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1. SO(3)-STRUCTURES

• A (linear) G-structure is a subbundle of the (linear) frame bun-
dle L(M) with structure group G.

• A Riemannian metric g on an n-manifold Mn determines a
SO(n)-structure, where the tangent space TpMn behaves as a
representation for SO(n).
Subgroups G ⊂ SO(n) determine more restricted Riemannian G-
structures; TpMn must behave as a representation for G.

• Usually, TpMn is regarded as an irreducible representation of
G. For G = SO(3) this has been the case in 5-dimensions by (Bo-
bienski & Nurowski, 2007), (Chiossi & Fino, 2007) and (Agricola,
Becker-Bender & Friedrich, 2011).
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2. G -STRUCTURES IN 8-DIMENSIONS

•We will consider SO(3)-structures in Riemannian 8-manifolds
{M8, g} for which TpM8 behaves as a REDUCIBLE SO(3)-
module:
Fix a homomorphism ρ : SO(3) −→ SO(8) whose image will be
called G≡ SO(3)ρ ≡ {SO(3), ρ} such that

TpM = V ⊕ S2
0V = V ⊕W.

V ∼= R3, W = S2
0V
∼= R5

• By notational convenience we use notation of representations of
Sp(1), thus

V = r(S2H), W = r(S4H)

In what follows Sk := r(SkH).
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3. SUBORDINATE G-STRUCTURES
This particular embedding of SO(3) (or G -structure) factors through
other Lie groups G,

G >SO(8)

G

>

>

1. G = Sp(2)Sp(1) defines an almost quaternion-Hermitian struc-
ture onM8. In the integrable case leads to quaternion-Kähler
geometry (Salamon 1982,1986, Swann 1989).

2. G = SO(3)× SO(5) defines an almost product struc-
ture (Naveira, 1983).

3. G = PSU(3)-structure (Hitchin 2001, Witt 2008).
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Example. G ⊂ Sp(2)Sp(1) ⊂ SO(8)

G >SO(8)

Sp(2)Sp(1)

>

>

• Consider the homomorphism

φ : Sp(1)→ Sp(2)× Sp(1) : g 7→ (i(g), g)

where

i : Sp(1) ↪→ Sp(2)

is the inclusion whereby Sp(1) acts irreducibly on E = C4
(1,0),

the fundamental representation of Sp(2).

• By definition

Sp(2)Sp(1) := Sp(2)×Z2
Sp(1).
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Therefore φ induces an inclusion

SO(3) = Sp(1)/Z2 −→ Sp(2)Sp(1) ⊂ SO(8)

• The representation space for Sp(2)Sp(1) is E⊗H = C4
(1,0)⊗

C2
(1). From the point of view of Sp(1)-representations

E ∼= S3H, H ∼= S1H.

Using Clebsch–Gordan

S3H⊗ S1H ∼= S2H ⊕ S4H.

Then, passing to real representations

r(S2H)⊕ r(S4H) = S2 ⊕ S4 ≡ V ⊕W.
�

Proposition 1. A G -structure on a Riemannian 8-manifold
{M8, g} induces altogether an almost-product structure, a PSU(3)-
structure and an almost quaternion-Hermitian structure.



4. SOME TOPOLOGY
• An oriented G -manifold M8 is spin. The 2nd Stiefel-Whitney
class

w2(M8) ∈ H2(M8,Z2)

of a Sp(n)Sp(1)-structures satisfies

w2(M4n) = nε(n),

where ε represents the Marchiafava-Romani class(1975-76). For
n = 2

w2(M8) = 2ε(2) = 0 mod2

• From G ⊂ PSU(3) and the work by Witt, 2008

w1(M) = w2(M) = w3(M) = w4(M)2 = 0.
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• The integral Pontrjagin classes pi ∈ H4i(M,Z), i = 1,2 of a
G -manifold {M8, g} are related by

4p2(M) = p1(M) ^ p1(M)

p2
1 ∈ 8640Z

• A compact G -manifold {M8, g} has vanishing Euler class

e(TM8) = 0.

Example: This rules out:

Gr3(R8), G2/SO(4);

But is not enough to rule out the product of odd-dimensional spheres

S3 × S5

which does not admit SO(3)-structures (Friedrich, 2003) �
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5. TRIPLE TWOFOLD INTERSECTION
Proposition 2. Let G = SO(3) be the subgroup of SO(8)

acting infinitesimally on a Riemannian 8-manifold {M8, g} by

decomposing the tangent spaces as in 1., where V ∼= R3 is the

fundamental representation. Then,

1. G = (SO(3)× SO(5)) ∩ PSU(3);

2. G = PSU(3) ∩ Sp(2)Sp(1);

3. G = Sp(2)Sp(1) ∩ (SO(3)× SO(5)) .
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Proposition 3. Let gi, i = 1,2,3, denote the Lie algebras
of the groups SO(3)×SO(5), PSU(3), Sp(2)Sp(1), g⊥i the
complements in so(8) and g the Lie algebra of G = SO(3).
Then

g⊥i = (gj/g)⊕ (gk/g), i 6= j 6= k = 1,2,3

g⊥ =
3⊕
i=1

(gi/g).

Example

(sp(2) + sp(1))⊥ =

(
so(3) + so(5)

g

)
⊕
(

psu(3)

g

)

g⊥ =

(
so(3) + so(5)

g

)
⊕
(

psu(3)

g

)
⊕
(

sp(2) + sp(1)

g

)
�
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6. INTRINSIC TORSION
• Let {Mn, g} be a Riemannian n-manifold (thus a SO(n)-structure).

For some G ⊂ SO(n) consider the associated G-structure. Then,

the intrinsic torsion of the G-structure is a tensor τ belonging

to

TpM
n ⊗ g⊥.

• The intrinsic torsion is the obstruction for a G-structure to re-

duce the holonomy group of the Levi-Civita connection form SO(n)

to G.
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Example. Sp(2)Sp(1)-structure in 8-dimensions, (Sala-
mon 1982,1986; Swann, 1989)

TpM
8 ∼= E⊗H ∼= C4

(1,0) ⊗C2
(1)

(sp(2) + sp(1))⊥ ∼= Λ2
0E⊗ S2H ∼= C5

(1,1) ⊗C3
(2)

τ ∈
(
C4

(1,0) ⊗C5
(1,1)

)
⊗
(
C2

(1) ⊗C3
(2)

)
Simplifying, using Clebsch–Gordan,

τ ∈

C4
(1,0)︸ ︷︷ ︸
E

⊕C16
(2,1)︸ ︷︷ ︸
K

⊗
C2

(1)︸ ︷︷ ︸
H

⊕C4
(3)︸ ︷︷ ︸

S3H


Hence, the space of intrinsic torsion tensors of the Sp(2)Sp(1)-
structure has 4 Sp(2)Sp(1)-irreducible components:

τSp(2)Sp(1) ∈ ES3H︸ ︷︷ ︸
(1)

⊕KS3H︸ ︷︷ ︸
(2)

⊕KH︸ ︷︷ ︸
(3)

⊕EH︸︷︷︸
(4)
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• This method (Gray & Hervella, 1980) gives rise to the 16 classes

of almost quaternion-Hermitian manifolds (Swann, 1991; Mart́ın-

Cabrera & Swann, 2007).

• For the intrinsic torsion of a G -structure

TpM
8 ∼= S2 ⊕ S4

g⊥ ∼= 2S6 ⊕ S4 ⊕ 2S2.

Proposition 4. The intrinsic torsion of the G -structure is a

tensor belonging to

2S10 ⊕ 5S8 ⊕ 8S6 ⊕ 10S4 ⊕ 8S2 ⊕ 3R.

This space is 200-dimensional and contains a 3-dimensional sub-

space of G -invariant tensors.
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7. RELATIVE INTRINSIC TORSION

Definition 1. For any given Lie group G containing G we de-

note τGG or τ(G,G ) the intrinsic torsion of aG-structure decom-

posed under the action of G , and call it the G-torsion relative

to G or just the relative G-torsion, G being implicit.

Example Sp(2)Sp(1)-torsion relative to G .

TpM
8 ∼= EH︸︷︷︸

Sp(2)Sp(1)

∼= S2 ⊕ S4︸ ︷︷ ︸
G

(sp(2) + sp(1))⊥ ∼= Λ2
0ES2H︸ ︷︷ ︸

Sp(2)Sp(1)

∼= S6 ⊕ S4 ⊕ S2︸ ︷︷ ︸
G
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τ
Sp(2)Sp(1)
G ∈ (S2 ⊕ S4)⊗ (S6 ⊕ S4 ⊕ S2)

= S10 ⊕ 3S8 ⊕ 5S6 ⊕ 6S4 ⊕ 5S2 ⊕ 2R.

�
Proposition 5. LetG = SO(3)×SO(5), PSU(3), Sp(2)Sp(1).

The relative G-torsion τGG of {M, g} lives in the direct sum of

the following modules:

S10 S8 S6 S4 S2 R dimR

τ
SO(3)×SO(5)
G 1 3 5 6 5 2 120

τ
PSU(3)
G 2 4 6 8 6 2 158

τ
Sp(2)Sp(1)
G 1 3 5 6 5 2 120



8. RELATIVE INTRINSIC TORSION II
• Let P,Q,R denote any of the groups SO(3)×SO(5), PSU(3),
Sp(2)Sp(1), and denote by

τPG (Q) the co1mponent of τPG appearing also in τQG but
not in τRG .

Algebraically,

τPG ∈ TpM
8 ⊗ (p⊥) = TpM

8 ⊗
(

q

g
⊕

r

g

)

τ
Q
G ∈ TpM

8 ⊗ (q⊥) = TpM
8 ⊗

(
p

g
⊕

r

g

)

τRG ∈ TpM
8 ⊗ (r⊥) = TpM

8 ⊗
(

p

g
⊕

q

g

)
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Hence

τPG (Q) ∈ TpM8 ⊗
r

g
τ
Q
G (R) ∈ TpM8 ⊗

p

g

τRG (P ) ∈ TpM8 ⊗
q

g

Then,

Proposition 6. The tensor τG of {M, g} determines P -, Q-,
R-structures whose relative torsion tensors τPG , τ

Q
G , τ

R
G satisfy

the cyclic conditions

τPG (R) = τRG (P ),

τPG = τPG (R)⊕ τPG (Q),

τG = τPG (R)⊕ τRG (Q)⊕ τQG (P ).

In particular, any two yield the third.
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5. G -INVARIANT TORSION

• From now on, let us consider the case τG ∈ 3R, ie., G -invariant
intrinsic torsion.

• G stabilises certain differential forms

{α, β} ∈ Λ3 ∼= S8⊕3S6⊕3S4⊕3S2⊕2R ∼= Λ5 3 {∗α, ∗β},

{γ, ∗γ} ∈ Λ4 ∼= 2S8 ⊕ 2S6 ⊕ 6S4 ⊕ 2S2 ⊕ 2R.

The G -invariant forms are two 3-forms, one 4-form and their duals
in 8-dimensions, satisfying

Λ3(T∗M)G d
>Λ4(T∗M)G d

>Λ5(T∗M)G

SpanR{α, β}
∪

∧

A
>SpanR{γ, ∗γ}

∪

∧

B
>SpanR{∗α, ∗β}

∪

∧
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•A,B are 2×2 matrices encoding the G -invariant intrinsic torsion,
such that

BA = 0 ↔ d2Φ = 0, ∀Φ ∈ Λk(T ∗M)

Proposition 7. Let {M, g} be a G -manifold equipped with the
six G -invariant forms. If the intrinsic torsion is G -invariant, the
differential forms satisfy one of the following sets of differential
equations

dα dβ dγ d(∗γ)

I a1
1γ a1

2γ 0 ma1
1(∗α) + b22(∗β)

II 0 a1
2γ + a2

2(∗γ) b21(∗β) −((a1
2b

2
1)/a2

2)(∗β)

III 0 a1
2γ 0 b22(∗β)

IV 0 0 b21(∗β) b22(∗β)

with the remaining two 5-forms always closed.
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10. TYPE-I: NQ EXAMPLE

• SU(3), where Tp(SU(3)) ∼= su(3) = so(3) + b5, together
with a 1-parameter infinitesimal action of SO(3) in which the ba-
sis of so(3), {e6, e7, e8} behaves as the imaginary quaternions
induces a 1-parameter family of almost quaternionic structures on
SU(3).

A·X = λ1[A,Xa]+iλ2({A,Xa}−2
3(AXa)1)+iλ3{A,Xs}+λ4[A,Xs]

λ1 = 1
2, λ3 = −3

4(λ2)−1, λ4 = −1
2, λ := λ2.

• The metric

gλ =
5∑
i=1

ei ⊗ ei +
4λ2

3

8∑
i=6

ei ⊗ ei

is compatible with the almost quaternionic structure. Thus, to-
gether with the associated Kähler 2-forms,
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ω1 =
1

2

(
15 +

√
3 · 25 + 34

)
+ λ

(
1√
3

28− 46 + 37− 18

)
−

2λ2

3
67,

ω2 = −14−
1

2
35 + λ

(
2√
3

27− 38− 56

)
−

2λ2

3
68,

ω3 =
1

2

(
13−

√
3 · 23 + 45

)
+ λ

(
1√
3

26− 48 + 57 + 16

)
−

2λ2

3
78.

induces an almost quaternion-Hermitian structure.

• With the parameter

λ2 =
3

20
is nearly-quaternionic: the Kähler 2-forms expand a differential
ideal but the fundamental 4-form is not closed (b4(SU(3)) = 0)

dωi =
3∑

j=1

β
j
i ∧ ωj, β

j
i ∈ Λ1(T ∗M)

20



β = (βji ) =


s(1− 1√

3
2) s3 + a6 s4 + a7

s3− a6 2√
3
s2 s5 + a8

s4− a7 s5− a8 −s(1 + 1√
3

2)


β being not antisymmetric, SU(3) with the given almost quaternion-

Hermitian structure is not quaternion-Kähler.



• By Swann’s theorem (1989): An almost quaternion-Hermitian 4n-

manifold, n ≥ 3 is quaternion-Kähler if and only if dΩ = 0. For

n = 2 the following two conditions are required:

1. dΩ = 0;

2. dωj =
∑
i β
i
j ∧ ωi.

• This is the only example (known to the author) of a complete∗,
almost quaternion-Hermitian 8-manifold of type W1 ⊂W1+4 (ie.,

satisfying condition 2., not 1.) This implies

τSp(2)Sp(1) ∈ ES3H ⊂ ES3H⊕ EH.

• Examples of manifolds satisfying condition 1., not 2., where found

by Salamon 2001, Giovannini 2006.
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