Leccion 3.

Aplicaciones diferenciables. Definiciones basicas.

3.1.— Aplicaciones diferenciables

1. Sea X una variedad de dimension m y clase C^r , y sea $f: X \to \mathbf{R}^n$. Se dice que \underline{f} es de clase \underline{C}^r si para toda carta $c = (U, \varphi)$ de X, se tiene que $f \circ \varphi^{-1} : \varphi(U) \subset \mathbf{R}^m \to \mathbf{R}^n$ es de clase C^r . El conjunto de las aplicaciones de clase C^r de X en \mathbf{R}^n se denota por $C^r(X; \mathbf{R}^n)$ y es un subespacio vectorial del espacio de todas las aplicaciones de X en \mathbf{R}^n .

$$\begin{array}{ccc} U \subset X & \stackrel{f}{\longrightarrow} & \mathbf{R}^n \\ \varphi \Big\downarrow & & \Big\| \\ \varphi(U) \subset \mathbf{R}^m & \stackrel{f \circ \varphi^{-1}}{\longrightarrow} & \mathbf{R}^n \end{array}$$

- 2. Sea X como en el punto anterior $(dim(X) = m, C^r)$ y $f: X \to \mathbf{R}$ (es decir, el caso especial con n = 1), el conjunto de todas las aplicaciones de clase C^r de X en \mathbf{R} se denota por $C^r(X; \mathbf{R})$ o simplemente por $C^r(X)$ y es una subalgebra del algebra de todas las aplicaciones de X en \mathbf{R} . Los elementos de $C^r(X)$ se denominan <u>funciones</u> definidas sobre X.
- 3. Sean X e Y dos variedades de dimensiones respectivas m y n, y de clase C^r , y sea $f: X \to Y$ una aplicacion de X en Y. Se dice que f es de clase C^r o que f es un morfismo de variedades, de clase C^r si:
 - (a) f es continua;
 - (b) para toda carta $c_Y = (V, \psi)$ de Y (valorada en \mathbf{R}^n), la aplicación $\psi \circ f : f^{-1}(V) \subset X \to \mathbf{R}^n$, de la subvariedad abierta $f^{-1}(V) \subset X$ en \mathbf{R}^n es de clase C^r (en el sentido del punto 1).

Analogamente (unificando los puntos 1. y 3.):

4. Sean X e Y dos variedades de dimensiones respectivas m y n, y de clase C^r . Sea $f: X \to Y$ una aplicacion de la variedad X en la variedad Y. Se dice que que las cartas (U, φ) de X y (V, ψ) de Y son <u>cartas adaptadas</u> si $f(U) \subset V$. Se dice que f es de clase C^r o que f es un morfismo de variedades de clase C^r si para cada punto $x \in X$ existen cartas adaptadas $c_X = (U, \varphi)$ de X (valorada en \mathbf{R}^m) y $c_Y = (V, \psi)$ de Y (valorada en \mathbf{R}^n) tales que la composicion $\psi \circ f \circ \varphi^{-1}$ (llamada <u>expresion de f en las cartas dadas</u>) es una aplicacion $\mathbf{R}^m \to \mathbf{R}^n$ de clase C^r .

$$\begin{array}{ccc} U \subset X & \stackrel{f}{\longrightarrow} & V \subset Y \\ & \varphi \Big\downarrow & & \Big\downarrow \psi \\ & \varphi(U) \subset \mathbf{R}^m & \stackrel{\overline{f}}{\longrightarrow} & \psi(V) \subset \mathbf{R}^n \end{array}$$

3.2.— Propiedades basicas

5. (a) **(prop)** La composicion de morfismos de clase C^r es un morfismo de clase C^r .

Estudiemos el caso C^{∞} . Sea $f: X \to Y$ diferenciable, entonces para cada punto $x \in X$ existen cartas adaptadas (U, φ) de X y (V, ψ) de $Y, f(U) \subset V$ de modo que la representacion de f en las cartas dadas $\psi \circ f \circ \varphi^{-1}: \mathbf{R}^{\dim(X)} \to \mathbf{R}^{\dim(Y)}$ es diferenciable. Sea $g: Y \to Z$ una aplicacion diferenciable en las condiciones analogas, con (W, ζ) una carta de Z adaptada a la carta (V, ψ) de Y. La correspondiente representacion local $\zeta \circ g \circ \psi^{-1}$ es diferenciable de $\mathbf{R}^{\dim(Y)} \to \mathbf{R}^{\dim(Z)}$. Entonces, las cartas (U, φ) de X y (W, ζ) de Z son adaptadas a traves de $g \circ f$, y la representacion local

$$(\zeta \circ g \circ \psi^{-1})(\psi \circ f \circ \varphi^{-1}) = \zeta \circ (g \circ f) \circ \varphi^{-1}$$

es diferenciable $\mathbf{R}^{\dim(X)} \to \mathbf{R}^{\dim(Z)}$. La aplicacion $g \circ f: X \to Z$ es diferenciable.

(b) **(prop)** La diferenciabilidad de la expresion de f en unas cartas dadas es independiente de las cartas escogidas.

Sea $\psi \circ f \circ \varphi^{-1}$ la representacion local de una aplicacion diferenciable entre X e Y en un entorno de $x \in U \subset X$. Sea (U', φ') una carta de X en x, entonces en la interseccion $U \cap U'$ el cambio de carta se realiza mediante $\varphi \circ \varphi'^{-1} : \varphi'(U \cap U') \to \varphi(U \cap U')$ (idem para (V', ψ')). La presentacion local de f en las nuevas cartas viene dada por

$$(\psi' \circ \psi^{-1})(\psi \circ f \circ \varphi^{-1})(\varphi \circ \varphi'^{-1}) = \psi' \circ f \circ \varphi'^{-1}$$

Puesto que las funciones de transicion entre cartas son diferenciables, y la expresion local en las cartas originales es diferenciable, la composicion es diferenciable y la diferenciabilidad no depende de la eleccion de cartas.

(c) **(prop)** Toda aplicacion diferenciable (en el sentido del punto 4) es continua.

Si $f: X \to Y$ es diferenciable, entonces, para todo $x \in X$ podemos encontrar cartas adaptadas por $f, (U, \varphi)$ de $X, x \in U, (V, \psi)$ de $Y, f(U) \subset V$ tal que la expresion de f en las cartas dadas $\psi \circ f \circ \varphi^{-1}: \varphi(U) \subset \mathbf{R}^m \to \psi(V) \subset \mathbf{R}^m$ es diferenciable. En $\mathbf{R}^m \to \mathbf{R}^n$,

- diferencaible implica continua por lo que $\bar{f}=\psi\circ f\circ \varphi^{-1}$ es continua. Podemos escribir f como $\psi^{-1}\circ \bar{f}\circ \varphi$. Como φ,ψ son homeomorfismos (con la topologia subyacente a la estructura de variedad), entonces f es continua en X.
- (d) **def.** Para que una biyecction $f:X\to Y$ entre variedades de clase C^r sea un isomorfismo de clase C^r , es necesario y suficiente que f y f^{-1} sean morfismos de clase C^r ;
- (e) **def.** Un isomorfismo de clase C^{∞} entre variedades diferenciables se denomina <u>difeomorfismo</u>, y las variedades diferenciables relacionadas por difeomorfismos, <u>variedades difeomorfas</u>. Esta relacion es de equivalencia.
- 6. A todos los efectos, se consideran equivalentes las variedades difeomorfas, mientras no las dotemos de alguna estrucutra adicional (eg., una metrica riemanniana).