Leccion 1.

Definicion de variedad diferenciable

1.1. Definiciones basicas

- 1. Sea X un conjunto. Una <u>carta</u> (valorada en \mathbf{R}^n) es un par $c=(U,\varphi)$ donde
 - (a) U es un subconjunto de X;
 - (b) φ es una biyeccion de U en un abierto de \mathbf{R}^n (considerado como espacio de Banach).
- 2. Sean $c=(U,\varphi),\ c'=(U',\varphi')$ cartas. Se dice que son $\underline{C^r\text{-compatibles}}$ si satisfacen
 - (a) $\varphi(U \cap U')$ (resp. $\varphi'(U \cap U')$) es abierto en \mathbf{R}^n ;
 - (b) $\varphi \circ \varphi'^{-1} : \varphi'(U \cap U') \to \varphi(U \cap U')$ es de clase C^r (resp. $\varphi' \circ \varphi^{-1} : \varphi(U \cap U') \to \varphi'(U \cap U')$ es de clase C^r).
- 3. Llamaremos C^r -atlas a un conjunto de cartas C^r -compatibles dos a dos tales que los dominios recubren X, ie., $\bigcup_{i \in I} U_i = X$.
- 4. Dos C^r -atlas \mathcal{A} , \mathcal{B} son C^r -equivalentes si y solo si $\mathcal{A} \cup \mathcal{B}$ es un C^r -atlas. Esta relacion es de equivalencia.
- 5. Llamamos <u>variedad de dimension</u> n (recordemos que las cartas estan valoradas en \mathbf{R}^n) <u>y clase</u> C^r y denotaremos por (X, \mathcal{A}) a un conjunto X dotado de una clase \mathcal{A} de C^r -atlas C^r -equivalentes.
- 6. Diremos que la variedad de dimension n y clase C^r es **variedad diferenciable** si $r = \infty$.
- 7. Generalmente, cuando C^r pueda ser sobrentendido, se abandona la sobrecarga de nomenclatura y se habla simplemente de cartas/cartas compatibles/atlas/atlas equivalentes. Asimismo, es usual sobrentender el atlas particular $\mathcal A$ cuando este suficientemente claro y usar expresiones como "X es una variedad", en lugar de " $(X, \mathcal A)$ es una variedad".
- 8. Sea (X, \mathcal{A}) una variedad de dimension n y clase C^r , y sean ξ^1, \ldots, ξ^n aplicaciones de un subconjunto U de X en \mathbf{R} . Se dice que $\xi = (\xi^1, \ldots, \xi^n)$ es un <u>sistema de coordenadas de X en U</u>, si el par (U, ξ) es una carta de X, y la denotaremos por $(U; \xi)$ o $(U; \xi^1, \ldots, \xi^n)$. Si $a \in U$ se dice que ξ es un <u>sistema de coordenadas de X en a</u>; si ademas $\xi^i(a) = 0$ para todo i, diremos que el sistema de coordenadas ξ esta <u>centrado en a</u>.

1.2.- Ejemplos

9. No-Ejemplo (Atlas inequivalentes): Sea \mathbf{R} con dos atlas dados por una unica carta $\mathcal{A}_1 = \{(\mathbf{R},id),\ id: \mathbf{R} \to \mathbf{R}\}\ \mathrm{y}\ \mathcal{A}_2 = \{(\mathbf{R},\varphi),\ \varphi: \mathbf{R} \to \mathbf{R}: x \mapsto x^3\}$. Los atlas no son C^1 -equivalentes.

Para verlo basta probar que $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 = \{(\mathbf{R}, id), (\mathbf{R}, \varphi)\}$ no es C^1 -atlas. La exigencia de C^1 -compatibilidad entre las cartas implicaria que $id \circ \varphi^{-1} = \sqrt[3]{t}$ fuese C^1 , pero no lo es en t = 0. Las cartas no son compatibles, \mathcal{A} no es un atlas y por tanto \mathcal{A}_1 y \mathcal{A}_2 no son equivalentes.