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Minkowskian description of polarized light and polarizers
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A conventional Stokes description of polarized light is considered in a four-dimensional Lorentzian space,
developing a seminal idea of Paul Soleill@&nn. Phys.(Parig 12, 23 (1929]. This provides a striking
interpretation for the degree of polarization and the Stokes decomposition of light beams. Malus’s law and
reciprocity theorems for polarizers are studied using this Lorentzian formalism.
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[. INTRODUCTION The possibility of using a Lorentzian metric to describe
light polarization was already pointed out by Soleil|&f
Polarization phenomena are associated with transverdmut, to our knowledge, he did not develop this idea any fur-
waves and, at sufficiently long distance from the sourcesher. Later, Perrin[8] employed a Minkowski four-
(plane wave zone they are described by four real param- dimensional space to analyze the algebraic structure of some
eters including total intensity. For example, a quasimonoscattering matrices and, more recently, several authors
chromatic partially polarized plane light wave is traditionally [9—12] have considered the matrix description of optical lin-
represented as an incoherent superposition of an unpolarizetr systems from this point of view. However, many other
light and a totally polarized one; then, its polarization state isaspects of the Soleillet idea remain unexplored, and its de-
specified by the intensity of its components and the geometryelopment could provide a way of translating the
(orientation, eccentricity, and sensef the polarization el- Minkowskian language from relativistic physics to polariza-
lipse described by the electric field of the totally polarizedtion phenomen&l3]. Soleillet was also the first to introduce
componen{l,2]. matrix methods in the study of the lineal interaction of po-
The main conceptual advances in the comprehension dérized light with optical systems. This other pioneering as-
polarization are achieved with the development of the opticapect of the Soleillet work has recently been emphasized by
coherence theory. From a statistical point of view, polarizaBrosseay4] claiming for Soleillet the corresponding rights
tion is interpreted as the existence of a correlation betweeim the creation of the so calledueller formalismin optics.
the fluctuations of two mutually perpendicular componentsWe also refer to the Brosseau’s monographyin connec-
of the electric field at a fixed space po[3{4]. When there is  tion with the important role played nowadays by polarization
no such correlation, light is named unpolarized. Useful paphenomena in several branches of science and technology
rameters extensively employed in electromagnetic polarizaF14]. In this work, we expect to gain an insight into the other
tion phenomena are the so callgtbkes parametera set of  original Soleillet's idea of describing polarization in a geo-
physically measurable quantities from diverse proceduremetric Minkowskian language. This is our main aim.
(see Refs[4,5] for a brief discussion of several methgds This paper is organized as follows. We begin in Sec. Il by
Stokes parameters involve only second-order statistics of theéescribing polarization in the language of Minkowskian ge-
(stationary and ergodistochastic process associated with anometry. Unpolarized or natural light is associated with a dis-
optical field and they provide a whole description of the fieldtinguished timelike future-pointing vector. Partially polarized
polarization properties although, in general, they do not delight is represented by any other timelike vector of the same
termine higher-order statisti¢g@on-Gaussian process time orientation as natural light. Its degree of polarization is
There are several ways to represent polarized radiatiorelated with the hyperbolic angle between both timelike di-
fields, the Stokes description, the Poincéghere represen-  rections. A future-pointing null direction represents totally
tation, and the Wolf coherency matrix formalism being thepolarized radiation. These null vectors generate the Stokes
most popular onefgl]. The first and second are mainly used null cone of this Lorentzian structure, which is termed
in relation to transfer equations for polarized light and inStokes space. In Sec. lll, we consider polarizers from a
matrix methods in opticE2,5]. The third is also well adapted Lorentzian point of view, interpreting their representative
to complex representations, currently employed in quantunmatrices as an homothetic Lorentz boost acting on Stokes
mechanics dealing with polarization phenomena for bothspace. In particular, two common exampigslarization on
massless and massive elementary parti@¢sBut when the  reflection and refraction, and polarization produced by Th-
ordered 4-tuple of Stokes parameters is considered as a vesmson scatteringare considered. In Sec. IV we present the
tor in a four-dimensional Lorentzian space, these representéaw of reciprocity in optics for ideal polarizers using the
tions are algebraically equivalent. Stokes space formalism and, lastly, an extension of this law
for nonideal polarizers is obtained from a generalized Malus
law. Finally, in Sec. V, we summarize the main results and
*Electronic address: antonio.morales@uv.es comment on the physical interest of the Lorentzian approach
"Electronic address: emilio.navarro@uv.es in polarization phenomena. Some of these results were com-
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municated at the Spanish relativistic meeting, ERE 200IThis decomposition ofS is the formal interpretation of

[15]. Stokes representation of partially polarized light as an inco-
herent mixture of natural and totally polarized light and it is
IIl. LORENTZIAN DESCRIPTION OF POLARIZED LIGHT expressed in the following way:
Stokes parameters are defined for monochromatric plane S=(1-ly)u+l, (3

waves, and then extended for quasimonochromatic ones _ _ _ _ o
whose amplitudes and phases are slowly varying functionwherel is a totally polarized Ilght whose |-nten5|ty is given by
on the scale of the coherence time. According to convenlp=(U.!). Another decomposition o, with I,=(u,m), is
tional notation, they are arranged in an ordered 4—tgple ©Obtained replacing by min Eq. (3).

=(1,Q,U,V) subjected to two physical constrairjts], Now, let us examine how the polarization degree can be
interpreted in the Lorentzian approach to polarization phe-
>0, 12=Q%+U?%+V?, ) nomena. From Eq(3), the norm ofSis (S,S)=I2—I§ and

from Eq. (2), the degree of polarization is expressed as
| being the light intensity and where the equality occurs for
totally polarized light. Parametet$ andQ are related to the I (S,9)
linear polarization andv gives information about circular P= T 1- (0,972 4)
polarization. The constraints mentioned above may be inter- '
preted geometrically using horentzianterminology; they  |ntroducing the unit vectos and using the familiar relativis-
represent the points that argthin or onthe positive shell of ¢ notation, we can write
a Minkowskian congStokes cone The polarization degree

P satisfies S=1(S,9)s=(S,9) y(1,8)=I(u+8n), (5)
2 2 2
0= PE—‘Q+IU+Vs1. (p “Where
'y=(u,s), B:Bn:(y,//,/‘), (6)

Mathematically, the parametércan be extended for any | B B
real value in order to consider the set of 4-tuplss With (u,n)=0 and @,n)=-1, and,=Q/l, ~=U/l, ~
—{(1,Q,U,V)}=R*. This set, endowed with a Lorentzian =V/I being thenormalizedStokes parameters. Then, E4)

metric will be called the(extendedl Stokes spaceLet S IS Written as

=(1,Q,U,V) and S'=(1",Q",U",V") be two Stokes vec-

tors, that is, S,S'eS, then G,S)=I1"-QQ —UU’ b 1—i=BE|BI @
—VV' is their scalar product. e

Completely polarized lightsR=1) are represented by
null vectorsS (S,S)=0, with positive intensity and they that provides a new interpretation of the degree of polariza-
generate th&tokes coneA completely unpolarizedR=0) tion.
or natural light of intensity |>0 is represented bg=Iu, Proposition 1 In the Lorentzian representation of polar-
where u=(1,0,0,0), (,u)=1. A partially polarized light ized radiation, the degree of polarizatiénis interpreted as
with 0<<P<1 is a positive oriented vect@«¢ {u}={Au,\ the normpB of the “relative velocity” between the unitary
e R} pointing into the Stokes coneS(S)>0 and|>0. Stokes vectorsl ands associated, respectively, with natural
Then, the intensity ofa light represented BySis the scalar and partially polarized light.
product ofu and S I=(u,S)>0. The set of null Stokes Furthermore, from Eq(3) and settingu= (I+m)/(21),
vectors corresponds to the set of two-component complerach polarized lighg of intensity | can be decomposed ac-
vectors of the Jones formalisfdones’ vectors frequently  cording to the following expression:
employed in optic$16]. However, Jones formalism only ap-
plies to phenomena involving totally polarized beams. In _
contrast, when one deals with depolarization processes the 28
use of both positive and null Stokes’ vectors are required.
Hence, the use of the Minkowskian geometry can be relevarwhere bothl and m are null vectors which have the same
in dealing with partially polarized light and changes of its intensity I ;= (u,l)=(u,m)= I, and with opposite projec-
degree of polarization. Furthermore, the role played by thdions in the three-space orthogonalutoThe physical mean-
Lorentz group in modeling the usual devices commonly eming of Eq. (8) is clear because it reflects the well known
ployed in linear opticse.g., polarizers and retardgreas  equivalence between a light beam having inteniséyd po-
been extensively analyzed in the literat(it&]. larization degreeB, and two incoherent streams of totally

Any partially polarized lightS can be expressed as a lin- polarized light having states of opposite polarization and in-
ear combination ofi and a null vectot. Geometrically, the tensities (& 8)1/2 and (1-8)I1/2.
intersection of the Stokes cone and the two-plane expanded This interpretation is also extended to the decomposition
by Sandu gives two null directiongl} and{m} that represent of natural light of intensityl in two incoherent opposite po-
totally polarized light beams with opposite polarizations.larized waves with the same intensit{2. These waves can

S (1+p)I+(1=p)m], ®
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be linearly polarized and mutually perpendicular, or circu-senting a nonideal polarizer can be seen as the composition
larly polarized with opposite helicities, one right handed andof an homothetic transformatioal ;, wherely is the 4x4

the other left handedcf. Refs.[1,2]). It is remarkable that identity matrix, and a special Lorentz transformatidn
natural light is the only one that is contained in every two-(boost on thdl,m}={u,e} plane whose velocity parameter
plane generated by two arbitrary opposite polarization statess

Finally, let us observe that the two decompositions of natural

light mentioned above give a qualitative interpretation of b=tanhy= ki —ko (13)
Zeeman’s effect produced by magnetic fields which are, re- ki+ky
spectively, tranverse or longitudinal with respect to the line _ . .
of sight. Note that this velocity can also be interpreted as the degree
of polarizationP that the polarizer produces when it acts on
lll. LORENTZIAN INTERPRETATION OF POLARIZERS natural light according to the relation
Starting with the vectow representing unitary natural _ E _ E ki—k
light, we can consider the two-tens®r=u®u. For a given AW =5 (kal +kom) =5 (kg ko) U+ Kt Ky

polarized lightS=1(u+ Bn), we haveT(S)=Iu. So,T pro-
duces a pure depolarizing effect, without changing the inten- =I(utbe), (14)

sity. By contrast, a polarizer produces the opposed effect, I\Evheree=(l —m)/2 andl = (ky+ k,)/2 is the intensity of the

gives a polarized light beam from an unpolarized one. Th%ransmitted beam, when the incoming natural light is unitary.

matrix polarizer representation that is usually employed i . . : X
optics [5] is written in the following way using tensorial nl—\r:ﬁ Itg\r/r?r:sSIgfn tﬁl;i%s;élrilz)ee:ng;rla%glt\g;::jebelgenvalues of

notation
L T =
A== (Kl om+komel) + kkeh, 9) ki=a\ 1 ke=aV i g (15)

From Eq.(9), the use of the tensorial notation will allow to
obtain results in the following section about the generalized
Malus law and reciprocity theorems in optics. Also, it will
(10) make possible to express these results in a more compact
form than in the current matrix formalisms. Before that, let

{u'e,p,q} being an orthonormal basis of Stokes space. A|geUS gain maore |nS|ght into the Lorentzian description of some
braically, k; andk, are eigenvalues oA having associated Usual polarization phenomena. As a first example, we spe-
null eigendirections{l} and {m}, A(I)=k4 and A(m) cjalize to light polari;ation on ordinary reflection and _refrac-
=k,m; the vectord andm represent totally polarized lights tion [1]. Let us consider light traveling from a dielectric me-
with opposite polarizations. The special case ofdeal po- ~ dium M, of refractive indexn; to another oneM, whose
larizer corresponds t&;=1 andk,=0 because such a de- index isn,=nn,. The media are separated by a flat interface
vice transmits light without absorption and only in a givenand are considered homogeneous and isotropicRLET) be
direction. Therefore, an ideal polarizer can be interpreted ate reflectivity (transmissivity, that is, the ratio of the

a projector on a null direction of Stokes space. In the generi@mount of reflectedrefracted energy flux to the incident
case, let us denote one. As a consequence Bfesnel's formulas’R and 7 de-

pend on the incidence angl®,§, the refraction angled),
1 Kk and the polarization state of the incident light. In particular,
a=vkik#0, ¢=3lm-, (1D for perpendicular () and parallell {) polarizations with
z respect to the incidence plane one has the respective associ-
and, looking for a suitable parametric Lorentzian form forated quantitiesk, , Ry, 7, , andZ, which only depend on
polarizers, Eq(9) can be expressed #s=aA, whereA is ¢ and 6, according to the following expressiofis]:
given by

with k; andk, as the transmission coefficientst®,<k,
=<1) and where

I=u+e, m=u—e, —h=pepP+geq,

» _Sin(6,— 6,) » _tarf(6;— 6,
A=coshy(upu—e®e)—sinhy(ure—e®u)+h. L_sin2(0i+0t)' H_tanz(ﬁﬁﬁt),
(12
(16)
This expression corresponds to the tensorial form of the ma- _Sin26;sin26;
; . . . [ =—————="7,cos(6,— 6,).
trix expression of a Lorentz transformation, that is, an hyper- Sir?(6;+ 6,)

bolic rotation in the two-plane generated byande. This

two-plane contains exactly two null directions which are the We consider that the incidence angle is smaller than the
eigendirections of the polariz¢l and{n}. The 4x4 matrix  critical angle that corresponds to total refraction. The linear
form of Eq.(12) is more usually employed in applied optics, polarization degreeB; andPassociated with the reflected
as can be found in some references quoted in[R&. Con-  and refracted wavegor incident natural light are defined,
sequently, the linear transformation on Stokes space repreespectively, by
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3 T

_’RL—R

7.-7 wherer ,=e?/mc=2.82x 10" 3 cm is the classical electron
R R, + RH '

T+7T (17) radius andé the scattering angléin the laboratory rest
A frame. From a Lorentzian point of view, this matrix repre-
sents a linear polarizer with

So, for each incidence angle, the polarization on reflectio

can be described by E@9) with transmission coefficients 20

k1_=R_L>RH=k2, w_hen_nls n2._And,_ in th_is case, the po- a( 0)=r§cos¢9, b( ) =tanhy( 9) = S'_

larization on refraction is described in a similar way consid- 1+cos6

ering k;=7=7, =k,. The matrix forms corresponding to

these situations can be found in R€#4,14] and references In this case, the transmission coefficientslaye k, =r5and

therein. k2=k‘|=r(2)c0§0 and now, the subscripts represent the per-
An outstanding situation occurs for Brewster incidencependicular and parallel projections with respect to the scat-

angle, which is given by the conditiof)+ 6,= 7/2 and cor-  tering plane. Their ratio is 1:c68 according to the Ray-

responds to tas=n. At this angle, we haver =0, 7| leigh’s law[2]. For = /2 the radiation is totally polarized

=1, and and the direction of the electric field is perpendicular to the

scattering plane.
2

2 2
1 )
R, =c0s(26;)= ( 1 ) : ’]1=sm2(20i):( 1+n2) : IV. MALUS'S LAW AND RECIPROCITY THEOREMS

+n?
(18 In this section, we consider threciprocity lawin optics
o and some of its extensions using Stokes space description.
Consequently, at Brewster angle, the polarization on reflecror this and related issues we refer to a work by Pd@in
tion is described by a quasiideal polarizer W=, and  \yhere some interesting comments about its range of validity
k,=0. Moreover, for the refracted light, when a new refrac-ang its connection with quantum principles can be found.

tion from M, to M, is produced, we can write For the sake of clarity, we study first the case of an ideal
. polarizer. It can be represented in the following tensorial
2n form:

klz'zﬂ'zr‘izl, kzz'lei:

, 19

2
1+n 1 1

N==-l®em=-(uu—e®e—ue+exu), (21
T (7") being the transmissivity frorM ; to M, (from M, to 2 2
M3). Note thatZj=7| and7, =7 at Brewster angle. From

Eq. (11) the homothetic and boost parameters are now give

by

as can be seen from E@) with k;=1, k,=0, I=u+e, and
Th=u—e. Its action on a Stokes vect&=| (u+Bn) gives

2n2

1+n?

1 |
=2 (1+n2) N(S)=§(m,8)|=5[1—ﬂ(e,n)]l- (22)
=21In
’ 2n

Contracting this expression witly we obtain the light inten-

When repeated refractions are produced using a pild of Sity after crossing the polarizer. _ _
identical polarizer plates, the polarization degree of the trans- Proposition 2 When a light beam of intensity;, and
mitted light is obtained taking into account Ed.3), and it degree of polarizatiop crosses an ideal polarizer, the inten-

results sity of the outgoing beam is given by
2n | o= 5[ 1— Bem], (23
1— out 2 ' ins
1+n?
b=tanhy= on |4 wheree andn represent the unitary orthogonal paetlative
1+ ) to the unitary natural light) of the Stokes vector associated,
1+n? respectively, with the outgoing and incoming beams.

_ _ o _ Notice that theMalus law is recovered from EQq(23)
Finally, another example for consideration is the matrix aswhen the incoming light is completely polarize@£1) and
sociated with a process of Thomson scattering of photons biaking (e,n) = —cos 26, according the chosen Lorentzian

free electrons, whose expressior{ 6§ signature of Stokes space. Thdg,=!,co$6. When the
incoming beam is linearly polarized), is exactly the angle
1+cog6  sirfe 0 0 between the incident electric field and the polarizer transmis-
1 Sirke 14 co20 0 0 sion axis. Observe that a rotation of anglearound the di-
A(e)zir(z’ 0 0 2 cosd 0 , rection of light propagation corresponds to a rotation of

angle 2 in the {Q,U} plane of Stokes space. Moreover,
0 0 0 2 coy) taking into account Proposition 2, we can analyze the reci-
(20 procity law for an optical system constitued by two ideal
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polarizers represented & and N'=31"®@m’, with |'=u

a

+e’ andm’=u—e’. Contracting withu the matrix product lgut=——=—==(1+b B cos 2)l;,, (28

NN’, we find ’ b out \/1—b2( A "
4i(UWNN'=(m,1")m’' =[1—(e,e’)]m’ (24) where 0<b<1. As a consequence of Malus’s law, the maxi-

mum and minimum transmitted intensities for incoming light

wherei(x) stands for the inner product with the vectgr ~ Of @ given polarization degreg are given by
[i(X)N],=x*N,,. So, from Eqgs.(24) and (22) and using 1
the fact that 2(u)N(S)=(m,S), we arrive at the following |+=§[k1+ Ko B(Ky— ko) i, - (29)
result. N
Proposition 3 LetS=1(u+Bn) andS'=I1'(u+B'n") be
two light beams crossingin opposite directionsa system
constituted by two ideal polarizefd¢é andN’. The intensities
of the outgoing light beams are related by b5 = L(B)—=1-(B)  ki—k,
A(B)= =
(WNN'(S) I(WN'NES) 1 , L (B)F1-(B) T kitk
i(U)N'(S) ~ i(UN(S) [ (eeh)]. (29 This quantity is directly related to the polarizer boost param-
eterb=P,(1), that is, the polarization degree of the outgo-
A direct consequence of the last proposition is the follow-ing light when the incident one is natural, according to Eq.

which allow one to define, for eagh, a fractional polariza-
tion P5(B) associated with the polarizer,

=gb. (30

ing implication: (14). Moreover, taking in mind the kinematical interpretation
of the polarization degree given in Proposition 1, the afore-
IH(UN(S)=1(U)N'(S")=i(u)NN'(S")=i(u)N'N(S) mentioned Lorentz factor, defined from the paraméten-

herites this kinematic meaning too. But, in general, this pa-
that reflects the statement of thewv of reciprocityin optics  rameter is not equal to the polarization degree of the
[8]: “If two incident polarized beams have equal intensities, outgoing beam, as will be explained next. From Ex§) and
the inverse emerging beams of the same polarization, whicbsing the decompositiofs) for the emerging beamA(S)

are associated with them, also have eqqal intensities.” Nowzlout(lvéout)r the outgoing normalized Stokes parameters
this law follows as a corollary of Proposition 3. are expressed as

Proposition 4 (reciprocity theorem).et SandS' be two
polarized beams ani and N’ two ideal polarizers. If the _
intensity ofN(S) is equal to the intensity dfi’ (S'), then the  Bout=7— b,B(e ) {[b+(y1-b*-B)(e,n)]e+y1-b*n},
outgoing beamdNN’(S’) and N’N(S) have also the same (31
intensity.

Next, the results established above will be extended to thehere we have put
case of nonideal polarizers represented by @q. In this
case, when an incoming light bea®s= | (u+ 8n) crossesA, —[(p.,nmp+(q,n)g]=n+(en)e.
the outgoing beam has the expression -
Therefore, whem# e, B,,: belongs to the two-plane gener-
ated bye and §;,=Bn. Otherwise, whem=e, B, and
Bin are collinear, and the polarization degree of the emerging
beam obeys the relativistic law for the addition of two
X(kit+ka) et = vkikol BL(p.n)p+(a.n)al  (26)  collinear “velocities” be and Be. Thus, the following prop-
erty holds.

Proposition 6 When a light bean$=1(u+ 8e) crosses a
polarizerA represented by Ed9), the polarization degree of
the outgoing lightS, ;=1 oui(U+ Bou€), iS given by

I
A(S)= 5 {lkitko— B(e,n)(ky—kz)Ju+[ky —ko— B(e,n)

that reduces to Eq22) for k;=1 andk,=0. Theu compo-
nent of A(S) will give the outgoing intensity, and then, we
obtain the generalized Malus law.

Proposition 5 (generalized Malus lawWhen a light

beam S=I;,(u+ 8n) crosses a polarizeA represented by b+ B
Eq. (9), the outgoing intensity is given by Bout:m- (32
F(U)A(S) = = [ky+Kyo— Ble:n) (Ky—Ky) ]l 27) There exist situations in Stokes space that are analogous

to the “ultrarelativistic” limit of addition of velocities, that
is, when we add the velocity of a material particle and the
In order to exhibit the Lorentzian character of the Maluslight velocity in vacuunc this addition law gives, of course,
law, let us express it in terms of the boost and homotheti€ for everyv. For example, in the case of Thomson scatter-
parameter in the case of nonideal polarizers. Replacing Edng whenb=1 at scattering anglé= 7/2 and the scattered
(15) in Eq. (27), the Lorentz factor 3y1—b? emerges in a radiation is totally polarized,,=1).
natural way. So, denotinge(n) = —cos ¥ according to our Finally, we study the reciprocity relations for two general
election of the Lorentzian signature, we obtain polarizersA andA’, whereA’ is represented by E¢9) with
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the corresponding primed quantitiesk;,k;,e’,p’, which it is carried ouf19]. In general AA’ #A’A and they
q’" ({u,e’,p’,q’} being an orthonormal bagisThen, the in-  differ by an Euclidean rotation. This fact has been recently
tensity of a beam after crossing througlandA’ is given by  analyzed by several authors in polarization opf&@, but in

a different context than the reciprocity relations considered

1 >
(WA A(S) = STk + Ky~ (ki —kp) (€' fa) TIWA(S). e
(33

Note that the latter expression can also be directly obtained V. COMMENTS AND DISCUSSION

from the generalized Malus la¢27) considering the outgo-  gyokes statements about the decomposition of natural and
ing intensity from the polarizeA” and the incoming beam  o|arized light have been interpreted in a Minkowskian lan-
A(S) =1 a(s)(u+ Bacs). Changing primed quantities for the guage using the properties of causal vectors in Lorentzian
corresponding unprimed one&; (S') = IA,(S/)(u+,8A/(S,)), geometry and the “kinematic” interpretation of the polariza-
and from Eq. (33) the corresponding expression for tion degree(Proposition 1. So, the Stokes statemelrt,2]:
i(u)AA’(S") may also be written. So, we obtain the follow- “Any partially polarized light may be regarded as the inco-
ing result using Proposition 5. herent mixture of an unpolarized light and a completely po-
Proposition 7 Let S=1(u+ Bn) andS'=1"(u+B'n") be  larized one,”reflects the property that any vector inside the
two light beams crossingn opposite directionjsan optical  positive shell of the null cone of a Lorentzian struct(pesi-
system of two polarizeré andA’. Then, the intensities of tive oriented vectgrmay be decomposed as the sum of an-

the outgoing beams satisfy other positive oriented vector and a null vector with the same
. orientation[see Eq.(3)]. In this line, Eq.(8) refers to the
i(WA'A(S) 1-b'(e',Bag) 1-bp(en) | incoherent decomposition of a partially polarized light as
i(u)AA’(S’) 1-b(e, IBA’(S’)) 1-b'g'(e',n') I A two totally polarized lights with opposite polarizations. Fur-

(34) thermore, the sum of positive and null vectors of the same
orientation is always a positive vector with the given orien-
When the intensity ofA(S) is equal to the intensity of tation, and so, any incoherent mixture of polarized light

A’(S") and for the particular case in whiah=e andn’ beams may be represented by a sole positive oriented Stokes
=e', the following simplified expression is obtained using vector.

Eq. (32: On the other hand, the usual matrix representation of op-
tical devices as polarizers and retarders also has a Lorentzian

1— b+ 2P e interpretation. Up to an overall factor, they can be seen as

) ki+k5 1+bg ) elements of the proper orthochronous subgroup of the Lor-
HWA'AS) = — o I(U)AA'(S"). entz group acting on Stokes space. Matrices representing po-
v 1— _ﬁ (e,e') larizers are homothetic to ordinary boosts, and retarders are

1+b'pB’ represented by Euclidean rotatioii&’]. Moreover, as it has

(35 been shown in Sec. IV, Malus’s law admits an elegant for-
. . . . . . mulation in Stokes spadsee Proposition)sand allows us to
The law of reciprocity for ideal polarizei®roposition 4is  jyierpret and extend the reciprocity relation for polarizers
recovered takingk;=k;=1, k,=k;=0 and, accordingly (proposition J. Note that the general expressions we have
Eq. (13), b=b"=1. For real polarizers the first fraction of gptained for these laws can be specified in the special situa-
the second term of E(39) is related to the corresponding tions considered in Sec. Ilthe polarizers on reflection and
Lorentz factor. Effectively, from Eq(15), we obtain in this  yefraction, and the Thomson scattering mattsing in each

case case the given values of the transmission coefficikptand
C ) 5 k,. Although we have considered these coefficients as con-
kitky _a" [1-b stants it should be pointed out that, in general, they depend
kKitk, a V1—p'2 on the wavelength of the incident radiation. So, our results

apply for each, but arbitrary, wavelength.
So, the Lorentz factors and the relativistic law of addition of We must remark that the Stokes space formalism devel-
velocities are present in the reciprocity relation given by Eqoped for polarization phenomena has one essential difference
(35). Indeed, a system of two real polarizers does not obewith the Minkowski space-time of special relativity, where
the reciprocity principle. According to E¢34), the emerging future oriented timelike vectors represent equivalent inertial
intensities of two polarized beams propagating in oppose@bservers. In Stokes space, when a positive oriented vector is
directions are different even if their incoming intensities arechosen to represent natural light, the other positive oriented
equal. Therefore, Proposition 7 expresses the way in whickiectors are interpreted as nonequivalent partially polarized
realistic polarizers deviates from an exact reciprocity lawlights.
behavior{18]. From a mathematical point of view this devia- It should be stressed that the Lorentzian structure used in
tion has the same origin than the known relativistic effectthis work, allows one to define thex2 Wolf coherency
namedThomas precessigrihe composition of two boosts matrix W, whose trace and determinant are given By tr
along different direction®\ andA’ depends on the order in =1 and 4dev=12—Q?—U?-V?=(S,S)=0. Then,
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Egs. (4) and (7) for the polarization degree becomg?  [23]. This parameter is defined in terms of the traces of the
=2 t'W?/(tr®W) — 1, where we have considered the identity Stokes matrices which are subjected to a Lorentzian-type
trW2=tr?W—2deW. This equivalence between the StokesCconstraint formally similar to Eql) [see Egs(14) and(16)

and coherence matrix representations is clearly manifested i R€f-[231]- Therefore, the Lorentzian interpretation may be
Fano's quantum description of polarized radiati@]. In In principle extended to deal with inhomogeneous spatial

. . polarization distributions across light beams. On the other
terms of the polarization degree, the eigenvaluesof W/I

! i hand, in order to characterize the polarization properties of
have the simple expressian. = (1= 8)/2. The entropywr of  onplane waves, Romdi24] developed a formalism based

the radiation field represented bW (or S) is o=  on the SU(3) expansion of thex3 coherency matrix,
—(AyInh+N_In)k_) and it can be expressed agr@nlin-  \hose coefficients give a generalized set of eigth normalized
eap function of g; then, the quantityy(B8)=[In(1+pB)  polarization parameters. The Lorentzian interpretation of Ro-
—In(1—-pB)J/2 defines[4,22] an effective polarization tem- man’s formalism can also be done although, in this case, the
peraturer(B) = 1//(B). For polarizers, the hyperbolic angle structure to be considered has to be a Lorentzian polarization
¥(b) given by Eq.(11) satisfies the above definition as a structure at each space-time point. Of course, in this case the
consequence of E@15), and this allows us to introduce the generalized degrees of polarization are also related to the
notion of effective polarization temperature of a polarizer inscalar invariants oR; the corresponding Lorentzian interpre-
a natural way;r(b) = 1/y(b). tation and the associated effective polarization temperatures
Finally, it has also to be remarked that Stokes formalisnflaim our attention for further studies.
supposes implicitely that the light beam is uniformly polar-
ized and is always propagated in the same direction. In order
to characterize the spatial distribution of polarization over We wish to thank B. Coll and J. J. Ferrando for useful
nonuniformly quasimonochromatic light beams, the Stokesliscussions. This work has been supported by the Spanish
formalism has been recently extended and an overall geneMinisterio de Ciencia y Tecnoloa) Project No. AYA2000—
alized polarization degree parameter has been introduce2D45.
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