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1. SO(3)-STRUCTURES

e A (linear) G-structure is a subbundle of the (linear) frame bun-
dle L(M) with structure group G.

e A Riemannian metric g on an n-manifold M™ determines a
SO(n)-structure, where the tangent space T M™ behaves as a
representation for SO(n).

Subgroups G C SO(n) determine more restricted Riemannian G-
structures; Tp M™ must behave as a representation for G.

o Usually, T, M™ is regarded as an irreducible representation of
G. For G = SO(3) this has been the case in 5-dimensions by (Bo-
bienski & Nurowski, 2007), (Chiossi & Fino, 2007) and (Agricola,
Becker-Bender & Friedrich, 2011).
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2. 9-STRUCTURES IN 8-DIMENSIONS

e We will consider SO(3)-structures in Riemannian 8-manifolds
[(M®, g} for which Tp,M® behaves as a REDUCIBLE SO(3)-

module:
Fix a homomorphism p : SO(3) — SO(8) whose image will be
called 9= SO(3), = {SO(3), p} such that

ToM =V &S5V =V oW
V=R3 W =S5V=R°

e By notational convenience we use notation of representations of

Sp(1), thus
V =r(S°H), W =r(S*H)
In what follows S* := r(S¥H).



3. SUBORDINATE G-STRUCTURES
This particular embedding of SO(3) (or ¢-structure) factors through
other Lie groups G,

SO(8)

D%

1. G = Sp(2)Sp(1) defines an almost quaternion-Hermitian struc-
ture on M3. In the integrable case leads to quaternion-Kihler
geometry (Salamon 1982,1986, Swann 1989).

2. G =50(3) x SO(5) defines an almost product struc-
ture (Naveira, 1983).

3. G = PSU(3)-structure (Hitchin 2001, Witt 2008).



Example. ¥ C Sp(2)Sp(1) C SO(8)
g SO(8)

N

Sp(2)Sp(1)
e Consider the homomorphism

¢ : Sp(1l) — Sp(2) x Sp(1) : g — (i(g9),9)

where
i :Sp(l) — Sp(2)

is the inclusion whereby Sp(1) acts irreducibly on E = C?l 0)’
the fundamental representation of Sp(2).
e By definition

Sp(2)Sp(1) := Sp(2) xgz, Sp(1).



Therefore ¢ induces an inclusion

SO(3) = Sp(1)/Zy — Sp(2)Sp(1) C SO(8)
e The representation space for Sp(2)Sp(1) s EQH = C?l,O) ®
C%l)' From the point of view of Sp(1)-representations
E=S3H, H=SH.
Using Clebsch—Gordan
S°H @ S1H &2 §°H @ S*H.

Then, passing to real representations

r(S°H) @ r(S*H) = S° e S* =V o Ww.

|

Proposition 1. A ¥-structure on a Riemannian 8-manifold
{ M8, g} induces altogether an almost-product structure, a PSU(3)-
structure and an almost quaternion-Hermitian structure.



4. SOME TOPOLOGY
e An oriented ¥-manifold M3 is spin. The 2" Stiefel-Whitney
class

wo(M®) € H*(M®,Z5)
of a Sp(n)Sp(1)-structures satisfies
wo(M*") = ne(n),

where € represents the Marchiafava-Romani class(1975-76). For
n =2

wo(MB) = 2¢(2) = 0 mod?2

e From ¥ C PSU(3) and the work by Witt, 2008
w1 (M) = wo(M) = wz(M) = wa(M)? = 0.



e The integral Pontrjagin classes p; € H¥*(M,Z), i = 1,2 of a
¢-manifold {M?3, g} are related by

Apo(M) = p1 (M) — p1(M)

p7 € 8640Z

o A compact ¥-manifold {M3, g} has vanishing Euler class
e(TM®) = 0.
Example: This rules out:
Gr3(R®),  G2/S0(4);
But is not enough to rule out the product of odd-dimensional spheres
S3 x §°
which does not admit SO(3)-structures (Friedrich, 2003) H



5. TRIPLE TWOFOLD INTERSECTION
Proposition 2. Let ¥ = SO(3) be the subgroup of SO(8)
acting infinitesimally on a Riemannian 8-manifold {M?8, g} by
decomposing the tangent spaces as in 1., where V =2 R3 is the
fundamental representation. Then,

1. 4 = (SO(3) x SO(5)) N PSU(3):

2.9 =PSUB)NSp(2)Sp(1);

3. 4 = Sp(2)Sp(1) N (SO(3) x SO(5)).



$0(3)+s0(3) sp(2)+sp(1)

S S| S| S §°




Proposition 3. Let g;, «+ = 1,2,3, denote the Lie algebras
of the groups SO(3) x SO(5), PSU(3), Sp(2)Sp(1), gz-L the
complements in s0(8) and g the Lie algebra of ¢ = SO(3).
Then

g, = (g;/9) @ (9r/9), i #FjFk=1,2,3

3
gt = P/
=1

Example

(sp(2) + sp(1))*+ (50(3) +50(5)> 5 (psu(3)>

g g

ot = (50(3) -;50(5)> o <P5u9(3)> & (513(2) -Ell-ﬁp(l)>

|
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6. INTRINSIC TORSION
o Let {M", g} be a Riemannian n-manifold (thus a SO (n)-structure).
For some G C SO(n) consider the associated G-structure. Then,
the intrinsic torsion of the G-structure is a tensor 7 belonging
to

T,M" @ g™ .
e The intrinsic torsion is the obstruction for a G-structure to re-

duce the holonomy group of the Levi-Civita connection form SO(n)
to G.
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Example. Sp(2)Sp(l)-structure in 8-dimensions, (Sala-
mon 1982,1986; Swann, 1989)

T,M® £ E@H £ C 5y © Chy)

(sp(2) +5p(1)" = AFE ® S°H = C?; 1y ® Cy

4 5 2 3
m € (Clio)® Coyy) @ (Chy © Cf)
Simplifying, using Clebsch—Gordan,

T € Cum@cen ® QD@C®>
E K H S3H

Hence, the space of intrinsic torsion tensors of the Sp(2)Sp(1)-
structure has 4 Sp(2)Sp(1)-irreducible components:

Tsp(2)sp(1) € ESHOKS"THo KHo EH
H e 3 @
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e This method (Gray & Hervella, 1980) gives rise to the 16 classes
of almost quaternion-Hermitian manifolds (Swann, 1991; Martin-

Cabrera & Swann, 2007).

e [For the intrinsic torsion of a ¥-structure
T,M® &2 52 @ 54

g 22559 5% @252,

Proposition 4. The intrinsic torsion of the ¥%-structure is a
tensor belonging to

25105558 5 85°p 105 @ 852 @ 3R.

This space is 200-dimensional and contains a 3-dimensional sub-
space of ¢ -invariant tensors.
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7. RELATIVE INTRINSIC TORSION

Definition 1. For any given Lie group G containing ¢ we de-
note Tg or 7((G,%) the intrinsic torsion of a G-structure decom-
posed under the action of ¢, and call it the G-torsion relative
to ¢ or just the relative G-torsion, ¢ being implicit.

Example Sp(2)Sp(1)-torsion relative to ¥.
8 ~v ~ Q2 4
nvP= EH =glos

Sp(2)Sp(1) G

(sp(2) 4+ 5p(1))" = ASES°H = 50 5% ¢ 52
Sp(2)Sp(1) g
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SP@SM) ¢ (52 g 5%) @ (S5 @ 54 @ 52)

= 5190953580559 65*® 5520 2R.

Proposition 5. Let G = SO(3)xSO(5), PSU(3),Sp(2)Sp(1).
The relative G-torsion Tg of {M, g} lives in the direct sum of

the following modules:

S0 g8 g6 g4 §2 R |dimp
pOBPSORN g 5 6 5 2] 120
£EUG3) 2 4 6 8 6 2| 158
7oP(25p(L) 13 5 6 5 2| 120




8. RELATIVE INTRINSIC TORSION II
e Let P, QQ, R denote any of the groups SO(3) xSO(5), PSU(3),
Sp(2)Sp(1), and denote by

Té) (Q) the colmponent of Té) appearing also in Tg but

not n Tafl;.
Algebraically,
ng C TpM8 ® (pT) = TpM8 ® (g D g)
Tg e TpMB @ (qh) = Tp,MB @ (g & ;)
4 € TyM® @ (v7) = T,M° ® (g ® g)
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Hence

r

B(P) e M8 7
g

Then,

Proposition 6. The tensor 74 of {M, g} determénes P-, Q-,
R

R-structures whose relative torsion tensors Tg \ Teg s Ty satisty
the cyclic conditions

1y (R) = 74 (P),
7y = 14 (R) & 14 (Q),
ry = 74 (R) & 75(Q) & 748 (P).
In particular, any two yield the third.
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5. ¥-INVARIANT TORSION

e ['rom now on, let us consider the case 7y € 3R, ie., ¥-invariant
intrinsic torsion.

e ¢/ stabilises certain differential forms
{a, 8} € A3 2 S8935°035%@352@2R = AS 5 {xa, #4},
(v, %7} € N* 2258 3 25% ¢ 65% ¢ 252 ¢ 2R.

The ¥-invariant forms are two 3-forms, one 4-form and their duals
in 8-dimensions, satisfying

A3(T*M)YY s A4 (T*MYY — L S AS(T*M)Y

Lo,

Spang{a, B} —=Spang{y, *y} — Spang{*a, *3}
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e A, B are 2 x 2 matrices encoding the ¢-invariant intrinsic torsion,
such that

BA=0 <  d?® =0, Ve A" (T*M)

Proposition 7. Let { M, g} be a ¢-manifold equipped with the
six & -invariant forms. If the intrinsic torsion is ¥ -invariant, the
differential forms satisfy one of the following sets of differential
equations

do dg dry d(xv)
I a%fy a%w 0 ma%(*oz) -+ b%(*ﬁ)
I | 0 ady+as5(xy) | b3(x8) —((adb?)/a3)(x3)
I || O aly 0 b3 (+3)
IV | 0 0 b2(%3) b3 (3)

with the remaining two 5-forms always closed.

18



10. TYPE-I: NQ EXAMPLE

e SU(3), where Tp(SU(3)) £ su(3) = s0(3) + b°, together
with a lI-parameter infinitesimal action of SO(3) in which the ba-
sis of s0(3), {eg,e7,eg} behaves as the imaginary quaternions
induces a 1-parameter family of almost quaternionic structures on

SU(3).
A-X = M[A, X+ido({A, X9} -5(AX)D+irz{A, X5} +X4]A, X°]

AM=3 A3=-320207"L  a=-3 A=)

e The metric

432 3
gA—Ze ® e’ +—Ze ® e’
1=1 1=6

is compatible with the almost quaternionic structure. Thus, to-
gether with the associated Kahler 2-forms,
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1 1 D)2
wy = 5(15+\@.25+34)+/\<—28—46+37—18) - =67,

V3
1 2 22
wy = —14—-354+\[-227-38-56)— " 68,
2 V3 3
1(13 V3 23—|—45)—|—>\ ! o6_481574 16 22° o
w3 = = — : —26 — — —78.
3 2 V3 3

induces an almost quaternion-Hermitian structure.

e With the parameter
\2 =2

~ 20
is nearly-quaternionic: the Kahler 2-forms expand a differential

ideal but the fundamental 4-form is not closed (b4 (SU(3)) = 0)

3 , .
dw; =" Bl Awj, Bl e NN(T*M)
j=1
20



8(1—%2) s3 4+ ab s4 + a7

3= (5;3) — s3 — ab %32 sb5 + a8

s4 — a7 s5 —a8 —s(1 —I—\%Q)

(3 being not antisymmetric, SU (3) with the given almost quaternion-
Hermitian structure is not quaternion-Kahler.



e By Swann’s theorem (1989): An almost quaternion-Hermitian 4n-
manifold, n > 3 is quaternion-Kahler if and only if d€2 = 0. For
n = 2 the following two conditions are required:

1. d€2 = 0O;

2. dwj =>; 6; N\ wj.

e This is the only example (known to the author) of a complete®,
almost quaternion-Hermitian 8-manifold of type W71 C W14 (e,
satisfying condition 2., not 1.) This implies

3 3
TSp(2)Sp(1) € ES°H Cc ES°H ¢ EH.

e Examples of manifolds satisfying condition 1., not 2., where found
by Salamon 2001, Giovannini 2006.
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