = t0).

Furthermore, one can be easily convinced that g′
ij(t

′ = t0) will keep the same asymptotic

behavior when we approach Σ̃2 instead of Σ2. Indeed, in the ancient space coordinates, xi,

previous to the infinitesimal coordinate change (18), the equation of Σ̃2 is still r = ∞, or

more precisely r = ∞ plus t′ = t0, whereas the equation of Σ2 was r = ∞ plus t = t0. (The
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same can be established for the other boundary sheet, r = 0. See, next, the case where the

equation of Σ2 is r = R(θ, φ)).

Then, as we have said, g′
ij(t

′ = t0) goes to zero as least like r−3, when we approach Σ̃2

through r going to ∞. This means that the new energy, P̃ 0, corresponding to the new Gauss

3-surface, Σ̃3, is zero, as the original energy was.

On the other hand, because of (12), ġij(t = t0), as gij(t = t0), will go to zero like r−3

when r → ∞, and will decrease, or at most will grow no faster than r−1, when r → 0. Then,

also P̃ i, and so the entire 4-momentum, P̃ α, corresponding to the new 3-surface, Σ̃3, is zero,

as the original 4-momentum was.

But we can iterate this result along an indefinite succession of similar infinitesimal shifts

of Σ3. That is, as we wanted to prove, P α will be also zero for the final 3-surface Σ3, which

differs now in a finite amount from the original 3-surface. In this way, we could reach any

final Σ3, provided that the original and the final metric, in the corresponding Gauss systems,

were regular enough (otherwise we could not make sure that in all intermediate infinitesimal

steps the above conditions |∂αǫβ| << 1 could be satisfied). Here “regular enough” means

that the contribution of the neighborhood of any metric singularity, which can appear in

the final Σ̃3, to the calculation of P̃ α goes to zero. In this way, we always could get rid of

the difficulty by excluding this neighborhood in the calculation.

Now, we will prove once more that P α = 0 is independent of the chosen 3-surface Σ3,

this time in the case where the equation of Σ2, the boundary of Σ3, is r = R(θ, φ), plus

t = t0, instead of r = ∞ plus t = t0. We will prove this under the assumption that the space

metric, gij, goes to zero at least like as (r − R)2 as we approach Σ2. This assumption plays

now the role of the above assumption gij going like r−3 for r going to ∞. Again, in Section

IV, the behavior of gij and ġij , going like (r−R)2 in the vicinity of r = R(θ, φ), insures that

P α = 0 irrespective of the conformal coordinate system used. Notice that this assumption

makes zero the original energy-momentum.

Then, as we have done above in the present section, we slightly change Σ3, from this

original Σ3 to a new space-like 3-surface Σ̃3 = Σ3 + δΣ3. Therefore, we will have Eq.

(20). But, this equation shows that the domain of variation of the space coordinates for the

functions g′
ij for t′ = t0 is the same that the corresponding domain for the functions gij at

t = t0. That is, the boundary of Σ̃3 is again r = R(θ, φ), now for t′ = t0, or, in the ancient

coordinate time, for t = t0 +ǫ0. Of course, to conclude this, we need that the time derivative
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of the ancient space metric, ġij , be defined everywhere, that is, be defined all where gij is

defined. But this must be taken for granted if we assume that the metric components are

functions of class C1 (i. e., its first derivatives exist and are continuous). This condition

holds independently of the coordinate system used if, as usual, the space-time is considered

as a differentiable manifold of class C2 (see, for example, Ref. [12]).

The next step in our proof is to show that g′
ij goes also like (r − R)2, in the vicinity of

Σ̃2. But, this becomes obvious from Eq. (20), once one has proved, as we have just done,

that the equation of Σ̃2 is r = R(θ, φ) plus t′ = t0. Thus, the new energy momentum, P̃ α,

corresponding to the new 3-surface, Σ̃3, is also zero.

Finally, to end the proof, we need to check that, for any chain of consecutive elementary

shifts of the original Σ3 space-like surface, leading to a final new Σ̃3 space-like surface, we can

iterate indefinitely the above procedure of obtaining, each time, a new energy-momentum

which vanishes. But, this is again obvious from Eq. (20), since, as we have assumed, our

space-time is a differentiable manifold of class C2, which entails that for every shift the time

derivative of the space metric, in any admissible coordinate system, is defined wherever the

space metric is defined. Thus, iterating indefinitely the above procedure, we find that the

final energy-momentum, corresponding to the new space-like 3-surface, Σ̃3, is also zero, as

we wanted to prove.

Let us specify, all the same, that to reach this conclusion we need to assume that the

metric is “regular enough”. According to what has been explained above, in the present

section, a “regular enough” metric is one such that the same metric and its first derivatives

have no singularities, or one such that, in the case where some of these singularities are

present, the contribution of its neighborhoods to the integrals which define P α and Jαβ in

(2)-(5) goes to zero when the areas of these neighborhoods go to zero.

All in all, under this regularity assumption, we have proved the following proposition:

Let it be any two different space-like 3-surfaces, Σ3 and Σ̃3. Assume that the Gauss

metric gij built from the original 3-surface, Σ3, is “regular enough”, and that as we

approach its boundary Σ2 this metric satisfies:

(i) If the equation of Σ2 is r = ∞ plus r = 0, gij → 0 at least like r−3 when r → ∞

and gij decreases, or at most grows no faster than r−1, when r → 0.

(ii) If the equation of Σ2 is r = R(θ, φ), gij → 0 at least like (r − R)2.
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Then, the original linear 4-momentum corresponding to the 3-surface Σ3 vanishes, and

the linear 4-momentum corresponding to the other surface, Σ̃3 vanishes too.

By nearly making the same assumptions and by reproducing the same reasoning, we have

applied in the case of P α, in the new case of Jαβ , one can easily be convinced that, if Jαβ

vanishes for a given 3-surface, Σ3, it will vanish too for any other space-like 3-surface Σ̃3.

The only change we have to introduce in the above assumptions, to reach this conclusion,

is the following one. When the equation of Σ2 is r = ∞, one has to assume that gij(t = t0)

goes to zero like r−4 instead of r−3. Remember, nevertheless, that this r−4 behavior for

gij(t = t0) is already what we had assumed in Sec. IV, in order to have P 0 = 0 irrespective

of the conformal coordinates used in Σ3.

VI. THE EXAMPLE OF FRW UNIVERSES

As it is well known, in these universes one can use Gauss coordinates such that the 3-space

exhibits explicitly its everywhere conformal flat character:

dl2 =
a2(t)

[
1 + k

4
r2

]2
δijdxidxj , r2 ≡ δijx

ixj , (21)

where a(t) is the expansion factor and k = 0,±1 is the index of the 3-space curvature.

Then, this conformally flat character will be valid, a fortiori, on any vicinity of Σ3 and

Σ2. Therefore, according to Section III, we can apply our definitions to the metric (21).

Taking into account Eqs. (2)-(5), we will have then:

P 0 = −
1

8πG

∫
r2∂rfdΩ, (22)

P i =
1

8πG

∫
r2ḟnidΩ, (23)

J jk =
1

16πG

∫
r2ḟ(xknj − xjnk)dΩ, (24)

J0i = P it −
1

8πG

∫
r2(fni − xi∂rf)dΩ (25)

with dΩ = sin θ dθ dφ, ni ≡ xi/r, and where we have put

f ≡
a2(t)

[
1 + k

4
r2

]2
(26)
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which, excluding the limiting case k = 0, goes as 1/r4 for r → ∞. This is just the kind of

behavior that we have assumed in Section IV in order to reach the conclusion that P α = 0,

Jαβ = 0, are conformally invariant. It is also a behavior which allows to make this vanishing

of P α and Jαβ independent of the 3-surface, Σ3, chosen.

Then, one can easily obtain the following result, in accord with most literature on the

subject (see the pioneering Ref. [8], and also Ref. [13] for a concise account),

k = 0, +1 : P α = 0, Jαβ = 0 (27)

that is, the flat and closed FRW universes have vanishing linear and angular momenta.

Contrary to this, in the case where k = −1, one finds for the energy, P 0 = −∞. This

is because now the metric is singular for r = 2. Thus, in order to calculate its energy, we

must consider the auxiliary universe which results from excluding the elementary vicinity

r = 2± ǫ. Therefore, we will calculate the energy of this auxiliary universe and then we will

take the limit for ǫ → 0. But now, the boundary of the 3-space universe described by this

auxiliary metric is double. On the one hand, we will have, as in the case of k = 0, +1, the

boundary r = ∞, and on the other hand the new boundary r = 2 that we can approach

from both sides r = 2 ± ǫ. Both boundaries must be taken into account when doing the

calculation of P 0 according to the Eq. (22). Then, it can easily be seen that the contribution

to the energy calculation from the first boundary, r = ∞, vanishes, but further elementary

calculation shows that the contribution from the other boundary is −∞. Thus, as we have

said, the FRW universes with k = −1, have P 0 = −∞.

All in all, the flat and closed FLRW universes are ‘creatable universes’, but the open one

is not.

VII. THE EXAMPLE OF SOME BIANCHI UNIVERSES

Let us consider the case of the family of non-tilted perfect fluid Bianchi V universes [14],

whose metric can be written as

ds2 = −dt2 + A2dx2 + e2x(B2dy2 + C2dz2), (28)

where A, B and C are functions of t.

The first thing one must notice about this universe metric is that, as in the above case of

the FRW universes, it is written in Gauss coordinates, which according to Section II is the
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coordinate system family with which to define the proper energy and momenta of a given

universe.

Then, for t = t0, we will have

dl2
0
≡ dl2(t = t0) = dx2 + e2αx(dy2 + dz2), (29)

where we have rescaled the original notation (x, y, z) according to A0x → x, B0y → y,

C0z → z, and where α = 1/A0, with A0 ≡ A(t0), and so on. Now, let us move from the

variable x to new variable x′: x′ = e−αx/α. Then, we will have for the instantaneous space

metric, dl2
0
,

dl2
0

=
1

α2x′2
(dx′2 + dy2 + dz2), (30)

or changing the above notation such that x′ → x:

dl2
0

=
1

α2x2
δijdxidxj. (31)

This is a conformal flat metric not only in the vicinity of Σ2 but everywhere on Σ3 (except

for x = 0). Then, according to Section III, we can use this particular expression of dl2
0

to

calculate the energy of our family of Bianchi universes, since, in fact, to calculate this energy

we only need the instantaneous space metric in the vicinity of Σ2.

Now, this metric has a singularity for x = 0. Thus, in order to calculate its energy, we

must proceed as in the above case of an open FRW universe. So, we consider the auxiliary

universe which results from excluding the elementary vicinity of x = 0, x ∈ (0, +ǫ), where

we have taken α > 0. Therefore, we will calculate the energy of this auxiliary universe and

then we will take the limit for ǫ → 0. The boundary of the 3-space universe described by

this auxiliary metric is double. On the one hand, we will have the boundary x = +∞, and

on the other hand the boundary x = +ǫ. Both must be taken into account when doing the

calculation of P 0 according to the Eq. (22).

Then, it is easy to see that the contribution to P 0 of the second boundary, x = ǫ, gives

+∞, and that the contribution of the first boundary, x = +∞, gives +∞ too. Therefore,

we can conclude that the energy of our Bianchi V family of universes is P 0 = +∞. Then,

this family of universes, next to the open FRW universe we have just seen, are examples of

non “creatable universes”.
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VIII. DISCUSSION AND PROSPECTS

We have analyzed which family of coordinate systems could be suitable to enable the

linear and angular 4-momenta of a non asymptotically flat universe to be considered as the

energy and momenta of the universe itself, without the spurious energy and momenta of the

fictitious gravitational fields introduced by accelerated (non inertial) observers. Though we

have not been able to uniquely determine this family in the general case, we have been able

to do so in a particular but interesting case, where the energy and momenta of the universe

vanish. As a consequence, the notion of a universe having zero energy and momenta is unique

and so makes sense. This result is in contrast with the exhaustive studies on the energy and

momentum of a 3-surface Σ3, in General Relativity, mainly focussed on the asymptotically

flat behavior of Σ3 (see [4] and references therein).

Universes whose energy and momenta vanish are the natural candidates for universes that

could have risen from a vacuum quantum fluctuation. Here we have called these universes

“creatable universes”.

Any given universe could be rejected from the very beginning, as a good candidate for

representing our real Universe, in the event that it were a non “creatable” one. We could

reject it either before the inflationary epoch, or after this epoch, or just right now. This

could be the main interest of the characterization of the “creatable universes” that we have

reached in the present paper. Thus, for example, people have considered the possibility

that our present Universe could be represented by Stephani universes [15, 16, 17, 18], that

is, by a universe which at different times admits homogenous and isotropic space-like 3-

surfaces whose curvature index can change. Such a possibility is a generalization of the FRW

universes and could not be easily discarded on the grounds of present cosmic observations.

Nevertheless, if all, or some, of these Stephani universes were non “creatable universes”,

we could reject them on the grounds of the assumption that all candidate universes able

to represent our real Universe should be “creatable universes”. This is why it could be

interesting to see which Stephani universes have zero energy and momenta. For similar

reasons, it could be interesting to make the same analysis in the case of Lemâıtre-Tolman

universes [19, 20, 21], and in the case of a particular Bianchi type VII universe [22]. We

expect to consider these questions in detail elsewhere shortly.
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APPENDIX A

On the uniqueness of the energy and momenta of the Universe under a coor-

dinate change in the vicinity of the boundary, Σ2

In Section III we claim that the defined energy and momenta of the Universe, for a given

space-like 3-surface, Σ3, are unique, modulus a conformal transformations on the boundary,

Σ2, of Σ3.

Actually, as we are going to see, proving this uniqueness needs to consider other coordinate

transformations in the vicinity of Σ2 than the ones considered in that section.

Imagine that, according to the protocol we have displayed above to calculate the proper

energy and momenta of the Universe, we have been able to build the coordinate system in

which the 3-metric, gij, has a conformally flat form on Σ2:

gij|Σ2
= fδij (A1)

Let it be φ(xi) = 0 the equation of Σ2 in this coordinate system. Then, change this coordi-

nate system, in the vicinity of Σ2, according to the infinitesimal coordinate transformation:

xi = xi′ + ξi(xj)φ2 ≡ xi′ + ǫi(xj), (A2)

where ξi are three arbitrary bounded functions in this vicinity. Notice that in Sec. III we

only have considered transformations such as (A2) which were linear in φ. (Infinitesimal

transformations such as (A2), but with terms like φn, n > 2, would be irrelevant for our

purposes).

The Jacobian matrix of the coordinate transformation (A2) is

∂xi

∂xj ′
= δi

j + 2 φ ξi ∂jφ + O(φ2). (A3)

Then, we have
∂xi

∂xj ′
|Σ2

= δi
j , (A4)
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and the coordinate change (A2) cannot change the 3-metric on Σ2, i. e., cannot change Eq.

(A1): Nevertheless, what appears in the expression (2) of P 0, in Sec II, is not the 3-metric

gij on Σ2, but its space derivatives, which do change under a coordinate transformation such

as (A2). Thus, let us see which this change looks like. First of all, we will have for the new

components g′
ij of the 3-metric

g′
ij = gij + gik∂jǫ

k + gjk∂iǫ
k = gij + 2 φ ξk(gik∂jφ + gjk∂iφ) + O(φ2). (A5)

On the other hand, from (A4) we have

(∂g′
ij

∂x′
k

)
|Σ2

≡ ∂′
kg

′
ij|Σ2

= ∂kg
′
ij|Σ2

. (A6)

Having this in mind, from (A5) and (A1), we have for ∂′
kg

′
ij|Σ2

:

∂′
kg

′
ij|Σ2

= ∂kgij + 2f∂kφ(ξi∂jφ + ξj∂iφ) , (A7)

where, without confusion, we have dropped the symbol |Σ2
in the right hand side.

Then, according to Eq. (2) in Sec. II, the integrand corresponding to the new energy,

P 0
′

, related to the new coordinates {x′
i}, will be:

∂′
j(g

′
ij − g′δij)|Σ2

= ∂j(gij − gδij) + 2f [(~∇φ)2ξi − (~ξ · ~∇φ)∂iφ] , (A8)

where, again, we have dropped the symbol |Σ2
on the right side.

On the other hand, one has

dΣ′
2i ∝ ∂′

iφ = ∂iφ + O(φ) ∝ dΣ2i + O(φ) . (A9)

According to this and to Eq. (A8), we have finally for P 0
′

:

P 0′ = P 0 +
1

8πG

∫
f [(~∇φ)2ξi − (~ξ · ~∇φ)∂iφ]dΣ2i . (A10)

But, since dΣ2i ∝ ∂iφ, we have

[(~∇φ)2ξi − (~ξ · ~∇φ)∂iφ]dΣ2i ∝ [(~∇φ)2ξi − (~ξ · ~∇φ)∂iφ]∂iφ = 0 , (A11)

for all functions ξi. In all, we have

P 0 = P 0
′

for any coordinate change such as (A2). Then, we have established, modulus a conformal

transformation on Σ2, the uniqueness of P 0 for any space-like 3-surface Σ3.
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In an analogous way, one can complete the proof of the uniqueness of the components

J0i of the angular 4-momentum Jαβ . As long as the uniqueness of P i and J ij is concerned,

the coordinate transformations (A2) leave P i and J ij invariant since the space derivatives

of the 3-metric gij do not appear neither in P i, nor in J ij .
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[11] A. Krasiński, J. Math. Phys. 30, 433 (1988).
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