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Minkowskian description of polarized light and polarizers
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A conventional Stokes description of polarized light is considered in a four-dimensional Lorentzian space,
developing a seminal idea of Paul Soleillet@Ann. Phys.~Paris! 12, 23 ~1929!#. This provides a striking
interpretation for the degree of polarization and the Stokes decomposition of light beams. Malus’s law and
reciprocity theorems for polarizers are studied using this Lorentzian formalism.
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I. INTRODUCTION

Polarization phenomena are associated with transv
waves and, at sufficiently long distance from the sour
~plane wave zone!, they are described by four real param
eters including total intensity. For example, a quasimo
chromatic partially polarized plane light wave is traditiona
represented as an incoherent superposition of an unpola
light and a totally polarized one; then, its polarization state
specified by the intensity of its components and the geom
~orientation, eccentricity, and sense! of the polarization el-
lipse described by the electric field of the totally polariz
component@1,2#.

The main conceptual advances in the comprehensio
polarization are achieved with the development of the opt
coherence theory. From a statistical point of view, polari
tion is interpreted as the existence of a correlation betw
the fluctuations of two mutually perpendicular compone
of the electric field at a fixed space point@3,4#. When there is
no such correlation, light is named unpolarized. Useful
rameters extensively employed in electromagnetic polar
tion phenomena are the so calledStokes parameters, a set of
physically measurable quantities from diverse procedu
~see Refs.@4,5# for a brief discussion of several methods!.
Stokes parameters involve only second-order statistics o
~stationary and ergodic! stochastic process associated with
optical field and they provide a whole description of the fie
polarization properties although, in general, they do not
termine higher-order statistics~non-Gaussian process!.

There are several ways to represent polarized radia
fields, the Stokes description, the Poincare´ ~sphere! represen-
tation, and the Wolf coherency matrix formalism being t
most popular ones@1#. The first and second are mainly use
in relation to transfer equations for polarized light and
matrix methods in optics@2,5#. The third is also well adapted
to complex representations, currently employed in quan
mechanics dealing with polarization phenomena for b
massless and massive elementary particles@6#. But when the
ordered 4-tuple of Stokes parameters is considered as a
tor in a four-dimensional Lorentzian space, these represe
tions are algebraically equivalent.
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The possibility of using a Lorentzian metric to descri
light polarization was already pointed out by Soleillet@7#
but, to our knowledge, he did not develop this idea any f
ther. Later, Perrin @8# employed a Minkowski four-
dimensional space to analyze the algebraic structure of s
scattering matrices and, more recently, several auth
@9–12# have considered the matrix description of optical li
ear systems from this point of view. However, many oth
aspects of the Soleillet idea remain unexplored, and its
velopment could provide a way of translating th
Minkowskian language from relativistic physics to polariz
tion phenomena@13#. Soleillet was also the first to introduc
matrix methods in the study of the lineal interaction of p
larized light with optical systems. This other pioneering a
pect of the Soleillet work has recently been emphasized
Brosseau@4# claiming for Soleillet the corresponding right
in the creation of the so calledMueller formalismin optics.
We also refer to the Brosseau’s monography@4# in connec-
tion with the important role played nowadays by polarizati
phenomena in several branches of science and techno
@14#. In this work, we expect to gain an insight into the oth
original Soleillet’s idea of describing polarization in a ge
metric Minkowskian language. This is our main aim.

This paper is organized as follows. We begin in Sec. II
describing polarization in the language of Minkowskian g
ometry. Unpolarized or natural light is associated with a d
tinguished timelike future-pointing vector. Partially polarize
light is represented by any other timelike vector of the sa
time orientation as natural light. Its degree of polarization
related with the hyperbolic angle between both timelike
rections. A future-pointing null direction represents tota
polarized radiation. These null vectors generate the Sto
null cone of this Lorentzian structure, which is terme
Stokes space. In Sec. III, we consider polarizers from
Lorentzian point of view, interpreting their representati
matrices as an homothetic Lorentz boost acting on Sto
space. In particular, two common examples~polarization on
reflection and refraction, and polarization produced by T
omson scattering! are considered. In Sec. IV we present t
law of reciprocity in optics for ideal polarizers using th
Stokes space formalism and, lastly, an extension of this
for nonideal polarizers is obtained from a generalized Ma
law. Finally, in Sec. V, we summarize the main results a
comment on the physical interest of the Lorentzian appro
in polarization phenomena. Some of these results were c
©2003 The American Physical Society05-1



0

la
n
on
en
e

fo

r
te

y

n

y

le

-
In
t

ed
a

its
th
m

-

d

s

co-
is

y

be
he-

za-

r-

al

-

e

n

ly
in-

ion
-

J.A. MORALES AND E. NAVARRO PHYSICAL REVIEW E67, 026605 ~2003!
municated at the Spanish relativistic meeting, ERE 20
@15#.

II. LORENTZIAN DESCRIPTION OF POLARIZED LIGHT

Stokes parameters are defined for monochromatric p
waves, and then extended for quasimonochromatic o
whose amplitudes and phases are slowly varying functi
on the scale of the coherence time. According to conv
tional notation, they are arranged in an ordered 4–tuplS
5(I ,Q,U,V) subjected to two physical constraints@1#,

I .0, I 2>Q21U21V2, ~1!

I being the light intensity and where the equality occurs
totally polarized light. ParametersU andQ are related to the
linear polarization andV gives information about circula
polarization. The constraints mentioned above may be in
preted geometrically using aLorentzian terminology; they
represent the points that arewithin or on the positive shell of
a Minkowskian cone~Stokes cone!. The polarization degree
P satisfies

0<P[
AQ21U21V2

I
<1. ~2!

Mathematically, the parameterI can be extended for an
real value in order to consider the set of 4-tuplesS
5$(I ,Q,U,V)%5R4. This set, endowed with a Lorentzia
metric will be called the~extended! Stokes space. Let S
5(I ,Q,U,V) and S85(I 8,Q8,U8,V8) be two Stokes vec-
tors, that is, S,S8PS, then (S,S8)5II 82QQ82UU8
2VV8 is their scalar product.

Completely polarized lights (P51) are represented b
null vectorsS, (S,S)50, with positive intensity and they
generate theStokes cone. A completely unpolarized (P50)
or natural light of intensity I .0 is represented byS5Iu,
where u5(1,0,0,0), (u,u)51. A partially polarized light
with 0,P,1 is a positive oriented vectorS¹$u%[$lu,l
PR% pointing into the Stokes cone, (S,S).0 and I .0.
Then, the intensity of~a light represented by! S is the scalar
product of u and S, I 5(u,S).0. The set of null Stokes
vectors corresponds to the set of two-component comp
vectors of the Jones formalism~Jones’ vectors!, frequently
employed in optics@16#. However, Jones formalism only ap
plies to phenomena involving totally polarized beams.
contrast, when one deals with depolarization processes
use of both positive and null Stokes’ vectors are requir
Hence, the use of the Minkowskian geometry can be relev
in dealing with partially polarized light and changes of
degree of polarization. Furthermore, the role played by
Lorentz group in modeling the usual devices commonly e
ployed in linear optics~e.g., polarizers and retarders! has
been extensively analyzed in the literature@17#.

Any partially polarized lightS can be expressed as a lin
ear combination ofu and a null vectorl. Geometrically, the
intersection of the Stokes cone and the two-plane expan
by Sandu gives two null directions$l% and$m% that represent
totally polarized light beams with opposite polarization
02660
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This decomposition ofS is the formal interpretation of
Stokes representation of partially polarized light as an in
herent mixture of natural and totally polarized light and it
expressed in the following way:

S5~ I 2I p!u1 l , ~3!

wherel is a totally polarized light whose intensity is given b
I p5(u,l ). Another decomposition ofS, with I p5(u,m), is
obtained replacingl by m in Eq. ~3!.

Now, let us examine how the polarization degree can
interpreted in the Lorentzian approach to polarization p
nomena. From Eq.~3!, the norm ofS is (S,S)5I 22I p

2 and
from Eq. ~2!, the degree of polarization is expressed as

P5
I p

I
5A12

~S,S!

~u,S!2
. ~4!

Introducing the unit vectors and using the familiar relativis-
tic notation, we can write

S5A~S,S!s5A~S,S!g~1,bW !5I ~u1bn!, ~5!

where

g5~u,s!, bW 5bn5~q,u,v!, ~6!

with (u,n)50 and (n,n)521, and q[Q/I , u[U/I , v
[V/I being thenormalizedStokes parameters. Then, Eq.~4!
is written as

P5A12
1

g2
5b[ubW u ~7!

that provides a new interpretation of the degree of polari
tion.

Proposition 1. In the Lorentzian representation of pola
ized radiation, the degree of polarizationP is interpreted as
the normb of the ‘‘relative velocity’’ between the unitary
Stokes vectorsu ands associated, respectively, with natur
and partially polarized light.

Furthermore, from Eq.~3! and settingu5( l 1m)/(2I p),
each polarized lightS of intensity I can be decomposed ac
cording to the following expression:

S5
1

2b
@~11b!l 1~12b!m#, ~8!

where bothl and m are null vectors which have the sam
intensity I p5(u,l )5(u,m)5bI , and with opposite projec-
tions in the three-space orthogonal tou. The physical mean-
ing of Eq. ~8! is clear because it reflects the well know
equivalence between a light beam having intensityI and po-
larization degreeb, and two incoherent streams of total
polarized light having states of opposite polarization and
tensities (11b)I /2 and (12b)I /2.

This interpretation is also extended to the decomposit
of natural light of intensityI in two incoherent opposite po
larized waves with the same intensityI /2. These waves can
5-2
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be linearly polarized and mutually perpendicular, or circ
larly polarized with opposite helicities, one right handed a
the other left handed~cf. Refs. @1,2#!. It is remarkable that
natural light is the only one that is contained in every tw
plane generated by two arbitrary opposite polarization sta
Finally, let us observe that the two decompositions of natu
light mentioned above give a qualitative interpretation
Zeeman’s effect produced by magnetic fields which are,
spectively, tranverse or longitudinal with respect to the l
of sight.

III. LORENTZIAN INTERPRETATION OF POLARIZERS

Starting with the vectoru representing unitary natura
light, we can consider the two-tensorT5u^ u. For a given
polarized lightS5I (u1bn), we haveT(S)5Iu. So,T pro-
duces a pure depolarizing effect, without changing the int
sity. By contrast, a polarizer produces the opposed effec
gives a polarized light beam from an unpolarized one. T
matrix polarizer representation that is usually employed
optics @5# is written in the following way using tensoria
notation

A5
1

2
~k1l ^ m1k2m^ l !1Ak1k2h, ~9!

with k1 and k2 as the transmission coefficients (0<k2<k1
<1) and where

l 5u1e, m5u2e, 2h5p^ p1q^ q, ~10!

$u,e,p,q% being an orthonormal basis of Stokes space. Al
braically, k1 and k2 are eigenvalues ofA having associated
null eigendirections$l% and $m%, A( l )5k1l and A(m)
5k2m; the vectorsl andm represent totally polarized light
with opposite polarizations. The special case of anideal po-
larizer corresponds tok151 andk250 because such a de
vice transmits light without absorption and only in a giv
direction. Therefore, an ideal polarizer can be interpreted
a projector on a null direction of Stokes space. In the gen
case, let us denote

a5Ak1k2Þ0, c5
1

2
ln

k1

k2
, ~11!

and, looking for a suitable parametric Lorentzian form f
polarizers, Eq.~9! can be expressed asA5aL, whereL is
given by

L5coshc~u^ u2e^ e!2sinhc~u^ e2e^ u!1h.
~12!

This expression corresponds to the tensorial form of the
trix expression of a Lorentz transformation, that is, an hyp
bolic rotation in the two-plane generated byu and e. This
two-plane contains exactly two null directions which are t
eigendirections of the polarizer$l% and$n%. The 434 matrix
form of Eq.~12! is more usually employed in applied optic
as can be found in some references quoted in Ref.@17#. Con-
sequently, the linear transformation on Stokes space re
02660
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senting a nonideal polarizer can be seen as the compos
of an homothetic transformationaId , whereI d is the 434
identity matrix, and a special Lorentz transformationL
~boost on the$ l ,m%[$u,e% plane! whose velocity paramete
is

b5tanhc5
k12k2

k11k2
. ~13!

Note that this velocity can also be interpreted as the deg
of polarizationP that the polarizer produces when it acts
natural light according to the relation

A~u!5
1

2
~k1l 1k2m!5

1

2
~k11k2!Fu1

k12k2

k11k2
eG

5I ~u1be!, ~14!

wheree5( l 2m)/2 andI 5(k11k2)/2 is the intensity of the
transmitted beam, when the incoming natural light is unita
The inversion of Eqs.~11! and~13! gives the eigenvalues o
A in terms of the polarizer parametersa andb,

k15aA11b

12b
, k25aA12b

11b
. ~15!

From Eq.~9!, the use of the tensorial notation will allow t
obtain results in the following section about the generaliz
Malus law and reciprocity theorems in optics. Also, it w
make possible to express these results in a more com
form than in the current matrix formalisms. Before that,
us gain more insight into the Lorentzian description of so
usual polarization phenomena. As a first example, we s
cialize to light polarization on ordinary reflection and refra
tion @1#. Let us consider light traveling from a dielectric me
dium M1 of refractive indexn1 to another oneM2 whose
index isn25nn1. The media are separated by a flat interfa
and are considered homogeneous and isotropic. LetR (T) be
the reflectivity ~transmissivity!, that is, the ratio of the
amount of reflected~refracted! energy flux to the incident
one. As a consequence ofFresnel’s formulas, R and T de-
pend on the incidence angle (u i), the refraction angle (u t),
and the polarization state of the incident light. In particul
for perpendicular (') and parallell (i) polarizations with
respect to the incidence plane one has the respective as
ated quantitiesR' , Ri , T' , andTi , which only depend on
u i andu t according to the following expressions@1#:

R'5
sin2~u i2u t!

sin2~u i1u t!
, Ri5

tan2~u i2u t!

tan2~u i1u t!
,

~16!

T'5
sin 2u i sin 2u t

sin2~u i1u t!
5Ti cos2~u i2u t!.

We consider that the incidence angle is smaller than
critical angle that corresponds to total refraction. The line
polarization degreesPR andPT associated with the reflecte
and refracted waves~for incident natural light! are defined,
respectively, by
5-3
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PR5UR'2Ri

R'1Ri
U, PT5UT'2Ti

T'1Ti
U. ~17!

So, for each incidence angle, the polarization on reflec
can be described by Eq.~9! with transmission coefficients
k15R'>Ri5k2, whenn1<n2. And, in this case, the po
larization on refraction is described in a similar way cons
ering k15Ti>T'5k2. The matrix forms corresponding t
these situations can be found in Refs.@4,14# and references
therein.

An outstanding situation occurs for Brewster inciden
angle, which is given by the conditionu i1u t5p/2 and cor-
responds to tanu i5n. At this angle, we haveRi50, Ti
51, and

R'5cos2~2u i !5S 12n2

11n2D 2

, T'5sin2~2u i !5S 2n

11n2D 2

.

~18!

Consequently, at Brewster angle, the polarization on refl
tion is described by a quasiideal polarizer withk15R' and
k250. Moreover, for the refracted light, when a new refra
tion from M2 to M1 is produced, we can write

k15TiT i851, k25T'T'8 5S 2n

11n2D 4

, ~19!

T (T 8) being the transmissivity fromM1 to M2 ~from M2 to
M1). Note thatTi5T i8 andT'5T'8 at Brewster angle. From
Eq. ~11! the homothetic and boost parameters are now gi
by

a5S 2n

11n2D 2

, c52 lnS 11n2

2n D .

When repeated refractions are produced using a pile od
identical polarizer plates, the polarization degree of the tra
mitted light is obtained taking into account Eq.~13!, and it
results

b5tanhc5

12S 2n

11n2D 4d

11S 2n

11n2D 4d .

Finally, another example for consideration is the matrix
sociated with a process of Thomson scattering of photon
free electrons, whose expression is@6#

A~u!5
1

2
r 0

2S 11cos2u sin2u 0 0

sin2u 11cos2u 0 0

0 0 2 cosu 0

0 0 0 2 cosu

D ,

~20!
02660
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wherer 05e2/mc252.82310213 cm is the classical electron
radius andu the scattering angle~in the laboratory rest
frame!. From a Lorentzian point of view, this matrix repre
sents a linear polarizer with

a~u!5r 0
2 cosu, b~u!5tanhc~u!5

sin2u

11cos2u
.

In this case, the transmission coefficients arek15k'5r 0
2 and

k25ki5r 0
2cos2u and now, the subscripts represent the p

pendicular and parallel projections with respect to the sc
tering plane. Their ratio is 1:cos2u, according to the Ray-
leigh’s law @2#. For u5p/2 the radiation is totally polarized
and the direction of the electric field is perpendicular to t
scattering plane.

IV. MALUS’S LAW AND RECIPROCITY THEOREMS

In this section, we consider thereciprocity law in optics
and some of its extensions using Stokes space descrip
For this and related issues we refer to a work by Perrin@8#,
where some interesting comments about its range of vali
and its connection with quantum principles can be found

For the sake of clarity, we study first the case of an id
polarizer. It can be represented in the following tensor
form:

N5
1

2
l ^ m5

1

2
~u^ u2e^ e2u^ e1e^ u!, ~21!

as can be seen from Eq.~9! with k151, k250, l 5u1e, and
m5u2e. Its action on a Stokes vectorS5I (u1bn) gives

N~S!5
1

2
~m,S!l 5

I

2
@12b~e,n!# l . ~22!

Contracting this expression withu, we obtain the light inten-
sity after crossing the polarizer.

Proposition 2. When a light beam of intensityI in and
degree of polarizationb crosses an ideal polarizer, the inte
sity of the outgoing beam is given by

I out5
1

2
@12b~e,n!#I in , ~23!

wheree andn represent the unitary orthogonal part~relative
to the unitary natural lightu) of the Stokes vector associate
respectively, with the outgoing and incoming beams.

Notice that theMalus law is recovered from Eq.~23!
when the incoming light is completely polarized (b51) and
taking (e,n)52cos 2u, according the chosen Lorentzia
signature of Stokes space. Then,I out5I incos2u. When the
incoming beam is linearly polarized,u is exactly the angle
between the incident electric field and the polarizer transm
sion axis. Observe that a rotation of anglea around the di-
rection of light propagation corresponds to a rotation
angle 2a in the $Q,U% plane of Stokes space. Moreove
taking into account Proposition 2, we can analyze the re
procity law for an optical system constitued by two ide
5-4



w

s
hi
ow

e

th

e

us
et
E

xi-
ht

m-
o-
q.
n
re-

pa-
the

rs

r-

ing
o

f

ous

,
er-

al

MINKOWSKIAN DESCRIPTION OF POLARIZED LIGHT . . . PHYSICAL REVIEW E 67, 026605 ~2003!
polarizers represented asN and N85 1
2 l 8^ m8, with l 85u

1e8 andm85u2e8. Contracting withu the matrix product
NN8, we find

4i ~u!NN85~m,l 8!m85@12~e,e8!#m8, ~24!

where i (x) stands for the inner product with the vectorx,
@ i (x)N#n5xmNmn . So, from Eqs.~24! and ~22! and using
the fact that 2i (u)N(S)5(m,S), we arrive at the following
result.

Proposition 3. Let S5I (u1bn) andS85I 8(u1b8n8) be
two light beams crossing~in opposite directions! a system
constituted by two ideal polarizersN andN8. The intensities
of the outgoing light beams are related by

i ~u!NN8~S8!

i ~u!N8~S8!
5

i ~u!N8N~S!

i ~u!N~S!
5

1

2
@12~e,e8!#. ~25!

A direct consequence of the last proposition is the follo
ing implication:

i ~u!N~S!5 i ~u!N8~S8!⇒ i ~u!NN8~S8!5 i ~u!N8N~S!

that reflects the statement of thelaw of reciprocityin optics
@8#: ‘‘If two incident polarized beams have equal intensitie
the inverse emerging beams of the same polarization, w
are associated with them, also have equal intensities.’’ N
this law follows as a corollary of Proposition 3.

Proposition 4 (reciprocity theorem). Let S andS8 be two
polarized beams andN and N8 two ideal polarizers. If the
intensity ofN(S) is equal to the intensity ofN8(S8), then the
outgoing beamsNN8(S8) and N8N(S) have also the sam
intensity.

Next, the results established above will be extended to
case of nonideal polarizers represented by Eq.~9!. In this
case, when an incoming light beamS5I (u1bn) crossesA,
the outgoing beam has the expression

A~S!5
I

2
$@k11k22b~e,n!~k12k2!#u1@k12k22b~e,n!

3~k11k2!#e%2Ak1k2Ib@~p,n!p1~q,n!q# ~26!

that reduces to Eq.~22! for k151 andk250. Theu compo-
nent of A(S) will give the outgoing intensity, and then, w
obtain the generalized Malus law.

Proposition 5 (generalized Malus law). When a light
beamS5I in(u1bn) crosses a polarizerA represented by
Eq. ~9!, the outgoing intensity is given by

i ~u!A~S!5
1

2
@k11k22b~e,n!~k12k2!#I in . ~27!

In order to exhibit the Lorentzian character of the Mal
law, let us express it in terms of the boost and homoth
parameter in the case of nonideal polarizers. Replacing
~15! in Eq. ~27!, the Lorentz factor 1/A12b2 emerges in a
natural way. So, denoting (e,n)52cos 2u according to our
election of the Lorentzian signature, we obtain
02660
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I out5
a

A12b2
~11b b cos 2u!I in , ~28!

where 0,b,1. As a consequence of Malus’s law, the ma
mum and minimum transmitted intensities for incoming lig
of a given polarization degreeb are given by

I 65
1

2
@k11k26b~k12k2!#I in . ~29!

which allow one to define, for eachb, a fractional polariza-
tion PA(b) associated with the polarizer,

PA~b!5
I 1~b!2I 2~b!

I 1~b!1I 2~b!
5b

k12k2

k11k2
5bb. ~30!

This quantity is directly related to the polarizer boost para
eterb5PA(1), that is, the polarization degree of the outg
ing light when the incident one is natural, according to E
~14!. Moreover, taking in mind the kinematical interpretatio
of the polarization degree given in Proposition 1, the afo
mentioned Lorentz factor, defined from the parameterb, in-
herites this kinematic meaning too. But, in general, this
rameter is not equal to the polarization degree of
outgoing beam, as will be explained next. From Eq.~26! and
using the decomposition~5! for the emerging beam,A(S)
5I out(1,bW out), the outgoing normalized Stokes paramete
are expressed as

bW out5
1

12bb~e,n!
$@b1~A12b22b!~e,n!#e1A12b2n%,

~31!

where we have put

2@~p,n!p1~q,n!q#5n1~e,n!e.

Therefore, whennÞe, bW out belongs to the two-plane gene
ated bye and bW in5bn. Otherwise, whenn5e, bW out , and
bW in are collinear, and the polarization degree of the emerg
beam obeys the relativistic law for the addition of tw
collinear ‘‘velocities’’ be andbe. Thus, the following prop-
erty holds.

Proposition 6. When a light beamS5I (u1be) crosses a
polarizerA represented by Eq.~9!, the polarization degree o
the outgoing light,Sout5I out(u1boute), is given by

bout5
b1b

11bb
. ~32!

There exist situations in Stokes space that are analog
to the ‘‘ultrarelativistic’’ limit of addition of velocities, that
is, when we add the velocityv of a material particle and the
light velocity in vacuumc this addition law gives, of course
c for everyv. For example, in the case of Thomson scatt
ing whenb51 at scattering angleu5p/2 and the scattered
radiation is totally polarized (bout51).

Finally, we study the reciprocity relations for two gener
polarizersA andA8, whereA8 is represented by Eq.~9! with
5-5
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the corresponding primed quantitiesk18 ,k28 ,e8,p8,
q8 ($u,e8,p8,q8% being an orthonormal basis!. Then, the in-
tensity of a beam after crossing throughA andA8 is given by

i ~u!A8A~S!5
1

2
@k181k282~k182k28!~e8,bW A(S)!# i ~u!A~S!.

~33!

Note that the latter expression can also be directly obtai
from the generalized Malus law~27! considering the outgo
ing intensity from the polarizerA8 and the incoming beam
A(S)5I A(S)(u1bW A(S)). Changing primed quantities for th
corresponding unprimed ones,A8(S8)5I A8(S8)(u1bW A8(S8)),
and from Eq. ~33! the corresponding expression fo
i (u)AA8(S8) may also be written. So, we obtain the follow
ing result using Proposition 5.

Proposition 7. Let S5I (u1bn) andS85I 8(u1b8n8) be
two light beams crossing~in opposite directions! an optical
system of two polarizersA and A8. Then, the intensities o
the outgoing beams satisfy

i ~u!A8A~S!

i ~u!AA8~S8!
5

12b8~e8,bW A(S)!

12b~e,bW A8(S8)!

12bb~e,n!

12b8b8~e8,n8!

I

I 8
.

~34!

When the intensity ofA(S) is equal to the intensity o
A8(S8) and for the particular case in whichn5e and n8
5e8, the following simplified expression is obtained usin
Eq. ~32!:

i ~u!A8A~S!5
k181k28

k11k2

12
b1b

11bb
b8~e,e8!

12
b81b8

11b8b8
b~e,e8!

i ~u!AA8~S8!.

~35!

The law of reciprocity for ideal polarizers~Proposition 4! is
recovered takingk15k1851, k25k2850 and, accordingly
Eq. ~13!, b5b851. For real polarizers the first fraction o
the second term of Eq.~35! is related to the correspondin
Lorentz factor. Effectively, from Eq.~15!, we obtain in this
case

k181k28

k11k2
5

a8

a
A 12b2

12b82
.

So, the Lorentz factors and the relativistic law of addition
velocities are present in the reciprocity relation given by E
~35!. Indeed, a system of two real polarizers does not o
the reciprocity principle. According to Eq.~34!, the emerging
intensities of two polarized beams propagating in oppo
directions are different even if their incoming intensities a
equal. Therefore, Proposition 7 expresses the way in wh
realistic polarizers deviates from an exact reciprocity l
behavior@18#. From a mathematical point of view this devia
tion has the same origin than the known relativistic eff
namedThomas precession; the composition of two boost
along different directionsA andA8 depends on the order i
02660
d

f
.
y

d

h

t

which it is carried out@19#. In general,AA8ÞA8A and they
differ by an Euclidean rotation. This fact has been recen
analyzed by several authors in polarization optics@20#, but in
a different context than the reciprocity relations conside
here.

V. COMMENTS AND DISCUSSION

Stokes statements about the decomposition of natural
polarized light have been interpreted in a Minkowskian la
guage using the properties of causal vectors in Lorentz
geometry and the ‘‘kinematic’’ interpretation of the polariz
tion degree~Proposition 1!. So, the Stokes statement@1,2#:
‘‘Any partially polarized light may be regarded as the inco
herent mixture of an unpolarized light and a completely p
larized one,’’ reflects the property that any vector inside t
positive shell of the null cone of a Lorentzian structure~posi-
tive oriented vector! may be decomposed as the sum of a
other positive oriented vector and a null vector with the sa
orientation@see Eq.~3!#. In this line, Eq.~8! refers to the
incoherent decomposition of a partially polarized light
two totally polarized lights with opposite polarizations. Fu
thermore, the sum of positive and null vectors of the sa
orientation is always a positive vector with the given orie
tation, and so, any incoherent mixture of polarized lig
beams may be represented by a sole positive oriented St
vector.

On the other hand, the usual matrix representation of
tical devices as polarizers and retarders also has a Loren
interpretation. Up to an overall factor, they can be seen
elements of the proper orthochronous subgroup of the L
entz group acting on Stokes space. Matrices representing
larizers are homothetic to ordinary boosts, and retarders
represented by Euclidean rotations@17#. Moreover, as it has
been shown in Sec. IV, Malus’s law admits an elegant f
mulation in Stokes space~see Proposition 5! and allows us to
interpret and extend the reciprocity relation for polarize
~Proposition 7!. Note that the general expressions we ha
obtained for these laws can be specified in the special si
tions considered in Sec. III~the polarizers on reflection an
refraction, and the Thomson scattering matrix! using in each
case the given values of the transmission coefficientsk1 and
k2. Although we have considered these coefficients as c
stants it should be pointed out that, in general, they dep
on the wavelength of the incident radiation. So, our resu
apply for each, but arbitrary, wavelength.

We must remark that the Stokes space formalism de
oped for polarization phenomena has one essential differe
with the Minkowski space-time of special relativity, whe
future oriented timelike vectors represent equivalent iner
observers. In Stokes space, when a positive oriented vect
chosen to represent natural light, the other positive orien
vectors are interpreted as nonequivalent partially polari
lights.

It should be stressed that the Lorentzian structure use
this work, allows one to define the 232 Wolf coherency
matrix W, whose trace and determinant are given by tW
5I and 4 detW5I 22Q22U22V2[(S,S)>0. Then,
5-6
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Eqs. ~4! and ~7! for the polarization degree becomesb2

52 trW2/(tr2W)21, where we have considered the ident
trW25tr2W22detW. This equivalence between the Stok
and coherence matrix representations is clearly manifeste
Fano’s quantum description of polarized radiation@21#. In
terms of the polarization degree, the eigenvaluesl6 of W/I
have the simple expressionl65(16b)/2. The entropys of
the radiation field represented byW ~or S) is s5
2(l1ln l11l2ln l2) and it can be expressed as a~nonlin-
ear! function of b; then, the quantityc(b)5@ ln(11b)
2ln(12b)#/2 defines@4,22# an effective polarization tem
peraturet(b)51/c(b). For polarizers, the hyperbolic ang
c(b) given by Eq.~11! satisfies the above definition as
consequence of Eq.~15!, and this allows us to introduce th
notion of effective polarization temperature of a polarizer
a natural way,t(b)51/c(b).

Finally, it has also to be remarked that Stokes formali
supposes implicitely that the light beam is uniformly pola
ized and is always propagated in the same direction. In o
to characterize the spatial distribution of polarization ov
nonuniformly quasimonochromatic light beams, the Sto
formalism has been recently extended and an overall ge
alized polarization degree parameter has been introdu
-
5

al

ice
e

ian
n

ce
ry
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@23#. This parameter is defined in terms of the traces of
Stokes matrices which are subjected to a Lorentzian-t
constraint formally similar to Eq.~1! @see Eqs.~14! and~16!
in Ref. @23##. Therefore, the Lorentzian interpretation may
in principle extended to deal with inhomogeneous spa
polarization distributions across light beams. On the ot
hand, in order to characterize the polarization properties
nonplane waves, Roman@24# developed a formalism base
on the SU(3) expansion of the 333 coherency matrixR,
whose coefficients give a generalized set of eigth normali
polarization parameters. The Lorentzian interpretation of R
man’s formalism can also be done although, in this case,
structure to be considered has to be a Lorentzian polariza
structure at each space-time point. Of course, in this case
generalized degrees of polarization are also related to
scalar invariants ofR; the corresponding Lorentzian interpre
tation and the associated effective polarization temperat
claim our attention for further studies.
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