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We use the Einstein equations, stated as an initial-value problem (3+1 formalism), to present a
method for obtaining a class of solutions which may be interpreted as the gravitational field pro-
duced by a mixture of two perfect fluids. The four-velocity of one of the components is assumed to
be a shear-free, irrotational, and geodesic vector field. The solutions are given up to a set of a hy-

perbolic quasilinear system.

I. INTRODUCTION

In many subjects of astrophysics and cosmology the
energy content is described by a single perfect fluid,
when, in reality, one should distinguish two or more com-
ponents. So, for example, dealing with the supernova
phenomena neutrinos interact with the leptonic part of
the matter. In cosmology the cold-dark-matter models
distinguish a weakly interacting component and a
baryonic one. In the standard cosmology, after decou-
pling of matter and radiation, one has a perfect-fluid en-
ergy tensor describing an isotropic radiation, and a per-
fect pressureless fluid describing the baryonic matter.
The reason why only a vector field is considered for
representing the energy content is that one expects that,
because of the interaction between both components,
equilibrium is soon established. However, if the two
components are weakly interacting, the time taken to
reach equilibrium may be significant. This situation has
been outlined by Bayin' for the early times of a neutron
star, giving some analytic solutions of Einstein’s equa-
tions in the case of spherical symmetry. Letelier?
presented a method for solving Einstein’s equations in the
case that each fluid component is irrotational.

The aim of this paper is to construct solutions of
Einstein’s equations interpretable as a mixture of perfect
fluids, using the initial-value formulation of general rela-
tivity (3+1 formalism).>* This method is more con-
venient in order to construct solutions numerically, when
sufficient information about the energy-momentum ten-
sor is available. But it is also useful in order to simplify
Einstein’s equations when a family of three-dimensional
slices with certain geometrical properties is assumed to
exist. So, for example, Stephani and Wolf® presented a
method for finding perfect-fluid solutions with flat three-
slices and an extrinsic curvature proportional to the
metric tensor. General properties of solutions admitting
a spacelike foliation of constant curvature are discussed
by Bona and Coll. ®

From the point of view of Einstein’s equations, a two-
fluid source is equivalent to considering a nonperfect
fluid, with an anisotropic pressure tensor and a four-
vector of “heat propagation.” The latter is interpreted as
the propagation of energy due to the second fluid, if the
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relative velocity of both components is different from
zero.

The main assumption of this paper is to require a sim-
ple kinematics to one of the components: no rotation, no
distortion, no acceleration, only the expansion is allowed
to be different from zero. This is equivalent to requiring
the existence of a slicing with extrinsic curvature propor-
tional to the metric. So, in a sense, the intention of this
work is similar to the Stephani-Wolf paper. The main
difference is that we are looking for non-perfect-fluid
solutions with slices not necessarily flat. This simplifies
considerably the field equations but produces a problem.
Which are the initial conditions in order to guarantee
that one of the two components moves in the way
prescribed? We do not know if we have solved the prob-
lem in general, but at least we have the method to con-
struct a large family of solutions. We call these solutions
“frozen” solutions, for the relative velocity field between
both components always keeps the same direction.

II. INTIAL-VALUE FORMULATION
OF EINSTEIN’S EQUATIONS

The following conventions will be used throughout the
paper: units are such that 47G =c =1, the signature of
the metric is taken to be (— + + +), and greek and latin
indices run from O to 3 and 1 to 3, respectively.

Let us assume that the space-time may be foliated. So,
it is possible to use a coordinate system x%x1x%x3
such that on the surfaces of the foliation we have
x%=const. Let n* be the unitary vector orthogonal to
these surfaces. The expression in coordinates is usually

given in the form

_1_ _i/_;i

a a

nHt=

Each tensor is split into orthogonal and parallel com-
ponents with respect to the covariant unitary vector n.
(Henceforth all the tensorial equations will be written in
covariant form.) So for the energy-momentum tensor we
have

T=tn®n+it®n +nt+7t,
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where ® represents a tensorial product, 7 and 7 are a co-
variant vector and a covariant tensor orthogonal to n. In
the case where 7 is a temporal vector, ¢ will be the energy
density in the proper reference system.

Einstein’s equations are also split with respect to each
hypersurface of the foliation, given a set of boundary
equations, in which only “spatial” coordinate derivatives
appear, and a set of evolution equations with respect to
the coordinate x°. The boundary conditions may be writ-
ten as

(trK)*—trK*—eR =4t , (1)
div(K —trKy )= —€27 . (2)
And the evolution equations are
(3g—Lgly=—2aK , (3)
(3p—Lg)K =2€a (i ———trTy | —€aRic(y)
+a(trkK —2K?)+eVda , )

where e=n2% y and K are the first and second fundamen-
tal form of a slice, namely, y =g —en®n, K =—Vn;
Ric(y) is the Ricci tensor corresponding to metric ¥ and
R =tr Ric(y), where tr denotes the trace operator; V is
the covariant derivative with respect to the metric y; and
L is the Lie derivative along the shift vector B. In Eq.
(4), m is the dimension of the manifold. In this case
m=4, but below, in Sec. V, we will need to take m=3.

It is well known that, as a consequence of the Bianchi
identities, the divergence of the energy-momentum tensor
must be zero for any solution of the field equations. So
we can write the following consequences of the field equa-
tions

(Bp—Lpg)t=at trK —2i(f)da—adivi —ea tr(K X7),
(5)
(GO—LB)Tz—adiv?-i(da)?%-etda-i-atrKT, (6)

where i(7), div, X, are the interior product by 7, diver-
gence operator, and the contracted tensorial product, re-
spectively.

Next we give all the quantities appearing in these equa-
tions in indices notation:

K=K XK =K/"K,, dx'®dx’
trK?>=K™K,, , divK =V/K;dx', T=Fdx".

trK =yK,;,
(7

III. SHEAR-FREE AND GEODESIC SOLUTIONS

In this section we assume that the unitary vector field
normal to the foliation is temporal, geodesic and shear-
free. Then we take a=1 and €= —1 in Egs. (3) and (4).
We choose a zero shift vector 8. The shear-free condi-
tion allows us to write the extrinsic curvature in the form

Then, the boundary conditions are

6H>+R =4t , )

dH =Tt . (10)
Let us write the three-dimensional metric ¥ in the form

y=0%, (11)

where 7 is the metric on the initial hypersurface, and ) a
function defined on the space-time, taking the value 1 on
the initial surface.

Equation (3) can be written in the form

0, QA=QH (12)
and substituting Eq. (8) into (4) one gets

dH =—H?*— Lt +1tr?) , (13)

Ric(y)—+Ry=2(f—ttriy) . (14)
From Egs. (5) and (6) we get

ot = —divi—H (tri +31) , (15)

dof = —3Hr—divt . (16)

The latter are consequences of Einstein’s equations writ-
ten above, but it is very useful to consider them.

Let us write some of these equations in a more con-
venient form. Using the Egs. (10) and (13) one gets

dpf = —3Ht—1d (n+tri) (17)
where we have introduced the variable 7 defined by
n=t—3 H?, (18)

which is the difference between the energy density and
the ““critical energy density.” Taking into account Egs.
(13) and (15) we obtain an evolution equation for 7:

dgn=—divi—2H7 . (19)
Combining Egs. (12) and (20) we get

(%)= —QdivF . (20)
And Eq. (13) may be rewritten as

dH = —1H?*=L(n+trf) . 21

Equations (12), (21), (20), and (17) form a quasilinear sys-
tem of differential equations for the six variables
Q,H,n,t. One can verify directly that the solutions of the
equations of evolution verify at each instant the boundary
conditions (9) and (10). The trace of the tensor 7 is not
determined by the field equations: then it must be an in-
put of the problem. A solution of the system is charac-
terized by the initial values (values on the initial sheet)
Qy=1,Hy,m0,fg. The requirement 7,=dH, must be
satisfied on account of the boundary condition (10).

The initial metric, i.e., 7, is constrained by the condi-
tions (9) and (14), which can be combined in a sole equa-
tion:

Ric(7)— 1R (7)7=2[7] — (2, —3H})7V] . (22)

This equation is just a three-dimensional Einstein equa-
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tion (the left member is the three-dimensional Einstein
tensor) corresponding to the energy-momentum tensor

=73 —iney . 23)

It is worth pointing out here that 7 and 7, are con-
strained by the three-dimensional Bianchi identities:

—3divig +dny=0 . (24)

For each solution of the evolution equations, one must
compute the energy-momentum tensor, in order to inter-
pret physically the result. Let us do this right now. The
Ricci tensors of two metrics related by a conformal factor
Q are given by the well-known relation’

Ric=Ric(7)—Vd InQ+d nQ®d InQ
—7[(d nQ)*+AInQ] . (25)

And taking into account Eq. (14) we can write the or-
thogonal part of the energy-momentum tensor in the
form

T=1tfy +7 +1{—Vd InQ+d InQ®d InQ
—17[(VInQ)?*—AQ)} .  (26)

A summary of this section is presented in Table I.

ol

IV. TWO-PERFECT-FLUID SOLUTIONS

Let T, and T, be the energy-momentum tensors of two
perfect fluids with velocities, densities, and pressures
n,p,p; and u,p,,p,, respectively. Let ¥ be the relative
velocity: that is,

u=—1*(n+V) . 27)

Vi-y?
By splitting the energy-momentum tensor of the mixture
of both components, i.e., T=T;+7T, in parts parallel
and orthogonal to the velocity n, of one of the fluids one
gets

T=th®n +if®n +nQf+7 , (28)

f=ay+biaT, (29)
where
Patp; 1—p?
t= - + s = ’
P17 P2 1— 2 PR,
4 (30)
—_ P27TP2
a=p,+p,, = V.
P17T7D 1——V2

Conversely, an energy-momentum tensor with an orthog-
onal part relative to n as given by Eq. (28) and such that
b|7] <1, may be interpreted as the mixture of two perfect
fluids, n being the velocity of one of them. The densities,
pressures, and relative velocities are given by the equa-
tions

1 1 —
pl_p2=t_—b—' p2+p2=;_bt2’
(31)

p,tp,=a, V=>bf.

The question arises here, what initial conditions must be
taken in order to guarantee that the orthogonal com-
ponent of the energy-momentum tensor keeps the form
characteristic of two perfect fluids?

We have not treated this point in all its generality, but
we have found a sufficient condition that allows us to
construct specific examples. Let us state a preliminary
result.

Lemma. All solutions of Einstein’s equations, satisfy-
ing the requirements of the previous section (see Table I),
plus the condition 7=T'7, satisfy

Q=Q(x%H,), H=H(x%H,),

3’ InQ oH - 0 e
———=———, n+trf=3F(x",H,) .

r= 3H,

~ ax%H,
To prove this, we apply the differential operator d to Eq.
(12) and take into account Eq. (10), obtaining
3(d InQ)=T7,. As dInQ| ,_ =0, one gets dInQ
«<dH,. Therefore, ) depends only on H, and x° Tak-

TABLE 1. Shear-free geodesic non-perfect-fluid solutions.

Initial metric

Initial conditions
Three-dimensional field equations

TOT,'r]O such that —-3dixT170T+d1]0=0
Ric(7)— 1R (P)7=2(F, — 1ne7)

Evolution

Initial conditions
Arbitrary function
Evolution equations

Qo=1,7m0,Hy, fo=dH,
trf

BOQ=QH

3H =—3H*— L(n+utrf)
3o( Q%)= —Qdivi

8of = —3HT— +d (n+1trF)

Energy-momentum tensor
T=then+i®n +n7+7
7=Llirfy +7, +1{—Vd InQ+ 7 InQe ¥ InQ

—17[(VInQ)*~A 0]}
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ing into account this result, and considering again Eq.
(12) we get H=H (x% H,). Substituting =T, into Eq.
(21) one gets that 5+tr7 is also a function of x° and H,,.
Finally, from the relation d InQ < dH, we get

2
3(d n0) =12 _4py
ox 0H,
and considering 9(d InQ)=TT7, one gets

'=(3%nQ)/(8x°%H,)=0H /3H,. Using this lemma, we
can state a sufficient condition to guarantee the two-
perfect-fluid condition.

Theorem. A solution of Einstein’s equations, verifying
the condition 7 =<7, and the requirements of the previous
section (Table I), may be interpreted as the sum of two
perfect fluids, if the initial conditions {7,,%a,7} satisfy

(i) T3 =bo(fo®Ty—1737) ,
(ii) Viy=Aglo®F+ue? -

To prove this let us consider the expression (26) for the
energy-momentum tensor. Taking into account the re-
sults of the lemma we have

dInQ= 861;11? [
Vdino=30lygy ¥l o )
3H, ' °" aH? 0®1o
and taking into account the condition (ii), one gets
Vd InQ=(AyB+B )T ® Ty + 187 (34)
with
B= aalg? and 3'288—1/{30 . (35)

By substituting Egs. (33) and (34) into the expression (26)
we get the characteristic energy-momentum tensor of a

two-component fluid [Eq. (29)], with
aQ?=10%r7—173h T2, (36)
bT2=1(2by+B*—B —AeB) . 37

The following remark will be very useful in order to solve
the three-dimensional Einstein equations. Let us write
7, =k, with v a unitary spatial vector, v2=+1. It is easy
to prove, as a direct consequence of the requirement (ii)
above, that v is geodesic, irrotational, and shear-free, and
its length x depends only on H,,.

This means that the initial sheet x°=0 admits also a
foliation with a unitary normal v which is also shear-free
and geodesic. Therefore we can try to solve the field
equations by the same procedure we used at the begin-
ning of this paper, that is we shall split the three-
dimensional Einstein equations with respect to the folia-
tion defined by the vector field v (2+ 1 formalism).

A resume of the results of the section is presented in
Table II.

V. THE INITIAL METRIC
FOR TWO-PERFECT FLUID SOLUTIONS

To determine the initial metric 7, one must solve the
three-dimensional Einstein equations (22). We will devel-
op the idea stated at the end of the previous section, that
is to solve the three-dimensional Einstein equations by
applying the 2+ 1 formalism. Taking into account the
condition (i) above, one can write the source tensor 7 in
the form

T=boT,®Ty— Lbok*+10)7 . (38)

The basic variables are, as is well known, the metric in-
duced on the sheets,

G=7—v®v (39)

A~
and its extrinsic curvature, K= —1L,6=—Vv, which,

TABLE II. Shear-free and geodesic two-perfect-fluid solutions.

Initial metric

Initial conditions

Three-dimensional field equations

7o =bo(T®Ty— Lk?7), Ty=dH,
7o such that —3di¥'for+d770=0
Ric(7)—1R7=2(F; — +no7)

Evolution

Initial conditions
Arbitrary function
Evolution equations

Qo=1,70,Ho,bo, To=dH,
trf

aoﬂ:QH

3H =—1H>— L(n+trf)
3,(Q2n) = — Q2div(T'F,)
r=H'

t_:Ft_o

Energy-momentum tensor
T=tnen +i®n +n®f+7, T=ay+biet
Q%= %tar?— %bi r:
bT?=1(2by+ B2~ B — AoB)
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taking into account the fact that it is geodesic and shear-
free, will be of the form

R=—hnéo . (40)

Let us introduce coordinates x,y,z, adapted to the foli-
ation, 'with lapse function equal 1 and the shift vector
equal to zero. In these coordinates we can write

1 0

v=dz, 7= 0 0,5

, 41)

where 4,B=1,2; x'=x, x2=y. The tensor 7 can be
written
T=170V +T7®v +7, T:%bokz—‘%ﬂo ,
(42)
7=0, 7=—1(bok’+1)5 .

The three-dimensional Einstein equations can be split us-

ing Egs. (1)-(6) with m =3, and e=+1, in a set of
boundary conditions
tr Ric(6)=2h%—4r, (43)
d,h=0 (44)
and a set of evolution equations
9,6 =2h¢é , (45)
9,R =2(¥—trr6)—Ric(8) . 46)

The Bianchi identities give us

or _
32 2th +hé&(z), 47)

d(tr7)<dz , (48)

where we have written &(z)=tr7. All of the two-
dimensional metric is conformally flat, and its Ricci ten-
sor is proportional to the metric. So, we introduce the
conformal factor w by

6=0w%, (49)

where 8 is the flat metric. Then Eq. (43) is equivalent to

Ric(6)=(h?—27)6 (50)
or what is the same
Aglno=(27—h*)w? , (51)

~where Aj is the Laplacian operator corresponding to the
metric 8. Substituting (50) into Eq. (46) and taking into
account that trr=7+tr7, we write the latter in the form
3,h =—h*+tr7 . , (52)
From the boundary condition (44), we know that 4 only
depends on z; therefore we can write @*=r(z)¢*(x',x?),

with r(z) taken to be equal 1 on the initial surface z=0.
Equation (51) can now be written

Aglng=(27y—h})p> (53)

and the evolution equations simplified to

dr _

o =rh , (54)

dh _ >

1z h*+&z) . (55)
This system admits a constant of motion

3,[(h2—27)0?]=0 (56)

from which we can get

2
r
— _p2y_0 2
T=(27, h0)2r2 +1n*. (57

For some purposes it will be useful to introduce the radial
coordinate r =r(z); then we can write

v ydx'dx/=eMdr?+r2¢X(x *)8 4pdx 4dx? ,
2 (58)
dz
dr

M =

From Eqgs. (54) and (55), it is easy to get the equation for
Alr),
de
dr

and using (58) and (54) one determines 4 as a function of
r:

=2r&(r) , (59)

hi=p 21, (60)

Finally, from Eq. (42) we get
2

.

box"‘=(2fo~ht2))?02+%h2—%§(’) ; 61)
2 r(z) 2

o=~ (270—hg) 5 —3h = E(r) (62)

that, with Eqgs. (57) and (38) determines the source 7 of
the three-dimensional Einstein equations.

VI. THE EVOLUTION EQUATIONS
FOR TWO-FLUID SOLUTIONS

Here we study the evolution of the three-dimensional
metric with the time x°. For that, we need to solve the
quasilinear system given by Egs. (12), (21), and (20):

3,Q1=QH ,
dH = —2H?—L(n+uf),
3,( Q%)= —QAiv(TF,) .
Substituting in the last equation
Q2div(T7,)= —k* [’ + T(Agi®+ 3ug)
we get
Q2 =ny+Aok® + 3po— (Agk® +3u0)B— KB . (63)

The space-time function trf in the evolution equation is
related to the sum of the pressures, which we denote by a,
by Egs. (36) and (37), i.e.,
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Q27 =302% + 13(2bo + B —B —AoB) . (64)

From the relations dH,=kdz, and taking into account
Eq. (54) we get

. =-’f—a, .

0

By substituting this expression into the evolution equa-
tions we get

Q=0QH ,

doH =c3£73,ﬁ—%H2—ﬂ‘2(c1+c23+gc3ﬁz)—a, (65)

‘ rh
30{3’=78,H ,
where c¢|,c,,c; are given by
¢1 =410+ (Ag+bo K>+ 3] ,
02:_(,1,0'*"%)\.01(2) N (66)
1,2

C3:7K

It is easy to derive the following expression for Aq and p:

, (67)

Uo=x(r)h(r) .

In consequence, ¢,,c,,c3, depend only on the coordinate
r.
The evolution equations (65) can be put in matrix form

dou = Ad,u +F ,

000 cyrh
A=100 M|, M=—,

ONO kQ
N=£K”—, u=(Q,H,B) ,

This is a strictly hyperbolic system, because the matrix
A has real and distinct eigenvalues A=0, A, =+1/¢c; /Q.

VII. SUMMARY AND CONCLUSIONS

We have obtained a family of solutions of Einstein’s
equations, up to a strictly hyperbolic system of
differential equations. The metric has been written in the
form

ds?=—(dx°)*+ Qx° r)[eMdr’+r2¢*(x *)8 4pdx *dx?] .

A solution is determined by giving (1) two real numbers

I8

TABLE III. Results of this paper.

Four-dimensional metric
ds?=—(dx°P?+Q(x° r[e™dri+ri¢(x 1)8 pdx Adx ?]

Degrees of freedom
ho, 7o, To(x ), E(r),k(r),a (x%r)

Spatial metric
yidx‘dx/=eM"dr*+ri¢*x 4)8 4pdx 4dx B
e*k=—zf;gasus+r@3
Aglng=(27,—h3)$?

Evolution equations

3HQ=0QH
aOH=c3K’—(’)’2a,B—;H2—Q-2(c,+c2/3+§c3/32)—a

aopz%a,H

=13 dx

Q=3 | 2§(r)+rdr +2kh

h | dk

c2=—z r~d7+;c
cy=1«k?

ho,ro; (2) a function 7o(x ',x?) defined on the initial sur-
face r =ry, x%=0; (3) two functions of r: «(r), &(r); and
(4) a space-time function depending on x° and r: a (x°,r).

The evolution factor ) is determined by solving the
strictly hyperbolic quasilinear system (65). By using Eq.
(31), the family of solutions may be interpreted as a two-
component fluid.

The arbitrary function 7, decides the geometric proper-
ties of the two-surfaces x°=const, r=const. So, taking
To constant we get spheres, hyperboloids or two planes
depending on the sign of 27,—h3. The function ¢ must
be a solution of the elliptical equation (53).

The arbitrary function a (x’ ) may be specified by an
election of the equation of the state of each component,
or by the law of interaction of the two components. Fi-
nally, the functions k and £ may be chosen according to
the total density and the sum of the density and pressure
of one of the components.

A summary of the results is presented in Table III.
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