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We present a new approach to the question of properly defining energy and momenta for non
asymptotically Minkowskian spaces in general relativity, in the case where these energy and momenta

are conserved.

In order to do this, we first prove that there always exist some special Gauss

coordinates for which the conserved linear and angular three-momenta vanish. Then, we conclude
that the linear and angular 4-momenta related to these intrinsic coordinate systems are the proper
4-momenta of the universe considered. This allows us to consider the case of creatable universes
(the universes whose proper 4-momenta vanish) in a consistent way, which is the main interest of
the paper. When applied to the Friedmann-Lemaitre-Robertson-Walker case, perturbed or not, our
formalism leads to previous results, according to most literature on the subject. Some future work

deserving to be accomplished is mentioned.

PACS numbers: 04.20.-q, 98.80.Jk

I. INTRODUCTION: GENERAL
CONSIDERATIONS

In a precedent paper ﬂ], the authors addressed the
question of properly defining the linear and the angular
4-momenta of a significant family of non asymptoticall
flat space-times. As it is well known, see for example ﬁ],
or B], this proper definition can be accomplished with-
out difficulty in the opposite case of asymptotically flat
space-times, but not in the general case. The reason for
this difficulty in the general case stays in the dramatic
dependence of these momenta of the coordinate system
used. This fact is very well known but very few times
has properly been taken in account in the literature of
the field, where some authors use a given coordinate sys-
tem to calculate some of the momenta, without any com-
ments on the rightness of the coordinate selection that
have been done. For related questions on this subject
see, for instance, M—E] and references therein.

The family of space-times that we are going to consider
in the present paper is the family of all non asymptoti-
cally flat space-times where these well defined momenta
are conserved in time. We call these particular space-
times universes, since it is to be expected that any space-
time which could represent the actual universe should
have conserved momenta, provided that these momenta
be properly defined, which is the the goal achieved in the
present paper.

In particular, we call creatable universes the universes
which have vanishing 4-momenta, since again this is what
could be expected to happen if the considered universe
raised from a quantum fluctuation of the vacuum ﬂg, ]
In fact, the question of the creatable universes is our main
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motivation to consider the subject of properly defining
the momenta of non asymptotically flat space-times. De-
manding the vanishing of the momenta can be a way
of saying something relevant about how our actual Uni-
verse looks like either now or in the preinflationary phase.
Thus, for example, in ], perturbed flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) universes accord-
ing to standard inflation were found to be non creatable.
Therefore, among the inflationary perturbed FLRW uni-
verses, only the closed ones would be left as a good can-
didate to represent the actual Universe.

In this paper we present a new approach to the subject
of properly defining the two 4-momenta of a universe, as
compared with the one displayed in the above reference
ﬂ] The present approach is new in the following sense:

Given a universe, when trying to select the appropri-
ated coordinate systems in order to properly define its
two 4-momenta, P* and J*?, we impose differently to
[1] that both 3-momenta, P’ and J%, vanish, the last
one irrespective of the origin of momentum. Further, ac-
cording to ﬂ], we rest on Gauss coordinates based on
some space-like 3-surface, X3, such that the correspond-
ing 3-space metric can be written in a conformally flat
way on the boundary of ¥3. Such coordinate systems,
where both 3-momenta vanish, the last one irrespective
of the origin, which at the same time are Gaussian coordi-
nates satisfying the above conformally flat property, will
be called here intrinsic coordinate systems. Obviously,
we will have to prove that these intrinsic coordinate sys-
tems always exist for any universe.

Furthermore, in [1], in order to have well defined 4-
momenta, or even vanishing 4-momenta, we had to sup-
pose that the metric and its first derivatives went fast
enough to zero when we approach the boundary of 3.
In the present paper we do not need to make such an as-
sumption, and so our present approach to the definition
of these 4-momenta is more general than in [1].

The paper is organized as follows: In Sec. [[Il given a
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space-like 3-surface, X3, we give the corresponding fam-
ily of coordinate systems where to pick up the right co-
ordinate systems to properly define the linear and the
angular 4-momenta associated to this ¥3. In Sec. [l
we consider all 3-surfaces X3 showing the same bound-
ary o. Then, by defining what we have called intrinsic
coordinates, we select the 3-surfaces X3 for which the
linear and the angular 3-momenta vanish, after proving
that this vanishing is possible for some 3. In Sec. [V
we define the notion of creatable universe and we discuss
briefly its goodness. In Sec [Vl we invoke some previous
results to check the creatibility of the perturbed FLRW
models in the new scheme, reaching the known conclu-
sion ] previously obtained on these models. Finally, in
Sec [Vl we point out which is, in our opinion, the main
interest of the paper, and in relation to this we refer to
some future work.

We still add three appendices where some calculations
are given in detail.

A short report containing some results, without proof,
of this work has been recently presented at the Spanish
Relativity Meeting ERE-2009 [12].

II. THE ENERGY AND MOMENTA OF A
UNIVERSE, ASSOCIATED TO A GIVEN
SPACE-LIKE 3-SURFACE

In order to define the linear and angular 4-momenta of
a universe we will use the Weinberg complex @] It can
be expected that the results obtained in the present paper
be the same irrespective of the complex used, provided
that it be symmetric in both suffix and make possible
that these 4-momenta can be written as integrals on the
2-surface boundary, s, of the space-like 3-surface con-
sidered, X3, as it is the case, for example, for the Landau
complex ﬂﬁ], aside being the case for the Weinberg com-
plex used here.

To properly define the notion of 4-momenta of a uni-
verse, associated to some space-like 3-surface, 33, we will
take Gauss coordinates associated to this 3-surface, X3,
in the neighborhood of it (we explain next why we make
this choice). Then, according to [2], we have for the cor-
responding energy, P°, linear 3-momentum, P?, angular
3-momentum, J%, and components J of the angular
4-momentum, of the universe:

PO = H/(ajgij —8ig)d22i, (1)
P = li/(8095ij — 009ij)dXa;, (2)
JE = ”/(xkaogij — 2 00gri)d%ai, (3)

J% = P't— H/[(akgkj — 0i9)xi + gdij — gijldXa;, (4)

where we have used the following notation: k' = 167G,
iy gy ks =1,2,3,..., g = 67 g;;, Oy is the partial deriva-
tive with respect to 2 = ¢, and where dX9; is the surface
element of Yo, the boundary of ¥3. Further, index 1, j, ...
are raised or lowered with the Kronecker 6 and angular
momentum has been taken with respect to the origin of
coordinates.

Why Gauss coordinates? We expect any well behaved
universe, Vy, to have well defined energy and momenta,
i. e., P and J*%, o, 3,... = 0,1,2,3, such that they are
finite and conserved in time (a universe in our notation).
So, for this conservation to make physical sense, we need
to use a physical and universal time and then we are
conveyed to use Gauss coordinates to properly define this
kind of time and then the universe 4-momenta.

That is, we will have for the line element of Vj:

ds? = —dt* +di?, dI* = g;;da’da? (5)

and we can write t = ty = constant for the equation of

3.

The area of the 2-surface boundary 35 could be zero,
finite or infinite. Let us precise that in the first case,
when the area is zero, the 4-momenta do not necessarily
vanish, unless the metric and its first derivatives remain
conveniently bounded when we approach 3.

Obviously, we have as many local families of Gauss
coordinates as space-like 3-surfaces, %3, we have in Vj.
Then, P* and J*? will depend on X3, which is not a
drawback in itself (the energy of a physical system in the
Minkowski space-time also depends on the 33 chosen, i.e.,
on the Lorentzian coordinates chosen). But the problem
is that, given a space-like 3-surface, X3, we can still have
many different 4-momenta, according to the particular
Gauss coordinate we chose, associated to the same Xs.

To suppress a part of the arbitrariness left in the choice
of Gauss coordinates, henceforth we will choose Gauss
coordinates such that the equation of ¥y becomes x> = 0,
di? on Y5 reads

di*(t = to, 2% = 0) = dl?|s, = f(2")d;;dx’dx?,  (6)

with f some given function, a,b,... = 1,2, and further-
more

gga(t = to) = O (7)

That can always be done (see [1]). Therefore, choosing
dztdx?dz?® as the integration 3-volume element (which is
implicit in ([)-@)) become physically sounder.

Furthermore, since t = tg, 2% = 0, is now the equation
of the 2-surface X3, the expressions ([I)-) for P* and



JP simplify to:

P’ = —Ii/aggaa da'dz? (8)
Pt = —n/@ogga drtdz? 9)
pP? = m/@ogaa dztda? (10)

Ji = m/(fvjaogm‘ — w;00gs;) da'da®,  (11)
Joe = Pato—i—n/waasgbb datda® (12)
J% = P35 — Ii/gaa datdz? . (13)

where goq = g11 + g22-

IIT. PROVING THAT, FOR ANY UNIVERSE,
INTRINSIC COORDINATES ALWAYS EXIST

We start with a Gauss coordinate frame, {z®}, such
that (6) and () are satisfied. Let us prove that, from
this coordinate frame, we always can move to an intrinsic
coordinate frame as defined in the Introduction. Let it
be a coordinate transformation z® — z/¢ such that in
the neighborhood of ¥s we can write the expansion in
23 and ¥/ — to

t—to = of'a® + 1 & ' —to) + ...,
¥ =ws = &2 + 183 (' —to) + .., (14)
=za = of) + 0&ax” + 1& (' —to) + ...,

where the expansion coeflicients ,&™ and &, with
n,m = 0,1,2, ..., are functions of z’. Notice that this
coordinate transformation is completely general except
for the fact that

0% = €3 =0. (15)

To begin with, we will require that the new coordi-
nates {2/*} be Gauss coordinates for Vj, associated to
the space-like 3-surface Xf, i.e. to ¢/ = tg. Actually, we
will only require that the {z'*} be Gauss coordinates in
the neighborhood of 3, the boundary of Xf.

On the other hand, since the equation of the boundary
Yo is t = tg, 22 = 0, this means by definition of boundary
that the metric, g;;, and its first derivatives, all them for
t = to, exist only for, let us say, 2> > 0, at least in some
elementary interval around 23 = 0. Then, since

, ot ot oz oz

Yii = T pi 007 T i 00 Ik

Yo will still be the boundary of X%, provided that the
functions x®(2’%) and its derivatives, up to second or-
der included, be well defined coordinates wherever the

metric g;; and its first derivatives are well defined in the
neighborhood of Xs.

(16)

Notice that, from Eqgs. (), the equation of X5 in the
new coordinates {2'*} reads t' = to, 2’ = 0. Thus, if we
name Y the 2-surface ¢’ = to, 2’3 = 0, we can say that
=%

Then, besides requiring that {2'®} be Gauss coordi-
nates for Vy in the neighborhood of ¥, the boundary of
Y45, we will require that, according to (@)

di?(t = tg, 2> = 0) = dl"?|s, = f'(2'*)6;;dz""dx" . (17)

Furthermore, we will still require that the new linear and
angular 3-momenta, P and J' (see [@), ([0) and (D)),
vanish, the last one irrespective of the origin. That is to
say, we want the new coordinate system {2’} to be an
intrinsic coordinate system as defined in the Introduc-
tion.

From Eq. () we can see very easily that a necessary
and sufficient condition to have J¥ = 0, irrespective of
the momentum origin, is that

/aoggi detdz® =0, Vi, (18)

which for ¢ = a leads to P* = 0. On the other hand, the
three components of J* can be more explicitly written

J? = H/(x280931 — ' 00g32) da'da?, (19)
J3a = foaaoggg diEldiEQ. (20)

Then, aside (I9) and (20) we also have ([I8). A sufficient
condition to have all this at the same time is that the gs;
metric components be such that

/60933 dl‘l = /60933 dLL'Q = 0, (21)

/ d0gsa dz'® =0, (22)

where putting the a-index between parenthesis means
that the index is not summed up.

In all: we start from a coordinate system, {z*}, where
we have

goo = —1, go; =0, (23)

Gaa(t=10) =0, g;;(t =to,2° =0) = f(2*)6;;, (24)

and we want to prove that a coordinate transformation
() exists such that the new components of the metric
satisty

960 =-1, 96i =0, (25)

gi;(t' = to, 2" = 0) = f'(a"*)dy;, (26)



and that, according to @), (1), (I8), (@9 and @0), we

have:

/869('1(1 dz''dx’? =0, /869&1- de'tde* =0, (27)
[ atgs, 34t doaa =0, (29)

/:E'“B(’)ggg da'tdx"? =0, (29)

where 9 means time derivative with respect the new time
t.

What all these conditions ([25])-(29) say about the func-
tions ,&™ and ,&" which are present in the coordinate
transformation ([4])?

In order to answer this question let us first write in the
neighborhood of ¥s:

9i; = ogyy + 0957 + 195t —to) + .., (30)

where, according to the notation used in (I4]), we have:

09 = i (t = to,2° = 0), (31)
09ij = O3gi;(t = to,2° = 0), (32)
195 = ogij(t = to,2° = 0), (33)

and so on. This means that the expansion coefficients,
ngfy in @B0) are functions only of z.

Then, Eqgs. 1), 28) and (Z9) read

/19;% da'tdz"? =0, /1952- dz'tdz"? =0, (34)

/(:E'2 195 — @'t 1g5y) da'tda? =0, (35)
/ a1 ghy da’tda’? =0, (36)

where, similarly to (3I)), (32) and (B3]), we have put

lgé% = 6géa(t/ = tva/B = 0) = (/Jg/3a(t = t0,$3 = 0)7
(37)

1gé% = 869&3(15 = to, 2’ = 0)7 (38)

since, according to ([d), t’ = tg, 2> =0 & t = tg, 2> = 0.
Similarly, Eq. (26) reads now:

0gi) = f'(@'*)bi;. (39)

Thus, with the new notation ,g;7", the conditions (25)-

29) become (27), B4)-B86) and (39).

Let us first consider conditions (25]). To zero order in
t' and 2’® (that is, strictly on the boundary X5) these
conditions become

()’ —f€D)* =1, 1€) =0, 1&° 0" = £1€) 0&3, (40)

from g{y = —1, ¢{, = 0 and g{; = 0, respectively.
On the other hand, conditions ([B9) become

A€l Do&g
ox'e 8I/b7

o€ =0, f(0&5)” = (08")* = f',
(41)

from g% = f'dap, 095 = 0 and ogiy = f’, respectively.
It can be seen that the general solution of the system

Q) and @I is

f/éab = f(scd

160 = 06, =0. (42)
160 = \/% 0€3 = coshy), (43)
= 06! = VT =sinh, (44)
plus
M= 55 =0 (S0 il ) A= VT @

the Jacobian matrix of the conformal transformation in
two dimensions. In @3), @) and {H) the functions 1,
A and 6 are arbitrary functions of 2’*. Notice that (5
says that in the integrals (34)-([386) we can put da''dz? =
A~ 2dxtda?.

We still must have:

195 = (F1& + 195 1€° 0&3) Mo, (46)
=+ f 051% 1§g,a - 051 1§,Oa7
1955 = 2(f 0&3 1&3 — of' 1) (47)

+ 19??3 150(0591,)2,
lgz/zoa = (191?6 150 + OQ;C lgg)MbaMca (48)
= Az(lgzoza 150 + ng];a 1512)5

where 1%}, 1953 and 1g/% are functions of 2’ such that
B4), B3) and (B6) are satisfied. The derivative with

0
respect 2/* is denoted by , a (for instance, 1£, = 88;,5;”)

In Eqs. @) and (A7) new expansion coefficients 1£}
and £ appear, which are not included in ([@2)-(@5). But
they appear in Eq. (25) when it is taken to zero order
in ¢ and order one in ”® (remember that up to now we
have only considered the lowest order of this equation),
which becomes:

ogon = (f 1& 4+ 195 0&" 163) My (49)
+f 18 0834 — 1€° o€, =0

0905 = f(1€8 083 + 1&3 0&3) — 1&° o€ (50)
— 16" 08"+ 1933 08" 163 &3 =0
0900 = 2(f 168 1& — 1£71€Y) (51)

+ 1995 061 (1€9)* =0



Therefore, we must fit the new expansion coefficients, 1£}
and 1£Y, plus the arbitrary functions )\, 6, and 1, of Eqgs.
(@3)-{EH), in order to satisfy the system (@6])-(@S]) plus
([@9)-([EID). Let us show that this can always be done.

First, since the Jacobian matrix Mg, is regular, we
can always fit the 1&} such that the two Egs. (G be
satisfied. Second, since f # 0, (dI? is strictly positive)
and (see Eq. {@3) o£3 # 0, we can fit 1£3 such that Eq.
[ @7 be satisfied too. Furthermore, it can be seen (see
Appendix [A]) that ¢ can always be fitted such that Eq.
([@8) becomes satisfied.

Next, we consider the three remaining Eqs. (@9)-(G0).
Since (see again [{@3J))) 1£° # 0 we can fit o2 such as to
have (B0). Similarly for Eq. (&) by fitting 1£*. Finally,
it can be proved (see Appendix [B)) that the Jacobian
matrix ([@3) can always be fitted in order to have Eq.
[#9) satisfied.

In all, we have just proved that for any universe there
always exist intrinsic coordinate systems, that is Gaus-
sian coordinates, {2/}, satisfying the supplementary
conditions ([BJ), and such that P"® = 0 and, irrespective
of the angular momentum origin, J'* = 0.

IV. CREATABLE UNIVERSES

Let it be a universe that we have referred to intrinsic
coordinates {2/®}. Then, we will call that universe a
creatable universe if in this coordinates we also have:

P? =0, J%=0. (52)
This means, according to Eqs. (), (IZ) and ([3)), that

PO = —H/Og:lladxld:rz =0, (53)
Jo — / 2" ggppdatda® =0, (54)
J'03 = —H/Og(/zoadwldw2 = —2n/f’d:v1dx2 =0. (55)

that is, og’l, and f’ must be such that the above four
integrals vanish.
On the other hand, we find after some calculation

Ogtlzla = (1gl?c 051 + Oggc 0§§)MbaMca
= X190 06" + 09aa 053) (56)

which can be compared with [8). Notice that here we
are left with no more freedom to fit a given value of og.},
in order to have (B3) and (B4): in fact, both, the Jaco-
bian matrix Mg, plus o' and ¢&3 (that is to say, plus
1, according to [A3)) and ([@4)), have already been fitted
such as to have intrinsic coordinates. This means, that a
universe is not necessarily a creatable universe.

Now, before we can continue, we must say something
about Eq. (BH), that would have to be satisfied if, ac-
cording to our definition, we have a creatable universe.
Since f’ is strictly positive it seems at first sight that

(E) can only be satisfied in any one of the two following
cases: first, if the area of ¥y vanish (in which case f’
should remain conveniently bounded when we approach
Y9; notice that the boundary X2 could not belong to X5,
in which case f’ could go to infinite when we approach
Y5); second, if f’ goes to zero when we approach X,
which means again that Yo does not belong to Xf.

But, actually, these are not the only cases where we can
have (&), since Yo could have several different sheets,
and it could happen that the different contributions from
these different sheets compensate among them to give
a vanishing value for [ f'dz'dz?®. Thus, in Minkowski
space, My, in Lorentzian coordinates (which are intrinsic
coordinates) we have f/ = 1. But, X5 is made from
six sheets, the six faces of a cube that increases without
limit. Then, the two contributions corresponding to two
opposite faces cancel each one to the other.

Anywise, some one could argue that we could only de-
fine a given universe as a creatable universe if P% =
J¥ =0 for ANY intrinsic coordinate system. But this
would be an exceeding demand since not even the case
of the Minkowski space-time, My, would satisfy such a
strong requirement. Actually, one type of intrinsic coor-
dinates for this universe are the standard Lorentz coordi-
nates. Furthermore, in these coordinates, all 4-momenta,
P and J*? vanish, so that this universe is a creatable
universe according to the definition we have just given.
Nevertheless, it can be easy seen (see Appendix [C) that
starting from Lorentz coordinates, one can always make
an elementary coordinate transformation leading to new,
non Lorentzian, intrinsic coordinates, such that the new
energy P’ does no more vanish. Obviously, according to
Sec. [[II] this elementary coordinate transformation has
to be one where the infinitesimal version of the coeffi-
cients ¢&Y and (&9 do not vanish, that is Eq. (&) does
not more occur.

The reason for this non vanishing energy, P'0, in My is
that, by doing the above elementary coordinate transfor-
mation, we have left a coordinate system (the Lorentzian
one) which was well adapted to the symmetries of the
Minkowskian metric: the ones tied to the ten parameters
of the Poincaré group.

Thus, given a universe which has P = J*¥ = 0 for
some intrinsic coordinate system, if there are other in-
trinsic coordinates where this vanishing is not preserved,
we should consider that this non preservation expresses
the fact that the new intrinsic coordinates are not well
adapted to some basic metric symmetries. To which sym-
metries, to be more precise? In general terms, to the ones
which allow us to have just vanishing linear and angular
4-momenta for some intrinsic coordinate system.

V. THE PERTURBED FLRW UNIVERSES

In Ref. [11] the creatibility of perturbed FLRW uni-
verses was addressed. The main result of that paper
which concerns us here is that in the flat case it is found



that the energy is infinite, P° = oo, for inflationary scalar
perturbations plus arbitrary tensor perturbations. This
seems to say that inflationary perturbed flat FLRW uni-
verses are not creatable. Nevertheless this assessment
needs to be validated in the new framework we have
developed in the present paper, where creatibility can
only be considered for intrinsic coordinate systems, i. e.,
systems where, in particular, the linear and angular 3-
momenta, P* and J%, vanish.

Then, we prove next that both momenta vanish in the
coordinate system where it was obtained that P’ = ooc.
Therefore, we conclude that, in the new framework of
the present paper, the non creatibility of the inflationary
perturbed flat FLRW universe remains unchanged.

Let us prove first that P? vanish. According to Ref.
ﬂl_1|] we write the perturbed 3-space metric di? as

di* = ﬂ(& + hij)dax'da? (57)
where a(t) is the cosmic expansion factor.

In the flat case, k = 0, when considering inflationary
scalar perturbations, the perturbed 3-space metric, h;j,

reads
hij (LZ", T) = /exp(iE . f)hu (E, T)d3k (58)

with the following expression for the Fourier transformed
function h;;(k, 7):

— —

hij(k,T) = h(k,T)]Afi]Afj +67’](£Z", T)(/%l]%] — 61']‘). (59)

Here h = hyi and n are convenient functions, l%l = ki/k,

k = Vkik?, and 7 is defined such that dt/dr = a.
According to Eq. (@l):

. r2 .
Pl =1 I'd®k 60
Jim 7 Wa/ (60)
where
I = /exp(iE-f)[hkk(E, 7)0i; — hij(k, 7)|n;dQ

1 .

+6’I7(f, 7')(561] - klkj)]njdﬂ (61)
where the dot stands for the time, ¢, derivative and with
dS) the integration element of solid angle. On the other
hand, one easily finds

47i ,sin kr

/exp(zk - Z)n;dQ = E( o CoS kr)k; = ®(k,r)k;
(62)
where what is important for us here is that ® does not

depend on k;. Then

I' = ®[67(7, T)(%l%i — k)] = —4®0(Z, 7)ki.  (63)

6

But, as it has been quoted in Ref. [11], in the case of
inflationary scalar perturbations, in which we are inter-

ested here, n(E, 7) does not actually depend on k. Then,
by symmetry, [ I'd*k = 0, and so, P" = 0 for any time.

Next, we consider general tensor perturbations and we
see that P? vanish too. As quoted again in Ref. ], the
above Fourier transformed function hij(E, 7) reads now:

hij(k,7) = H(k, 7)ei; (k), (64)

where the symmetric matrix ¢;; is transverse and trace-
less:

eijki == O, € — 0. (65)

The above I’ integral become now
I'=— / exp(ik - Z)H (k, 7)e;jn;dSQ, (66)

which according to (62)) and the first equation in (G5
becomes I* = 0. This is, we have again P? = 0.

Thus, when inflationary scalar and general tensor per-
turbations are both present we have P! = 0, as we wanted
to prove.

The next step will be to prove that, for any time, J7%
vanish too for both types of perturbations. Let us first
consider inflationary scalar perturbations, that is, Eq.
B9).

According to Eq. ([I):

3
JI% = lim — G/ﬂkd%, (67)

r—oo 107

where
[k = / exp(if - &)l (R 7) — nyh (7, P)mad€. (68)
But, obviously:
/exp(iE - Z)ningdQ o 85, kik;, (69)

that is, the calculation of this integral must give a con-
tribution which goes like d;;, and another one which goes
like IACZI;J Then, it is easy to verify that when these two
kinds of contributions are introduced in (68)) we obtain
identically I’* =0, and so J7* = 0.

Finally, we will consider general tensor perturbations,
that is, hi; (k,7) given by Eqs. (@) and (G5). In this
case (68) becomes

But having in mind (69) and the first equation of (65
it is straightforward to see that /¥ and then J7* vanish.
All in all, for any time, P’ and J¥ vanish in the same
coordinate system where it was proved (see Ref. [L1])



that PY = +00. Then, we can assert that our perturbed
flat FLRW universe is a non creatable one.

On the other hand, it is obvious that in the present new
framework, as in ﬂﬂ], perturbed closed FLRW universes
are creatable, while perturbed open FLRW universes are
not.

VI. FINAL CONSIDERATIONS

First of all, it is to be remarked that according
to most literature on the subject ], the closed
and flat Friedmann-Lemaitre-Robertson-Walker (FLRW)
universes are creatable universes while the open FLRW
universe is not. We do not need to show that this known
result is here preserved since it has been proved in @]
in a similar but different framework to the one stated in
the present paper. Nevertheless the translation of the re-
sult from the old framework to the present one is straight
forward.

Notice that the same conclusion follows from the re-
sults obtained in @] concerning integral conservation laws
with respect to a given background and its associated
isometry group, but only when this background is the
flat space-time. The creatibility of the perturbed FLRW
universes should be also analyzed following the approach
of Ref. @] In this case, the above conclusion about the
non-perturbed case strongly suggests that the results pre-
sented in Sec. [Mlcould be recovered from the results of [4]
under these assumptions: (i) the considered background
is the Minkowski space-time, (ii) the conservation laws
are referred to the background isometries, and (iii) the
perturbed metric and the energy content are considered
in the synchronous gauge (by taking Gauss coordinates).

Now, before ending the paper we would like to point
out that the main interest of it could be to give a cri-
terium to discard from the very beginning as much as
possible space-times as candidates to represent our actual
Universe. The criterium could be that good initial can-
didates must be creatable universes. Thus, in ] it was
proved that, within the inflationary perturbed FLRW
universes, only the closed case corresponds to a creat-
able universe. This result remains valid in the frame-
work of the present paper, as it has been proved in Sec.
[Vl Similarly, since some other space-times have lately
been considered as candidates to represent our Universe
(see for example, [17], [18]), we could check them to see
if they fulfill the above criterium of creatibility. When
making this checking, in the case we obtained P% =
and J*? = 0 for a given t = t(, we still had to verify that
the result does not depend of the value of ¢, that is, we
would have to verify a posteriori that we were dealing
with a space-time which is a universe. All this would
deserve some future work.
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Appendix A: Fitting the function ¢ to get P> =0

We must fit ¢ such that ¢, given by (see [@S))

190 = A (1900 18° + 0944 169) (A1)
gives P'3 = 0. Notice that according to Eq. ([0} we have

P = m/lgfloa da' da' . (A2)

On the other hand, from [#3)) and (@), the equation (ATl
can be written as

a = bcoshv + csinh ), (A3)

where
\/7 0Y9aa

Then, putting cosh ¥ = x, we obtain the algebraic second
order equation

b=\ 1gga, c= (A4)

_ 70
a4 = 1Yqa>

(b — Ha? —2abr +a* + 2 =0, (A5)
that only has real solutions if
a’ 4 > b2, (A6)

But we can ensure it by taking a large enough. This
can always be made since if a = 190, # 0 is such that
[ a dz''dz* = 0, then we also will have [ Kadz''dz'? =
0, with K a constant whose absolute value, | K|, is as large
as we wanted.® Furthermore, if |K]| is large enough, we
can easily see that for the new coefficient a, that is, for
Ka, one at least of the x solutions is larger than one, as
it must be.

Appendix B: Fitting conveniently the functions A\
and 6 or the functions )\ and o

According to what is said at the end of Sec. [l we
must fit the functions A and 6 such that Eq. (@3) be
satisfied. Taking in account (@g]), the Eq. ([@9) becomes:

1950 = (1% 065 — €' 1€9) 198 Mea  (B1)
+ (083 1680 — 188 063.0)
+1&° o€l — o' 15,

! The singular case a = 1943, = 0, would give as a solution for
([A3) tanht = —b/a, which only exists if |b/a| < 1.
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where &), = ﬁfﬁ, and so on. Furthermore, having in

mind {@3)), @) and the definition of X in (@5), Eq. (BI)
becomes:

lgéoa = )‘(Mba lggb + Xa)u (B2)

where we have put

2 oY
X, =— . B3
VT 0w (B3)
Then, from (@H), we obtain the system
N ( 199, cos0 — 199, sin0) = —AX; + 195 (B4)
M ( 1995 cos0+ 199 sinf) = —AXo+ 195 (B5)

Notice that, in this system, the functions ;g4 are defined
modulus an arbitrary constant factor K (as it was, above,
the case with 1¢/0). This means that, in ([B4) and (B3],
we can take 1% as small as we want, provided that the
original 1%} remain bounded (the unbounded special
case will be considered next), which in turn means that
we can take as the system to solve

A 1gg10059— 1gg2sin6‘) =
M 199 cosf + 1g9;sinf) = —Xo. (B7)

whose unique solution, out of the singular case 1¢3, = 0,
is

199 X1+ 195X

Acosl = —
(1981)% + (1992)?

=V, (B8)

19392X1 - 19?(,)1X2

Asinf =
(1951)% + (1992)?

=Ys, (B9)

that is to say

Y.
A=/Y2+Y}2 tanf = 2
Y

To complete the above discussion let us consider the
special case where 1g/ goes to infinite when we approach
Y5. (Obviously this will have to be compatible with the
vanishing of the integrals [1g¢4ydz"*dz’?). In this case,

the system (B4), (BH), becomes:

(B10)

N( 1931 cos0 — 1g3sind) = 195 (Bl1)
N ( 1995 cosf+ 199, sinf) = 194, (B12)
with 1% going to infinite, whose solution is
0 0 _ 0 /0
M = oo tanf = lim G192 195 1951 (g3

0 10 0 /0
199,00 1931 1931 T 1932 1933

We could still consider the remaining two special cases
where, only one of the two functions 1¢3, goes to infinite,
but the reader can see easily than also in both cases a
solution exists for A, 6.

To end with this Appendix[Bl let us consider the above
singular case 1¢9, = 0. It seems that now the four Eqgs.
HG) and (@9) cannot always be satisfied by fitting 1&;
and M, since these four unknown functions appear now
through only two quantities 1&} Mp,.

Nevertheless, let us proceed along the following lines:

As far as Eq. ([@9) is concerned, we always can satisfy
it by fitting some convenient values of 1&}, since f # 0
and M, is a regular matrix.

On the other hand, according to (B2) and (B3), Eq.
6 reads now

2\ O
195% = ﬁ ozla’ (B14)

Using A as an integrating factor, we always can find a
family of solutions 1 of these two equations. Then, we

must fit this family of solutions such that the Eq. (@S]
we are left with,

1
0Y9aa

VF

becomes satisfied. To see that this is also possible, in
(BI4) we will choose 1¢%) = €493, with €, = 1, Va, and
g3 a function such that [ gsda’'da’® = 0. In this case we
have 6‘2;/,’1 = %, that is 1 is a function of "' + 22 = y,

but not of y, = ' — /%

W _
Y2

1900 = X3( 142, coshp + sinhv), (B15)

0. (B16)

Then, let us integrate (BI6) along yz over ¥a. We will
have

a = beosht) 4+ csinh ), (B17)
with
)\2
a= /19531@2, b= /)\2 1900 dy2, ¢ = / NG 09aadY2,
(B18)

where, like 9, the coeflicients a, b, ¢, depend only on ;.
On the ground of what was said for the coefficient a of
Appendix [A] the present coefficient a is also as greater
as we want. Then, we can conclude that (BI7) always
have a solution for ¢ for any function 1¢’° such that
J1gR dz" dz"* = 0. That is to say, Eqs. (@), () and
@) can all be satisfied at the same time, as we wanted
to prove in the present singular case 1¢3, = 0.

Appendix C: The counter example of Minkowski
space

In Sec [Vl we claim that if we have a universe such
that its ten 4-momenta vanish for some given intrinsic
system of coordinates, we cannot hope to keep this ten-
fold vanishing against any coordinate change going to



new intrinsic coordinates. The reason of this is that even
Minkowski space, My, have not such a property.

In order to see this, refer M, to Lorentzian coordinates.
These are obviously intrinsic coordinates, in the sense of
the present paper. Furthermore, all ten 4-momenta van-
ish in this Lorentzian frame. Thus, according to our def-
inition, My is an example of creatable universe. Then,
let us make some general infinitesimal coordinate trans-
formation:

x® =" + (), (C1)

where the old coordinates, {x“}, are Lorentzian coordi-

nates. Let us subject the functions e(z) to the condition

that the new coordinates {2/*} be intrinsic coordinates.
That is, the new metric components

Jop = Nap + NapOpe’ +1gp0ac” (C2)

has to satisfy on the one hand, Eqs. (23) and (28] (the

first one up to zero order in ¢’ — tg and order one in 2'3).

On the other hand, the time derivatives 0)g5;, 0yGnas
must fulfill the conditions (B4)-(36])

/19;0(1 da'da® =0, /19’32 da'dx® =0, (C3)
[ g -1y arlas? =0, ()
/x’a 195 dxtdx® =0, (C5)

which mean that P" = 0 and that, irrespective of the
origin of the angular momentum, J'* = 0 (notice that to
first order we can put dr'daz? instead of dz'ldx'?).

After some elementary calculations, all these condi-
tions are written:
16% = 051, 160 = O, (06)

0 _ 0
1€4 = a 0€,

1 1 1 2
1€, = Oa 0€ ", 1€3 = 0€, (07)

oe3 = (1= f1)/2, (C8)

/0 0 1 /0 1 /0 0
1935 = Oa 183+ 164, 1933 = 2183, 1940 = 204 184, (C9)

where we have used the notation ¢* = ;.

A particular solution of this system is

1 0 0 1 1 0
oe = 18 =0, 18, = 1, =0, o5, = =, o¢3, (ClO)

ogs = (1—f)/2, 92, 0’ =0. (C11)
On the other hand, we similarly obtain:
n _ 1
09aa = 20a 0€4 (C12)

which, according to the corresponding equation in (CI0),
becomes

Og(/zla = _820. Ofg- (C13)

0

Thus, since (e3 is small, but otherwise arbitrary, we
always can choose (£ so as to have

/ogflla datda® # 0, (C14)

that is, so as to have P"® # 0. Then, as we have an-
nounced, we cannot preserve the vanishing of P’* and
J'*P when making a general coordinate transformation
from an intrinsic coordinate system to another intrinsic
one.
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