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This paper essentially deals with the classification of a symmetric tensor on a four-
dimensional Lorentzian space. A method is given to find the algebraic type of such a tensor.
A system of concomitants of the tensor is constructed, which allows one to know the
causal character of the eigenspace corresponding to a given eigenvalue, and to obtain
covariantly their eigenvectors. Some algebraic as well as differential applications are

considered.

1. INTRODUCTION

Second-order symmetric tensors play an important
role in relativity. The gravitational field itself is described
by a Lorentzian metric, whose energy tensor is related to
physically admissible distributions of matter; Lie varia-
tions of the metric along nonconformal vectors fields,
symmetric double contractions of the Riemann tensor
with respect to particular directions, second-order Killing
tensors, almost-product structure tensors defining totally
geodesic, distortion-free, extremal, or orthogonal integra-
ble submanifolds of the space-time, are other frequent
examples of them. In general, the interpretation of a given
symmetric tensor as describing a particular physical sit-
uation requires, sooner or later, the analysis of its alge-
braic properties.

The algebraic classification of a symmetric two-ten-
sor, on & four-dimensional Lorenizian space is well
known for a long time.!™” There exist four different types
of such tensors, corresponding to the algebraic strueture
of the linear map they define. Symmetric tensors belong
to type I, type II, or type III if they have only real eigen-
values and admit, respectively, four, three, or two linearly
independent eigenvectors, and they belong to type IV if
they have only a pair of complex conjugate eigenvalues.?

This classification is obtained directly by considering
the possible canonical forms of a symmetric tensor in a
orthonormal basis'? or in a real null tetrad,>'® or the
Jordan forms for the associated linear map.** The types
and their subtypes (degenerate eigenvalues) can be de-
noted in several appropriate ways, being the
Weiler-Segre!! and the Plebanski® notations the more
usual ones. Criteria to distinguish the algebraic subtypes
have been considered™’ and, recently, applied to a com-
puter program for their determination.'

The invariant two-plane structure admitted by any
symmetric tensor! on the space-time has been used as a
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tool for the characterization of subtypes (number and
causal character of the invariant two-planes).!® In this
approach the basic object is a symmetric double two-form
E, linear in the trace-free part of the symmetric tensor T
(Ref. 14), The algebraic classification of E is made!” by a
method similar to the Bel’s one!® for the classification of
the Weyl conformal tensor. The double two-form E al-
lows us to introduce!” a real differentiable map on non-
null simple bivectors, analog to the Riemannian sectional
curvature function, whose critical point structure is re-
lated to the invariant two-planes of 7. The spacelike and
timelike eigenvectors of T can be associated with another
map, analog to the sectional Ricci function considered by
Eisenhart.'®

Other classification schemes have been developed
considering the (Hermitian) spinor associated to NV. Such
spinor approaches®!® can be implemented using the com-
plex null tetrad formalism?®?! and algebraic geometry
techniques.”? The relations between these spinor treat-
ments and their connection with standard matrix meth-
ods have been also extensively studied,?*2°

After such a panorama, why still work on this sub-
ject? In spite of the abundant literature dedicated to it¥
some important questions still remain open. In this paper
we shall mainly consider two of them, namely, that of the
causal character of the eigenspace corresponding to every
one of the eigenvalues, and that of the explicit nature of
the eigenvectors as geometric objects depending on the
given tensor,

The first of this questions has a clear meaning: to

. detect, prior to its explicit calculation, which is the causal

orientation of the eigenspace associated to any given ei-
genvalue. The second of these questions needs perhaps a
Jittle explanation.

Eigenvalues and eigenvectors of a second-order
mixed tensor T (linear map) are both univocally derived
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from it, but the nature of their dependence on T is quite
different. From the known relations®® between the coeffi-
cients of the characteristic polynomial and the simple
scalar invariants® of T, it is clear that the eigenvalues are
concomitanis’™ of T for every eigenvalue A, there exists
a scalar function / of the tensor T such that 1 = [(T).

The eigenvectors corresponding to every A follow
from their definition equations by Cramer’s rule, and that
whatever be the starting reference frame in which T is
given. But, contrary to an extended opinion, in spite of
such an apparently covariant prescription to obtain them,
the eigenvectors of a tensor T are not concomitants of the
sole tensor T (Ref. 32). What are they? Every eigenvec-
tor of T is a vector-valued double (p + 1,p)-ary form in
i<p + 1 arbitrary directions and j<p arbitrary codirec-
tions, the values of p, i, and f depending on the subtype of
T and on the multiplicity of the eigenvalue. It is only the
mixed tensor of order (p+ l,p+ 1) defining the (p

+ 1,p)-ary form, which is 2 concomitant of T (Refs. 33
and 34). Denoting by s an eigenvector corresponding to
the eigenvalue A, by v the set of { arbitrary directions, and
by o the set of j arbitrary codirections, there exists a
vector concomitant § of T, v, and w such that s
= S{Tv,w).

Clearly, if T is twice covariant and the space is en-
dowed with a metric g, the linear map associated to T is
g~ 1T and vectors and covectors may by identified by g,
so that the above expressions for the eigenvalues and
eigenvectors of 7" become A =g, T) and 5= S(g,T.v),
where now S(g,T,v) is a vector-valued (2p + 1}-ary form
in #'g7 + j arbitrary directions.

Our present interest concerns second-order symmet-
ric tensors on the (four-dimensional Lorentzian) space-
time. For them, we shall obtain here explicitly the expres-
sions of S(g,T,v) corresponding to all the subtypes and
all the eigenvalues, showing on the way, fortunately, that
2=0 or 1. It will be then possible to construct scalar
concomitants of A, g, T, and eventually v, say f(1.g, 70},
whose signs indicate the causal orientation of the corre-
sponding eigenspaces. _

What is the incidence of these two questions in rela-
tivity? The expressions for S(g,T,v) and f{A,g,T,v) con-
stitute the explicit general solution to the eigenvectors
problem for symmetric tensors of every subtype on the
space-time, Their intrinsic and covariant form are weil
adapted to theoretical analysis, as well as to computa-
tional methods. Bui, sightly paradoxically, where these
expressions play an essential role is in differential prob-
lems related to eigenvectors.

In many situations of interest one is led to ask for
symmetric tensors 7 admitting one or more eigenvectors
s verifying specified differential conditions, say & (s) =§;
and one often needs to know explicitly the necessary and
sufficient differential conditions on T, say &Z(T) =0, en-
suring that T admits such eigenvectors s that & (s) =0.

Our expressions for S(g,T,v) give a simple systematic
method to solve this problem, which has been considered
up to now as a very difficult one.’® The method is illus-
trated by solving the cases where & (s) = 0 stands for the
geodesic equation, & (s)=i(s)Vs =0, and for the inte-
grability conditions, & (s} =sAds=0. It is to be noted
that it gives effectively 2 (T as a differential concomi-
tant in the sole tensor T, because the arbitrary directions
appearing in the algebraic expression of the eigenvectors
may be eliminated after differentiation.

Where these “situations of interest” appear in rela-
tivity? We see them, at least, in three subjects:

(i) Permanence of degenerate states of a medium. As
an example, let us consider an anisotropic perfect fluid®®
defined by a given rheology,”’ and let § be the space of
states corresponding to all admissible initial data.’® The
evolution equations for the fluid do not imply, in general,
that isotropic initial data remain isotropic or, in other
words, isotropic data on an instant are not permanent.
Denoting by §,, the set of anisotropic states admitting
isotropic instants, one has § = S,, U §; U §,, where 5, is
the set of (permanent) isotropic states and S, the set of
purely anisotropic states (having no isotropic instants).
As it has been shown elsewhere for the electromagnetic
case,”® only the space S; U §,, where S, is a proper subset
of §,, can be characterized by differentiable conditions.
The interesting®® and larger choices of S, involve differ-
ential conditions on the eigenvectors of the energy tensor
T (Ref. 39), and one is naturally lead to formulate them,
like the conservation equations, in terms of 7 itself,

(ii) Validity of the energy conjecture. From
Rainich,*' one knows that Maxwell equations in the elec-
tromagnetic field variables may be equivalently formu-
lated in terms of energy tensor variables. From the geo-
metrical analysis by Misner and Wheeler*? of the Rainich
work, it has been conjectured that a necessary condition
for a medium to be realistic is that it admits a Rainich
theory® or, equivalently, that it could be described in
terms of the sole energy tensor variables. The conjecture
is verified for Maxwell electromagnetic fields* and for
thermodynamic perfect fluids;* the study of its validity
for other physical media involve, like for the above ones,
a careful description of the differential properties of the
eigenvectors of T in terms of T itself,

(iii} Foliable media. In Newtonian gravity, any arbi-
trary portion* of an indefinite medium may be matched
with the vacuum (i.e., considered as a source of the grav-
itational field) or with portions of other media. This is
not the case in relativity, where, at most, only a countable
number of portions of a indefinite regular®® continuous
medium can be matched with the vacuum, and only few
confinuous families of portions may be matched with
other media. The existence and parametric dimension of
these families, that is, the “degree of foliability” of an
indefinite relativistic medium, is related to the existence
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of eigenvectors of the energy tensor having the direction
of the gradient of the associated eigenvalues. Qur expres-
sions for them allow us to write easily the corresponding
equations in terms of the sole energy tensor.

The paper is organized as follows., For the sake of
completeness, in Sec. I we present a brief discussion of
the nature and multiplicity of the eigenvalues of a sym-
metric two-tensor T" on a four-dimensional Lorentzian
space in terms of the signs of three invariants, give the
table of minimal equations for 7, and describe a (opti-
mal) method to determine the type of a given tensor, In
Sec, III we obtain the explicit expressions for S(g,T,v)
and in Sec. IV those for f{A,g,T,v), the invariants whose
sign gives the causal orientation of the eigenspaces. Fi-
nally, in Sec. V we present some simple applications:
complete algebraic characterization of the perfect and an-
isotropic fluids, and differential characterization of ten-
sors admitting a geodesic and a vorticity-free simple ei-
genvector.

A part of the results of this paper where communi-
cated, without proof, to the Spanish relativistic annual
meeting E.R.E. 86 {Ref, 46).

il. CHARACTERIZATION OF THE ALGEBRAIC
TYPES

(a} Let T be a linear map on a four-dimensional real
space, and N its trace-free part, N = T — } (tr T)J. The
characteristic polynomial of N is®®

b ¢ 1 /8 -
— et __ o —
P(x)=x 2J\:2 3x+4(2 d), (1)
where
b=tr N?, e=trN°, d=tr N*. 2)

The (real or complex) nature and multiplicity of the
roots of (1) can be analyzed following standard methods.
For our purposes it will be convenient to define the quan-
tities

Li=I%—12 3)
I=2b— |J[L], (4
Iy=T7b — 124, (5)
I=3bl; + 4(3¢ — b°). (6)

Only their signs will be needed in the present discussion.
It is well known?®' that the roots of (1) are all different iff
11540, and they have the same or distinct nature accord-
ingas I} > Qorl; < G, respectively. IfI; > 0 then I,520
and the roots are real (resp., complex} if 7, > 0O (resp.,
I, < 0); this follows directly taking into account that, for
I3 > 0, the polynomial

TABLE L Nature and multiplicity of the roots of P(x} in terms of the
invariants I,

1.0 Ls0 four different real roots.
1> I, <0 two different pairs of c¢.c. roots.
1,50 I350-- two equal and two different real roots.
> I;=0-- three equal roots.
[=0¢ 1,0 T3>0+ two pairs of two equal real roots.
: 2 I;=0-- four equal roots.
1, <0 £y> 00+ two equal real roots and one pair of c.c. ones,
2<Y 17,<0++ two equal pairs of c.c. roots.
I <0 two different real roots and one pair of
¢.c. ones.
plu)=u® — b’ + (d — b¥/4)u — 2/9 (7)

has & relative maximum for u = I,/6, and that p(u) =0
is the Descartes’ cubic resolvent*® of (1), When I,
= 0, the roots of (7) are ®/6, $/6, and b — ©/3 with @
given by

¢=2b—€4 I3, (8)
where ¢, is the sign of I,. Clearly,
Db — D/3) =47, (9

and it results in the following lemma.

Lemma I: If I, = 0 and 40, the roots of P(x) are
—c/D, —c/D, /T + O/6, and c/D — B/6. If
I, =@ =0 (& b = 4d, ¢ =0), there are two pairs of
equal roots given by = b/2.

In the cases J; = 0, one has necessarily 7 > O and fur-
ther degenerations occur when I, or I3 vanishes. As I,
> 0 impHes ®> 0, and I, = O implies ® =0 and 530,
from Lemma 1 it follows that all the roots are now real iff
I, 3 0. So, one has (i) one double root if I, > 0 and I,
> 0, (ii) one triple root if I, > O and J; = 0, (iii} one pair
of equal roots if I, = Qand /3 > O, and (iv) one quadruple

" (zero) rootif Iy = I3 = 0. On the other hand, if I, < Othen

1,70, and ¢ = J; or ®=0 accordingas [, > Qor I,
< 0; in the first case there are a double real root and a
pair of complex conjugate (c.c.} ones, and in the second
one, two equal pairs of c.c. roots. These results are shown
in Table L. Of course, this table may also be applied to a
general quartic equation with real coefficients.

(b) From now on we deal with (real) second-order
symmetric tensors on the four-dimensional Lorentzian
space-time. As such tensors have at most a pair of com-
plex conjugate eigenvalues,’ from Table I the following
results.

Lemma 2 (Plebanski®): Let T be a symmetric two-
tensor on a four-dimensional Lorentzian space. The na-
ture and multiplicity of its eigenvalues are related to the
signs of the invariants I, I,, and I3, according to Table
IL.
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TABLE 1. Nature and multiplicity of the eigenvalues of a symmetric
tensor on the space-time.

ILi>0 Four distinct real eigenvalues
150 Iy>0  One double real eigenvalue
2> I;=0  One triple real eigenvalue
I=0 1.=0 135>0  Two double real eigenvalues
z L=0 One quadruple real cigenvalue
One double real eigenvalue
I, <0 .
and one pair of ¢.c. ones
1,<0 Two distinct real eigenvalues

and one pair of ¢.c. ones

(¢} From Table II, all the eigenvalues are real iff the
invariants 7, and J, are non-negative. This distinguishes
the real types (I, II, and III) from the complex one (type
IV). In order to distinguish real types between them we
shall consider all the possible minimal equations. Let
m{x) be the minimal polynomial of N; for type I all the
roots of m{x) are different and for type II (resp., IIT) at
most two (resp., three)} roots of m(x) are equal.

¥I, =01, > 0,and; > 0, from (9) and Lemma }
one has

B ¢ by efb {
m(x)=x —g* tle—3)*+3l-1):
for type I, where, by virtue of (3), {(5), and (8), ® is
given by
@ =3{[6(4d — b?) — 4c*1/(TH* — 12d)}. (10)

One has then m{x) = P(x) for type II.
Ifl; =1, =0andl; > Oonehasm(x) = x> — b/4for
type I and

673

3£ 2, & b
m(x)=x 2@(;: +5 bx— 7

for type I, where € is the sign of the eigenvalue corre-
sponding to the null eigenvector of N.

Iffy =I;=0and/l, > 0(5 =3 > 0), from (§) and
Lemma 1 one has

m{x)=x*— (¢/b)x — b/4

for type 1, and

(x)= 3 _1. £ _'E b b
m{x)=x" —z|{7x +6 x+4
for type II. Clearly, m(x) = P(x) for type III.

If I}, = I, = I, = O one has m(x) = x for type I,
m(x) = x* for type I, and m(x) = x° for type L

All these possible minimal equations m(N) =0 are
given in Table III and what follows.

Proposition I: Let N be a trace-free symmetric tensor
of real type. The minimal polynomial of N is the first {on
the left) of the equations that it verifies in the row of
Table III selected by the signs of its invariants I,, 7,,
5. The type of X is then that indicated in the correspond-
ing column.

It is to be noted that Proposition 1 characterizes in-
trinsically the subtype of T, and that the causal character
of the eigenspace associated to a double or a triple eigen-
value of a tensor of type I cannot be obtained from this
proposition.

(d) Let 7 be the greatest multiplicity of the roots of
the minimal polynomial of 7" One has 7 =1 for types I
and IV, 7=2 for type II, and 7 = 3 for type IIL Thus,
the value of = distinguishes real types among them. From

TABLE III Determination of the algebraic type of a symmetric tensor on the space-time (Proposition 1).

b ¢ 1/
bt (B o
(=P(N)=0)
s € s e b b
;>0 110 NN +(3:—§)N+z(5“1 g=0 P(N}=0
s € ;€ b
L,=0, ;>0 N = (b/4)g =0 NP B N 45 BN —3g}=0
I[=0
5 i /e s 5 [
1,50, =0 N — (c/b)N — (b/4)g =0 N —g|pN +gbN+3z8)=0 PN =0
I=l=0 N=0 N=0 N=0
Type I 11 11
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Table 111, and taking into account that J; > 0 implies I,
> 0and I; > 0, we obtain the following proposition.

Proposition 2: The greatest multiplicity » of the roots
of the minimal polynomial of a symmetric tensor of real
type is given by

=k — v, (11)

where k is the order of its minimal equation and v is the
number of the invariants Iy, I,, I3, which are positive.

Accordingly, the type of T is known if we know k
and the signs of I,, Iy, I;. Clearly, iff T has type IV, one
of the invariants I, or I, is negative (then k=4 o0r k=3
according as J; < Qorf; = 0, respectively). If T has a real
type, one nceds to know the value of & to obtain iis type.
We shall develop an algorithm to calculate & for tensors
of real type.

If 4 and B are two-tensors and tr 4550, it is conve-
nient to consider the trace-free part of B with respect to
A, Q B, defined by*

QB=B — (tr B/tr A)A.

Putting Q=Q,, one has N = QT and it results k= | or
k =2 according as N =0 or N=%0 and QN*AN = 0,
respectively, A denoting the exterior product of tensors
considered as elements (vectors) of its linear space struc-
ture.

On the other hand, real types with 4 = 0 have neces-
sarily a quadruple eigenvalue, and so, the only real case
with k>2 and b =0 is type III with minimal equation
N? = 0. Next, consider k> 2 and b5£0 (necessarily > 0
for real types); if #* = 2d (i.e., if NV is singular) one has
k=3iff NNAN*AN = 0, which is equivalent to

QNP AN=0. (12)

If 5°5£2d then N°AN?AN520, and one has k =3 iff
N AN AN Ag = 0, which is equivalent to

QN X QN°) AQu(N X QN?) =0, (13)

due to the fact that N is regular and QN AQN?AN
= 0. Thus, we have the following result.

Proposition 3: The order & of the minimal equation of
a symmetric tensor of real type is given by Table IV.

ti. COVARIANT DETERMINATION OF EIGENSPACES

{a) From the minimal polynomial m(x) and for each
eigenvalue A of 7, let us consider the polynomial

Pa(x)=m(x)/(x — L), (14)
and let T; be the (nonzero) tensor, defined by

Ti=pa(T), (15)

TABLE IV, Algorithm for obtaining the order & of the minimal equa-
tion of a symmetric tensor of real type.

N (=0) = k=1
(50}

!

QN*AN (=0) = k=2
(5£0)

i

ir N? {=0) = k=3
(0}

1

t? NP — 2 N* {(=0) = QuN*AN(=0) = k=1
(#0) (#0) = k=4
l .
(N X QN (=0)= k=3
AQuN X QN%)

(7£0) = k=4

in terms of which the minimal equation of T can be writ-
ten as

m(T)=(T —Ag)T,;=0. (16)
Thus, T is an eigentensor of T that commutes with it:
ITT,=T,T=AT,, (17)

and from (16) it results directly.

Proposition 4: The image of T, as a linear map, is
contzined into the eigenspace E; of ecigenvalue A:
In1?1(2£&.

It is then natural to ask for the cases where E;
= Im T;. Let us begin considering some remarkable
properties of the Ty’s. From (15)-(17} one has

Tl=p(TYT=p ()T (18)
and
T,T,=0 (19)

for any pair of distinct eigenvalues A and p.
On the other hand, (14) and (15) can be written as

k—1 k-1
p}l(x): 2 apxp! T}.= z apr:
p=0 p=0

where, in general, the coefficients a,'s are complex, and
hence

k—1

k—1
tr Ty= ) a,tr M= > a, Y my, @
p=0 =0 I3

=2 mypi(p)
113
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being m,,, the multiplicity of the eigenvalue u of T\ From
(14}, pa{u) = 0 for every u=£4 and then

tr Ty=my pa(A) (20)
and (18) leads to

2= (tr Ty/m;) Ty, (21)

Let n; be the multiplicity of A as root of the minimal

polynomial (1 < ny < my); Eq. (14) may be written as

pa)=(x—Aya-1 JI (x—p), (22)
Hatd

and the following results.

Proposition 5: The eigentensor T'; has nonzero trace
if, and only if, 4 is a single root of the minimal polyno-
mial.

On the other hand, if n; = 1, from {15}, (20), and
{22} one has

tr Tﬂ_
.S‘;ﬁéo

Tals)) = ,,Q,I A=) s =pa (M=

for every eigenvector s; corresponding to A, that is £,
C Im T;; taking into account Proposition 4, we have the
following.

Proposition 6: For every eigenvalue A with n; = 1 one
hasE, =Im T;.

Suppose now that T is of type II or III; from Prop-
osition 6, each eigentensor T; with n; = 1 generates the
corresponding Ej, but if #, > 1, from Proposition 5 and
Eg. {21} it results

g( Ty, Tyw) =Ty 2(u,p) =0

for arbitrary vectors # and v. Taking into account Prop-
osition 6 we have

Proposition 7: (i) For every tensor T of type Lor IV
and for every eigenvalue 4, the action of T; on arbitrary
directions generates all the directions of the eigenspace
E,. (ii) For every T of type II or III and for the eigen-
value A such that »; > 1, the action of T; on arbitrary
directions gives the null direction of the eigenspace E;.

{b) We will now consider separately every one of the
four algebraic types, and obtain explicitly the eigenten-
sors T, of T. They will be expressed in terms of N=QT,
simpler to compute. For tensors of type II and III with
m, > n; > | the image of the corresponding T°; only pro-
vides the null eigendirection of 7', so that calculation of
the associated eigenspace wiil be needed to construct ad-
ditional eigentensors: those generating the ternary forms
(» = 1) indicated in the Introduction.

Type L K I, > Othen m(x) = P(x) and the eigenten-
sor associated to the eigenvalue v of Nis N, = p {N) with

Pv(x) =;n(x1)’
b b
=x* 4w + (?—E)x—l-v(vz—i) —g-.

IfI; =0,1, > 0,and I'; > 0, the eigentensor associated
to the the double eigenvalue vy is Ny = (N — v_ &)
X (N — v_g) and those associated to the single eigen-
values vy are N = (N — vy} (N¥N — v=g).

IfI, = I, = Oand I3 > 0, the eigentensors associated to
the pair of double ecigenvalues (= JB/Z) are now N,
=N = |b/2g.

IfI; = I; = 0and I; > 0, denoting by v, the single ei-
genvalue and by v, the triple one, the associated eigenten-
sorsare given by N, = N — v,gand ¥, = N — v, g,
respectively.

Ifl, = Iy = I, = 0, theeigentensorisg.

Thus, in account of Lemma 1! and Egs. (8)-(10),
and denoting by /(v} the interior product by the vector v
(Ref. 50), we have the following theorem.

Theorem 1: The eigenvectors s of a symmetric tensor
T of type I are Jinear forms in one arbitrary direction v,
5 = i{v)T;, where the T;’s are the second-order eigen-
tensors given in Table V,

Note that T; = N,, N being the trace-free part of T,
N=T—trT/4, and v = A — tr T/4. In explicit compu-
tations it is easier to evaluate N, in terms of N: This is the
reason for the expressions given in Table V.

Type II. Now I, = 0, and there are only three linearly
independent eigenvectors: one null (from now on denoted
by /) and two spacelike, Let T, be the eigentensor
giving 1.

Il >0andl; > 0, then T, = (N — v, g)(N
— v, g2)(N — v_g), and the eigentensors giving the
spacelike eigenvectors are T. = (N — v @)% (N
—v=g)

IfI, =0and I; > 0, then T; = N? — b/4g, and the
eigentensor giving the spacelike two-eigenplane is 7
= (N + €872 g)(N — eb/2 g)? ebeing the sign of
the eigenvalue corresponding to /. Note that if the alge-
braic type of N has been obtained using Proposition 1
then € is known from the minimal equation of ¥. Other-
wise, if the type has been obtained using Proposition 2
{with k = 3 given by Table IV) then € must be calculated
from N(I) = e /2], taking into account that {/} is the
image of T.

Ifl, > Oand I; = 0, then T} = (N — v g) (N
— v, g}, and the eigentensor giving the spacelike eigen-
direction {¢} is T, = (¥ — v,g)% The eigenspace asso-
ciated to the triple eigenvalue v, is the null two-plane
orthogonal to / and e, and it is given by =(/A e}, » being
the Hodge operator and A denoting the exterior product.
The eigenvectors s, are then given by /(v)«(/Ae), where
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TABLE V. Second-order eigentensors of a tensor T of type I {Theorem 1). ® is given by Eq. (10).

b b c
I,>0 T1=N3+VN2+(VZ“-E) N+ [V(Vz—i)—glg A = any cigenvalue
3¢ b
Ty=N' 2= 3 N + (—5 - 5) g A4 = double eigenvalue
12 > O, I3 > 0 ¢p c [}
=N+ V-3 (-- E—) £ A, = simple eigenvalues
L=0, I;>0 T,=N= %,ﬁg A, = doubles eigenvalues
=0 3 \
1,50, I1=0 T,=N —3(erb)g, T,=N + 3(c/b)g A, = triple cigenvalue
A, = simple eigenvalue
IL=I,=0 T,=g A = quadruple eigenvalue
Invariants typel Eigenvalues
A=v+trT/4

{ = iv)T;and e = i(v) T, for arbitrary v.

If I, = Iy = 0, then N; = N and the eigenspace associ-
ated is now the null three-plane given by #/.

Thas, in account of Lemma 1 and Eqs. (8}-(10), we
have the following.

Theorem 2: (i) The null eigenvector { of a symmetric
tensor T of type II, and the spacelike eigenvectors not
contained in the null eigenspace, are inear forms in one
arbitrary direction v, s = i(v) T;, where the T;’s are the
second-order eigentensors given in Table VI (ii) The
spacelike eigenvectors s contained in the null cigenspace,
which appears in the cases I; = 0, are cubic forms in one

TABLE VL. Second-order eigentensors of a tensor T of type I {Theo-
rem 2). @ is given by Eq. (10} and € is the sign of the eigenvalue of ¥
associated to the null eigenvector / given by the eigentensor T, The
spacelike eigenvectors ot contained in the null cigenspace are given by
7.

arbitrary direction v when I, > 0, and in fwo arbitrary
directions v, ¥ when I, = 0; they are given by

s=i(v)«{i(V)N Ai(v)N?}

and
s=i(v)i{u)«i(v)N,

respectively.

Type Il There are now only two linearly indepen-
dent eigenvectors: one null, /, and one spacelike, e. Let
T, be the eigentensor giving /. In this case it is I} = I
= 0, and there are two cases, according to I, > Gor [
=0.IfI, > O,then Ty = (N — v, g){N — v, g)% and
the eigentensor giving the spacelike eigenvector eis T,
= (N — v, g)% If I, = 0, then T; = N% in this case we
can write N =18 p + p® [ where p is a spacelike vector
orthogonal to the nul two-eigenplane i1, associated to the
quadruple eigenvalue. One has then i(v)N =g(vl)p

s €. (& b efb
L>0 T=N—gN +(;52—5)N+—($—1)g
¢ € TABLE VII, Second-order eigentensors of a tensor T of type III (The-
=Ny [ 1 (% o6 N igen ype
>0 [Tea=N'+ (Q" /6 )N ( 2y@/6 ) orem 3). The null eigenvector / is given by the eigentensor T The
spacelike eigenvectors not contained in the null eigenspace are given by
& 5 T.
~® (cb /6 )
(4
I;=0 Ti=N! = (b/4)g >0 T;—N3——(bN2+ bN+4g)
L=0 | I;50 T,=Nt — BN + (b/4)g
I =
5>0 Ty=N! — (¢/B)N — (b/4)g ! IV Y €
1,=0 T,=N + (¢/BIN + (8/12)g I,=0 T=N+z{8z ¥ +0N+z2
Iz=0 T[=N Iz=0 T’=N2
1;=0 5L=0
Invariants Type IT Invariants Type 111
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+ g(vzp)l I1; is the two-plane othogonal to i(v)N and
H{v)N? for any timelike vector u. Thus, we have the fol-
lowing theorem.

Theorem 3: (i) The null eigenvector / of a symmetric
tensor T of type III, as well as the spacelike one e when
Iy > 0, are linear forms in one arbitrary direction v, s
= {(v)T,, where the T,’s are the second-order eigenten-
sors given in Table VIL (ii} The spacelike eigenvectors s
of the null eigenplane, corresponding to I, = 0, are cubic
forms in one arbitrary direction v; they are given by

s=i(v)+{I(D)N Ai(2)N?}).

Type 1V. This type corresponds to a *partially com-
plex type L,” so that it is easy to show the following,

Theorem 4: The (spacelike) eigenvectors of a sym-
metric tensor T of type IV are linear forms in one arbi-
trary direction v, s = i(v)T,;, where the T;’s are the
second-order eigentensors,

T,=N°+ vN? + (vz—--g) N+ [v(vz—g) —f]g

for the single real eigenvalve v, and

oy P (AL
-z i+ (3(7) -3)e
for the spacelike eigenplane when I, = 0, I, < Q.

V. CAUSAL CHARACTER OF THE EIGENSPACES

{a) The above covariant method to gbtain the eigen-
vectors allows us to construct a simple criterion to find
the causal character of the eigenspaces. For tensors of
type ¥ and II1, such a character follows directly from the
preceding results: the eigenspace £ corresponding to the
eigenvalue A with 7, > 1 is null, and the eigenspaces E,
with u=s*=A are necessarily spacelike. Thus, taking into
account Proposition 5 we have the following theorem.

Theorem 5: If T is a tensor of type II or III the
eigenspace E; is null or spacelike according as ir T,
= Q) or tr T;5=0, respectively.

Tensors of type I require a more careful treatment.
Consider first the case of a single eigenvalue A: the cor-
responding eigendirection {v;} is given by Thx = a.u;,
for arbitrary x, where «, is a real factor depending on x.
Taking into account Eq. (21} and Proposition 5 one has

Ty (x,x}=[g(va0)/tr Tla?, (23)

that is, the sign of T;{x,x} is independent of x and gives
the causal character of v;. In fact, remembering that the
Riemannian trace, tr, A, of the two-tensor 4 (with re-
spect to the unit timelike vector u) is defined by

tr, A=24(uu) +e,tr 4, ' (24)

where €, is the sign of the signature of g, in an orthonor-
mal basis {e,}3_, it follows that

3
tro A= 2 Aleqea), (25)

thus we get the following results.

Proposition 8: For the single eigenvalues A of a tensor
of type I, the sign of tr, T is independent of .

Theorem 6: The cigenvector associated to a single
eigenvalue A of a tensor of type I is spacelike (resp.,
timelike) if, and only if, €, tr T tr, T is positive {resp.,
negative).

Consider the case of a double eigenvalue of a tensor
of type I Let & =1 g A g be the Cartan metric induced by

g on the bivector space and denote by F any simple bi-
vector associated to the two-eigenplane E,; then E, is
spacelike (resp., timelike) iff & (F,F) is positive (resp.,
negative). Consider now the following double two-form
7 3 (Ref. 14), constructed from the eigentensor T:

?AET,{A Tj_. (26)
From Eq. (21) it follows®! that
TaXT =3 (e T)*T ;. (27)

For arbitrary simple bivectors X (and considerig .7 ; as a
linear map on the bivector space} Fy=.5 ;(X) is, when
nonzero, simple and related to E;. Taking into account
that

G (FyFyy=1(tr T127 (X, X),

the following proposition results.

Proposition 9: For a double eigenvalue A of a tensor of
type 1, the sign of & ,(X,X)}, when nonzero, is indepen-
dent of X.

When A is a triple eigenvalue of a tensor of type I, the
causal character of the three-eigenplane E, is obtained by
complementarity from Proposition 8, and one has finally
the following theorem.

Theorem 7: For a tensor of type I, (i) The two-gigen-
plane associated to a double eigenvalue A is spacelike
(resp., timelike) if, and only if, 7 (X, X) is positive
(resp., negative) where 5 ;=T,AT;, and T; is the
eigentensor associated to A. (ii) The three-eigenplane as-
sociated to a triple eigenvalue is spacelike (resp., time-
like) if, and only if, €, tr T, tr, T, is negative (resp., pos-
itive), where pu is the single eigenvalue of T.

V. APPLICATIONS

(a) The above results allows us to directly classify
algebraically a given tensor. These results are also useful

J. Math. Phys,, Vol. 33, No. 2, February 1982
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in the reciprocal problem: To obtain the complete alge-
braic characterization of classes of tensors admitting a
given general form.

As an example, we shall characterize the tensors
whose Segre’? characteristic is {1,(111)}, that is, those of
the form

T=(p+plu® u+e,; pg

where 1 is a unit timelike vector, #* = — ¢, They rep-
resent (Pascalian, heat flow-free) perfect fluids with unit
velocity u, proper energy density p, and pressure p.

From Table III, tensors of type I admitting a strict
triple eigenvalue are characterized by the minimal equa-
tion N* = ¢/bN + b/4g with 540 and b>0, and the
following lemma follows.

Lemma 3: (Taub’s lemma®?). A symmetric tensor T
is of type I and admits a strict triple eigenvalue iff, it
satisfies the relations

QT =yQT, 4tr > (tr T)%,

with 2Zy=4tr T, € being the trace-removing operator.

In order to ensure that the single eigenvector u is
timelike, we have to consider the eigentensor T associ-
ated to the simple eigenvalue A, of I (see Table V).
Becausetr T, = A, — A, = 2¢/b, from Theorem 6 one has
that u is timelike iff €, tr, T, < 0, where € is the sign of ¢
and x is an arbitrary unit timelike vector. Taking into
accountthat ¥’ = 3candy = A, + A, = tr /2 + ¢/b,
we have the following result.

Theorem 8: In a space-time with signature 2¢,, a sym-
metric tensor T defines algebraically a perfect fluid if, and
only if; it satisfies

() QT =xQT, 2xystr T, 4tr T>> (tr T)}

(i) 2y —tr T)(26,T(xx) + x) <0,

for any unit timelike vector x.

From Lemma 1, the cigenvalues are given by A,
= (3c/b + @wT/2)/2, and A, = ( — /b
+ tr T/2}/2, and taking into account the expression for
T, the following results.

Proposition 10: The energy density p, the pressure p,
and the direction of the unit velocity u of a perfect fluid
energy tensor 7" are given by

p=tc, {tr T —3y), p=le, (tr T — ¥)
and
uxi{x)T — €, px,

where

x=1 (tr T+ E‘/%(tt tr 7% — (tr 7)%) ),

ebeing thesignoftr 7> — 6tr Tt T* + 81r T°.

One may also characterize the class of tensors admit-
ting a timelike three-eigenplane, that is, those of Segre
characteristic {(1,11)1}. In this case the expression of
condition (ii) in Theorem & must be positive for an ar-
bitrary unit timelike vector. Neutrino energy tensors N of
type I satisfying N (w,u)7=0, for any observer u, and
whose (geodesic) principal null congruence has shear o
and twist o restricted by |g|? = 4w’540, belong to this
class.®

For macroscopic matier one assumes generally the
Plebanski energy conditions,”* which state that, for any
observer, the energy density is non-negative and the
Poynting vector is nonspacelike. For perfect fluids these
conditions are equivalent to the inequalities — p < p<p,
that is, 0 > 26,y < €,tr T, and thus, condition (ii) in
Theorem 8 reduces to 2T(x,x) + €,y > O

These results have been considered elsewhere®® for
the construction of the Rainich theory of the thermody-
namic perfect fluid,

(b} As another example, we shall now characterize
intrinsically the energy tensors describing an anisotropic
perfect fluid® with two equal pressures. Their Segre char-
acteristic, {1,1(11)}, has to be distinguished from the
{(1,1)11}, corresponding to energy tensors of certain
classes of fermionic fields.”® From Table X1I, these tensors
satisfy a minimal equation of the form Q(N® — «kN?)
= (4/2 — &%)N, and the characteristic equation implies
(b(4d — b*) — 4c)n = cl3/3. Taking into account Eqs.
(3)-(6), and Theorems 6 and 7, we have the following
results.

Lemma 4 A symmetric tensor T is of type I and
admits a strict double eigenvalue iff its frace-free part

=Q7T satisfies

QIN® — kN? + (> — b/2)N}=0
and

b>0, 7b%>12d>3(b* + 4c%/b),
where b=tr N?, c=tr N°, d=tr N*, kx=c/®, ¢ being
given by Eq. (10).

Theorem 9: A symmetric tensor T of type I with a
strict double eigenvalue is algebraically the energy tensor

of an anisotropic perfect fluid with two equal pressures iff
one of the two following equivalent conditions occurs:

(@) vT T _tr, T tr,T_ <0,

(&) (T4ATHX.X) >0,

J. Math. Phys., Vol. 33, No. 2, February 1952
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where x is any unit timelike vector, X any arbitrary sim-
ple bivector, and T, T'_, and T, are the concomitants
of T given in Table V.

The characterization of Segre class {(1,1)11} is sim-
ilar to that of the above theorem, but the inequalities (a)
and (b) are inveried.

Note that the previous statement is independent of
the sign of the space-time metric signature €,. However,
€, appears in the characterization of anisotropic perfect
fluids when they satisfy the Plebafiski conditions. In this
case these conditions are €,(4; + A;) < 0 and €,{A,
— A} < 0 (i=12), Ay and A, being the single eigen-
values associated to the timelike and the spacelike direc-
tions, respectively, and A, is now the double one. Hence,
from Lemma | we have 43 = ¢/ — ¢, M
+ tr T/4, and the condition (a) in Theorem 9 may be
simplified. The following theorem results.

Theorem 10: In a space-time with metric g of signa-
ture 2e,, a symmetric two-tensor defines algebraically an
anisotropic perfect fluid with two equal pressures subject
to the Plebarnski energy conditions iff its trace-free part
N = QT satisfies the conditions of Lemma 4 and

€, (4 +tr T)<0, 2, k< JO/63¢,tr T/2,
€, tr TO tr, To < 0_,

where x is any unit timelike vector and T} is defined by

To=N? — g, /6N — k(K + €, /®/6)g.

Denoting by p the proper energy density, by p, the
anisotropic pressure, by u the unit velocity, and by e the
unit vector along the anisotropy of 7, and taking into
account Theorem 1, the following proposition results.

Proposition 11: The physical variables of an aniso-
tropic perfect fluid tensor T with two equal pressures and
satisfying the Plebafiski conditions are given by

p=0/6 — €,(c +x),

1= P/6 + €,(c + k),

py=€,(a — k),

ux i(v){N? — €, {O/6N — k(K + €, {P/6)g},

ex i{v)}{N? 4 €, {B/6N — (x — €,{P/6)g},

where v is an arbitrary direction, and a=tr 7/4.

When Plebariski conditions are assumed, the sum of
two perfect fluid energy tensors is a tensor of Segre char-
acteristic {1,1(11)} (Ref. 56). s intrinsic characteriza-
tion has been also obtained”’ using results of this paper.

(c) As we mentioned in the Introduction, in some
physical situations one has to known, in terms of the sole

tensor T), the differential conditions verified by some of its
eigenvectors. Let us begin by considering what (necessary
and sufficient) conditions a tensor 7" must verify in order
that it admits a geodesic single eigenvector 5, i{(s)VsAs
=0, According to Proposition 7, single eigenvectors are
all given by linear forms in an arbitrary direction x, s
= i{x) T, where T is the corresponding concomitant of
T (the eigentensor associated to eigenvalue of s). Thus, in
any local frame {e,}, the geodesic equation may be writ-
ten as

TV AR (TR g T3) gy %"=,

where the bracket on the indices indicate antisymmetri-
zation. T being of rank 1, T,® T, is totally symmetric,
and the expansion of the above expression gives

XPxT (1) V (T3) 1ol T3) 5y ,=0. (28)
But the tensor &, whose components are

(Z D abeae= (TN 1A T gy

is symmetric under permutations of the three indices
(cde), as it follows by covariant derivation of 7,® T, so
that Eq. (28) vanishes iff & ; = 0. Now on account of the
rank of T and integrating by parts, &; may be written
as

(Z Dabede= — VT[T 5 (Ti) o

and we thus have the following.

Theorem 11: A single eigenvector s corresponding to
the eigenvalue A of a symmetric tensor T is geodesic if,
and only if, the eigentensor T'; verifies

ST ATy=0,
where & is the divergence operator and A is the exterior
produact on vector-valued one-forms.

Suppose now s is vorticity-free, v Adv = 0. In a local
frame we have

35 TV T ) = VAT )] =0,

where ¢ denotes cyclic sum. In this expression two terms
appear:

I xPx7 §b¢ (TA)pa[vb{TA)qc—Vc(Tﬂ)qb]’

L %7V, § (Tl 87T = 81(T ) ).

Because of the rank of 77, II vanishes and the tensor
#"; having components :
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(1) abe,ge™= Sg

2

s (Tﬁ.)da[vb( TA)ec - vc( T}‘t)eb]

is symmetric in its two last indices. Consequently, s is
integrable iff #7;, vanishes, and the following theorem
resulis.

Theorem 12: A single eigenvector s associated to the
eigenvalue A of a symmetric tensor T is vorticity-free if,
and only if, the eigentensor T, verifies

T3, AdT; =0,

where A and d are, respectively, the exterior product and
the exterior differential acting on vector-valued forms.

I
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