Emission coordinates in Minkowski space-time
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Abstract. The theory of relativistic positioning systems and their natural associated emission
coordinates are essential ingredients in the analysis of navigation systems and astrometry. Here we
study emission coordinates in Minkowski space-time. For any choice of the four emitters (arbitrary
space-time trajectories) the relation between the corresponding emission coordinates and the inertial
ones are explicitly given.
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Navigation systems (GPS, Galileo, ...) use as starting point Newtonian conceptions,
the role of the Relativity theory being banished to monitor and correct, by trial and error,
the running of the system. In order to make progress in the theoretical understanding of
the current navigation systems a fully relativistic approach to positioning systems has
been proposed [1]. Here, we present some results to move forward in this proposal.

A relativistic positioning system is basically defined by four emitters broadcasting
their own proper time by means of electromagnetic signals. Then, at each reception
event, the received four times define the emission coordinates of this event. The asso-
ciated coordinate hypersurfaces are four foliations of future light cones based on the
emitter’s trajectories. Alternatively, the past light cone of a given event P cuts the emit-
ter world lines at the points 74 (%), the proper times (74) being the emission coordinates
of P (A =1,2,3,4). Notice that it is possible to construct emission coordinates in any
space-time and that, in order to define them, the emitters don’t need to be synchronized.
The basic properties of the emission coordinates have been analyzed elsewhere [2, 3].
The coordinate covectors, dt, are null and future-directed, and the coordinate vectors,
as well as the 2-planes they expand, are space-like.

Here we study emission coordinates in Minkowski space-time when the world-lines
of the emitters y*(7#) are known for an inertial system. Our goal is to find the inertial
coordinates {x*} of a given event in terms of its emission coordinates {74}. Applying
these expressions, a user of the positioning system (that knows his location in emission
coordinates) is able to determine his coordinates with respect to the given inertial system.
We write the main relations of a positioning system in flat metric, and then, we present
the transformation from emission to inertial coordinates, for any choice of the world-
lines of the four emitters. For some particular examples, see the recent paper by Bini et
al. [4].

The electromagnetic signal received at the event x of inertial coordinates {x*} from
the emitter " follows the future directed null direction /4, connecting ¥* and x. The
system of quadratic equations
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describing four families of such null cones are here called the null propagation equations
of the positioning system. We want to solve this algebraic system for the unknown x
when the trajectories of the emitters 74 are known data, no matter how these trajectories
might be. In order to do that, we are going to split the system in a sole quadratic equation
and a degenerate linear system for the unknown y = [* = y* —x,
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All the quantities are referred to the emitter y*. The vector ¢* = 4 — y* = [* — [¢
(a=1,2,3) gives the relative position of the a-emitter with respect the reference emitter.
By construction e is space-like, Q¢ = (e?)?/2 being the Ruse-Synge world function
of the referred and reference emitters [5]. Furthermore, given an arbitrary observer u
(u? = 1) we have the conditions (emission inequalities)

VA (=) u>0 3)

insuring that the four null directions are future directed. On the other hand, the regularity
of the coordinate system, dt! A dt?> Adt3 Adt* # 0, implies that y = *(el Ae? A e3)
is not zero (x denotes the Hoodge dual operator). Consequently, the above considered
linear system has rank three. The equations (2), jointly with the emission inequalities
and the regularity condition, constitute the main relations of a positioning system in
Minkowski space-time. The solution of the linear system is written as y = y, + A y where
Y is a particular solution and A a real parameter. The condition y*> = 0 gives
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which allows to determine A.

The four events y*(74) define the internal configuration of the emitters for the event
whose emission coordinates are {t4}. The geometric elements associated with an in-
ternal configuration are the vectors e, the 2-planes and the 3-plane that they expand.
The sign of x? provides the causal character (space-like, light-like or time-like) of this
3-plane. In the coordinate domain Y of the emission coordinates, one can distinguish
three disjoint regions according with the causal character of the emitter configuration
of their events, Yy = {(t4)[ x> >0}, \; = {(74)|x*> =0} and Y, = {(7*) | x> < 0},
so that ¥ = Y, U Y; U Y;. Here, the important fact is that no discontinuity nor lake of
differentiability will be reflected in the solution when we go from an event with a given
causal configuration to another event with different causal configuration. In order to ob-
tain a sole expression relating emission and inertial coordinates in all the domain Y of
emission coordinates, an additional element & is also required. This element £ is an
arbitrary vector transversal to the configuration, & - ¥ # 0. A particular solution of the
linear system is then given by
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where H = +(Q' e Aed + Q23 Nel + Q3 e! Ae?) is a function of the configuration of
the emitters. Note that £ -y, = 0. To reach the solution y, let us consider the straight
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FIGURE 1. A space-like configuration (> > 0). The event C where y; and I intersect is the center of
a space-like 2-sphere S containing the four configuration events; C is the particular solution y. = C when
& = x. It has been plotted the case when y is future-directed. Under this condition, the emission solution
corresponds to take the root A, . Otherwise (when ¥ is past-directed) we must take the root A_ in order to
obtain the required emission solution.

line y; defined by the equidistant points from the four configuration events defining the
hyperplane I'. Any point of the line y; is a solution of the linear system. Figures 1, 2 and
3 are 2+ 1 diagrams of this geometric construction . Of course, the solution is at zero
(Minkowskian) distance from the four configuration events. Then, looking for a sole
expression of A that solves (4) for any value of y2, we arrive to the following result.

Proposition In all the domain of emission coordinates, the transformation to inertial
coordinates, y = y(74), is given by

y=y«+Ax

where y,, x and A are given in terms of the emitter configuration as
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and where & is any vector transversal to x, & - x # 0.

Finally, a last comment is in order. The control segment of the current navigation
systems is based on the Earth surface. In contrast, in a fully relativistic scheme, it is a
secondary segment which might be referred to the satellite constellation [1]. Our present
result opens the door to more investigation in this direction by taking into account the
Earth gravitational field.
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FIGURE 2. A time-like configuration (3> < 0). There are two distinct points having the same emission
coordinates but different Cartesian representation, y; and y_, respectively. Both roots of the quadratic
equation provide emission solutions. The straight line y, is space-like and cut the time-like hyperplane
" at the event C, which is the center of a space-like 2-hyperboloid H containing these four configuration
events.

FIGURE 3. A light-like configuration (y> = 0). There is no center. We choice an arbitrary vector &,
external to the configuration, and select the particular solution y, that is orthogonal to the chosen vector.
The straight line y; is now null as well as the hyperplane I', and they don’t cut. The four configuration
events stay on the space-like paraboloid P.
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