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Dr. Moliner 50, 46100 Burjassot, Spain

V. Caselles
Universitat Pompeu-Fabra,

Dept. de Tecnologia,

La rambla 30-32, 08002 Barcelona, Spain

J. M. Mazón
Universitat de Valencia,

Dept. de Análisis Matemático,
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Abstract

We prove existence and uniqueness of solutions for the Dirichlet problem for quasilinear
parabolic equations in divergent form for which the energy functional has linear growth. A
tipical example of energy functional we consider is the one given by the nonparametric area
integrand f(x, ξ) =

√
1 + ‖ξ‖2, which corresponds with the time-dependent minimal surface

equation. We also study the asymptotic behaviour of the solutions.
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1 Introduction and preliminaries

Let Ω be a bounded set in RN with Lipschitz continuous boundary ∂Ω. We are interested in the
problem





∂u

∂t
= div a(x,Du) in Q = (0,∞)× Ω

u(t, x) = ϕ(x) on S = (0,∞)× ∂Ω

u(0, x) = u0(x) in x ∈ Ω

(1.1)

where u0 ∈ L2(Ω) and a(x, ξ) = ∇ξf(x, ξ), f being a function with linear growth as ‖ξ‖ → ∞.

A tipical example of a function f(x, ξ) satisfying the conditions we need is the nonparametric
area integrand f(x, ξ) =

√
1 + ‖ξ‖2. Problem (1.1) for this particular f , that is, the time-dependent

minimal surface equation, has been studied in [12] and [17]. Another examples of problems of type
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(1.1) included in our case, are the following: The evolution problem for plastic antiplanar shear,
studied in [21], which corresponds to the plasticity functional f given by

f(ξ) =





1
2‖ξ‖2 if ‖ξ‖ ≤ 1

‖ξ‖ − 1
2 if ‖ξ‖ ≥ 1

and the evolution problems associated with the Lagrangians:

f(x, ξ) =
√

1 + aij(x)ξiξj ,

where the functions aij are continuous and satisfy aij(x) = aji(x), ‖ξ‖2 ≤ aij(x)ξiξj ≤ C‖ξ‖2 for
all ξ ∈ RN ; and the Lagrangian

g(x, ξ) =
√

1 + x2 + ‖ξ‖2,

which was considered by S. Bernstein ([8]). On the other hand, problem (1.1) is studied in [14] for
some Lagrangians f , which do not include the nonparametric area integrand, but instead include
the plasticity functional and the total variation flow, that is, the case f(ξ) = ‖ξ‖. Now, the
concept of solution given in [14] is the one obtained by considering the abstract Cauchy problem
in L2(Ω) associated to the relaxed energy, but the subdifferential of the energy functional is not
characterized . For the particular case of the total variation flow, we give in [4] a different approach
to the Dirichlet problem. There, we studied the problem in the framework of the L1- theory, and
we characterized the subdifferential in L2(Ω) of its relaxed energy (we refer also to [3] where we
treated the L1-theory for the Neumann problem for the total variational flow).

In general, problem (1.1) does not have a classical solution. The aim of this paper is to introduce
a concept of solution of the Dirichlet problem (1.1), for which existence and uniqueness for initial
data in L2(Ω) is proved. To do that we characterize the subdifferential of the energy associated
with the problem and we use the nonlinear semigroup theory. In a forthcoming paper we will study
the same problem in the framework of the L1-theory, as we did with the Dirichlet problem for the
total variational flow ([4]).

In order to consider the relaxed energy we recall the definition of function of measure (see for
instance, [6] or [12]). Let g : Ω× RN → R be a Carathéodory function such that

|g(x, ξ)| ≤M(1 + ‖ξ‖) ∀ (x, ξ) ∈ Ω× RN , (1.2)

for some constant M ≥ 0. Furthermore, we assume that g possesses an asymptotic function, i.e.
for almost all x ∈ Ω there exists the finite limit

lim
t→0+

tg

(
x,
ξ

t

)
= g0(x, ξ). (1.3)

It is clear that the function g0(x, ξ) is positively homogeneous of degree one in ξ, i.e.

g0(x, sξ) = sg0(x, ξ) for all x, ξ and s > 0.

We denote by M(Ω,RN ) the set of all RN -valued bounded Radon measures on Ω. Given
µ ∈M(Ω,RN ), we consider its Lebesgue decomposition

µ = µa + µs,
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where µa is the absolutely continuous part of µ with respect to de Lebesgue measure λN of RN ,
and µs is singular with respect to λN . We denote by µa(x) the density of the measure µa with
respect to λN and by (dµs/d|µ|s)(x) the density of µs with respect to |µ|s.

Given µ ∈M(Ω,RN ), we define µ̃ ∈M(Ω,RN+1) by

µ̃(B) :=
(
µ(B), λN (B)

)
,

for every Borel set B ⊂ RN . Then, we have

µ̃ = µ̃a + µ̃s = µ̃a(x)λN + µ̃s = (µa(x),1)λN + (µs, 0).

Hence, we have

|µ̃s| = |µs|, dµ̃s

d|µ̃s| =

(
dµs

d|µs| , 0
)
|µs| − a.e.

For µ ∈ M(Ω,RN ) and g satisfying the above conditions, we define the measure g(x, µ) on Ω
as ∫

B

g(x, µ) :=

∫

B

g(x, µa(x)) dx+

∫

B

g0

(
x,

dµs

d|µ|s (x)

)
d|µ|s (1.4)

for all Borel set B ⊂ Ω. In formula (1.4) we may write (dµ/d|µ|)(x) instead of (dµs/d|µ|s)(x),
because the two functions are equal |µ|s-a.e.

Another way of writing the measure g(x, µ) is the following. Let us consider the function
g̃ : Ω× RN × [0,+∞[→ R defined as

g̃(x, ξ, t) :=





g
(
x,
ξ

t

)
t if t > 0

g0(x, ξ) if t = 0

(1.5)

As it is proved in [6], if g is a Carathéodory function satisfying (1.2), then one has
∫

B

g(x, µ) =

∫

B

g̃

(
x,
dµ

dα
(x),

dλN
dα

(x)

)
dα, (1.6)

where α is any positive Borel measure such that |µ|+ λN ¿ α.

Due to the linear growth condition on the Lagrangian, the natural energy space to study (1.1)
is the space of functions of bounded variation. Let us recall several facts concerning functions of
bounded variation (for further information concerning functions of bounded variation we refer to
[13], [22] or [2]).

A function u ∈ L1(Ω) whose partial derivatives in the sense of distributions are measures with
finite total variation in Ω is called a function of bounded variation. The class of such functions
will be denoted by BV (Ω). Thus u ∈ BV (Ω) if and only if there are Radon measures µ1, . . . , µN
defined in Ω with finite total mass in Ω and

∫

Ω

uDiϕdx = −
∫

Ω

ϕdµi (1.7)

for all ϕ ∈ C∞0 (Ω), i = 1, . . . , N . Thus the gradient of u is a vector valued measure with finite
total variation

‖ Du ‖= sup{
∫

Ω

u div ϕ dx : ϕ ∈ C∞0 (Ω,RN ), |ϕ(x)| ≤ 1 for x ∈ Ω}. (1.8)
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The space BV (Ω) is endowed with the norm

‖ u ‖BV =‖ u ‖L1(Ω) + ‖ Du ‖ . (1.9)

For u ∈ BV (Ω), the gradient Du is a Radon measure that decomposes into its absolutely continuous
and singular parts Du = Dau + Dsu. Then Dau = ∇u λN where ∇u is the Radon-Nikodym
derivative of the measure Du with respect to the Lebesgue measure λN . There is also the polar
decomposition Dsu =

−−→
Dsu|Dsu| where |Dsu| is the total variation measure of Dsu.

We shall need several results from [5] (see also [16]). Following [5], let

X(Ω) = {z ∈ L∞(Ω,RN ) : div(z) ∈ L1(Ω)}. (1.10)

If z ∈ X(Ω) and w ∈ BV (Ω) ∩ L∞(Ω) we define the functional (z,Dw) : C∞0 (Ω) → R by the
formula

< (z,Dw), ϕ >= −
∫

Ω

wϕdiv(z) dx−
∫

Ω

w z · ∇ϕdx. (1.11)

Then (z,Dw) is a Radon measure in Ω,

∫

Ω

(z,Dw) =

∫

Ω

z · ∇w dx ∀ w ∈W 1,1(Ω) ∩ L∞(Ω) (1.12)

and ∣∣∣∣
∫

B

(z,Dw)

∣∣∣∣ ≤
∫

B

|(z,Dw)| ≤ ‖z‖∞
∫

B

‖Dw‖ (1.13)

for any Borel set B ⊆ Ω. Moreover, (z,Dw) is absolutely continuous with respect to ‖Dw‖ with
Radon-Nikodym derivative θ(z,Dw, x) which is a ‖Dw‖ measurable function from Ω to R such
that ∫

B

(z,Dw) =

∫

B

θ(z,Dw, x)‖Dw‖ (1.14)

for any Borel set B ⊆ Ω. We also have that

‖θ(z,Dw, .)‖L∞(Ω,‖Dw‖) ≤ ‖z‖L∞(Ω,RN ). (1.15)

By writing
z ·Dsu := (z,Du)− (z · ∇u) dλN ,

we see that z ·Dsu is a bounded measure. Furthermore, in [16] it is proved that z ·Dsu is absolutely
continuous with respect to |Dsu| (and, thus, it is a singular measure with respect to λN ), and

|z ·Dsu| ≤ ‖z‖∞|Dsu|. (1.16)

As a consequence of Theorem 2.4 of [5], we have:

If z ∈ X(Ω) ∩ C(Ω,RN ), then z ·Dsu = (z · −−→Dsu) d|Dsu|. (1.17)

In [5], a weak trace on ∂Ω of the normal component of z ∈ X(Ω) is defined. Concretely, it is
proved that there exists a linear operator γ : X(Ω)→ L∞(∂Ω) such that

‖γ(z)‖∞ ≤ ‖z‖∞
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γ(z)(x) = z(x) · ν(x) for all x ∈ ∂Ω if z ∈ C1(Ω,RN ).

We shall denote γ(z)(x) by [z, ν](x). Moreover, the following Green’s formula, relating the function
[z, ν] and the measure (z,Dw), for z ∈ X(Ω) and w ∈ BV (Ω) ∩ L∞(Ω), is established:

∫

Ω

w div(z) dx+

∫

Ω

(z,Dw) =

∫

∂Ω

[z, ν]w dHN−1. (1.18)

Let g be a function satisfying (1.2). Then for every u ∈ BV (Ω) we have the measure g(x,Du)
defined by ∫

B

g(x,Du) =

∫

B

g(x,∇u(x)) dx+

∫

B

g0(x,
−−→
Dsu(x)) d|Dsu|

for all Borel set B ⊂ Ω. If we assume that Ω has a Lipschitz boundary, and that g(x, ξ) is defined
also for x ∈ ∂Ω, we may consider the functional G in BV (Ω) defined by

G(u) :=

∫

Ω

g(x,Du) +

∫

∂Ω

g0
(
x, ν(x)[ϕ(x)− u(x)]

)
dHN−1, (1.19)

where ϕ ∈ L1(∂Ω) is a given function and ν is the outer unit normal to ∂Ω. It is proved in [6]
that, if g̃(x, ξ, t) is continuous on Ω × RN × [0,+∞[ and convex in (ξ, t) for each fixed x ∈ Ω,
then G is the greatest functional on BV (Ω) which is lower-semicontinuous with respect to the

L1(Ω)-convergence and satisfies G(u) ≤
∫

Ω

g(x,∇u(x)) dx for all functions u ∈ C1(Ω) ∩W 1,1(Ω)

with u = ϕ on ∂Ω.

The paper is organized as follows: in Section 2 we give the definition of solution for the Dirichlet
problem and we state the existence and uniqueness result for this type of solutions. Section 3 is
devoted to prove the existence and uniqueness result. To do that, we study the problem from
the point of view of nonlinear semigroup theory. We characterize the subdifferential in L2(Ω) of
the relaxed energy functional associated with the problem. In section 4 we give a weakened form
of the maximum principle and we study the asymptotic behaviour of solutions proving that they
stabilizes as t→∞ by converging to a solution of the steady-state problem. Finally, the Appendix
contains the proof of the approximation Lemma stated in Section 3.

2 The existence and uniqueness result.

In this section we define the concept of solution for the Dirichlet problem (1.1) and we state the
existence and uniqueness result for this type of solutions when the initial data are in L2(Ω).

Here we assume that Ω is an open bounded set in RN , N ≥ 2, with boundary ∂Ω of class
C1, and the Lagrangian f : Ω× RN → R satisfies the following assumptions, which we shall refer
collectively as (H):

(H1) f is continuous on Ω×RN and is a convex diffentiable function of ξ with continuous gradient
for each fixed x ∈ Ω. Further we require f to satisfy the linear growth condition

C0‖ξ‖ − C1 ≤ f(x, ξ) ≤M(‖ξ‖+ C2). (2.1)

for some positive constants C0, C1, C2. Moreover, f0 exists and f0(x,−ξ) = f0(x, ξ) for all ξ ∈ RN
and all x ∈ Ω.

(H2) f̃(x, ξ, t) is continuous on Ω× RN × [0,+∞[ and convex in (ξ, t) for each fixed x ∈ Ω.
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We consider the function a(x, ξ) = ∇ξf(x, ξ) associated to the Lagrangian f . By the convexity
of f

a(x, ξ) · (η − ξ) ≤ f(x, η)− f(x, ξ), (2.2)

and the following monotonicity condition is satisfied

(a(x, η)− a(x, ξ)) · (η − ξ) ≥ 0. (2.3)

Moreover, it is easy to see that

|a(x, ξ)| ≤M ∀ (x, ξ) ∈ Ω× RN . (2.4)

We consider the function h : Ω× RN → R defined by

h(x, ξ) := a(x, ξ) · ξ.
From (2.2) and (2.1), it follows that

C0‖ξ‖ −D1 ≤ h(x, ξ) ≤M‖ξ‖ (2.5)

for some positive constant D1.

We assume that

(H3) h0 exists and the function h̃ is continuous on Ω× RN × [0,+∞[.

We need to consider the mapping a∞ defined by

a∞(x, ξ) := lim
t→+∞

a(x, tξ).

Observe that
h0(x, ξ) = a∞(x, ξ) · ξ and C0‖ξ‖ ≤ h0(x, ξ) ≤M‖ξ‖.

(H4) a∞(x, ξ) = ∇ξf0(x, ξ) for all ξ 6= 0 and all x ∈ Ω.

In particular, as a consequence of Euler’s Theorem, we have

f0(x, ξ) = a∞(x, ξ) · ξ = h0(x, ξ),

for all ξ ∈ RN and all x ∈ Ω.

(H5) a(x, ξ) · η ≤ h0(x, η) for all ξ, η ∈ RN , and all x ∈ Ω.

Either from (H4) or (H5) it follows that a∞(x, ξ) · η ≤ h0(x, η) for all ξ, η ∈ RN , ξ 6= 0, and all
x ∈ Ω. Indeed, it suffices to replace ξ by tξ in (H5) and let t→ +∞.

Definition 2.1 Let ϕ ∈ L1(∂Ω) and u0 ∈ L2(Ω). A measurable function u : (0, T ) × Ω → R
is a solution of (1.1) in QT = (0, T ) × Ω if u ∈ C([0, T ], L2(Ω)), u(0) = u0, u′(t) ∈ L2(Ω),
u(t) ∈ BV (Ω) ∩ L2(Ω), a(x,∇u(t)) ∈ X(Ω) a.e. t ∈ [0, T ], and for almost all t ∈ [0, T ] u(t)
satisfies:

u′(t) = div(a(x,∇u(t)) in D′(Ω) (2.6)

a(x,∇u(t)) ·Dsu(t) = f0(x,Dsu(t)) (2.7)

[a(x,∇u(t)), ν] ∈ sign(ϕ− u(t))f0(x, ν(x)) HN−1 − a.e. on ∂Ω. (2.8)
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Our main result is the following:

Theorem 2.2 Let ϕ ∈ L1(∂Ω) and assume we are under assumptions (H). Given u0 ∈ L2(Ω),
there exists a unique solution u of (1.1) in QT for every T > 0 such that u(0) = u0.

3 Strong solution for data in L2(Ω)

To prove Theorem 2.2 we shall use the nonlinear semigroup theory ([9]). For ϕ ∈ L1(∂Ω) we define
the energy functional associated with the problem (1.1) Φϕ : L2(Ω)→ [0,+∞] by

Φϕ(u) :=





∫

Ω

f(x,Du) +

∫

∂Ω

f0(x, ν(x)[ϕ− u]) dHN−1 if u ∈ BV (Ω) ∩ L2(Ω)

+∞ if u ∈ L2(Ω) \BV (Ω).

Note that, on the boundary, the integrand can be written in the form

f0(x, ν(x)[ϕ− u]) = |ϕ− u|f0(x, ν(x)).

Functional Φϕ is clearly convex and has the form given in (1.19). Then, as a consequence of the
Anzellotti’s result ([6]) we have that Φϕ is lower-semicontinuous. Therefore, the subdifferential
∂Φϕ of Φϕ, i.e. the operator in L2(Ω) defined by

v ∈ ∂Φϕ(u) ⇐⇒ Φϕ(w)− Φϕ(u) ≥
∫

Ω

v(w − u) dx, ∀ w ∈ L2(Ω)

is a maximal monotone operator in L2(Ω). Consequently, the existence and uniqueness of a solution
of the abstract Cauchy problem





u′(t) + ∂Φϕ(u(t)) 3 0 t ∈]0,∞[

u(0) = u0 u0 ∈ L2(Ω)
(3.1)

follows immediately from the nonlinear semigroup theory (see [9]). Now, to get the full strength
of the abstract result derived from semigroup theory we need to characterize ∂Φϕ. To get this
characterization, we introduce the following operator Bϕ in L2(Ω).

(u, v) ∈ Bϕ ⇐⇒ u ∈ BV (Ω) ∩ L2(Ω), v ∈ L2(Ω) and a(x,∇u) ∈ X(Ω) satisfies :

−v = div a(x,∇u) in D′(Ω) (3.2)

a(x,∇u) ·Dsu = f0(x,Dsu) = f0(x,
−−→
Dsu)|Dsu|, (3.3)

[a(x,∇u), ν] ∈ sign (ϕ− u)f0(x, ν(x)) HN−1 − a.e.. (3.4)

Let (u, v) ∈ Bϕ, and w ∈ BV (Ω) ∩ L2(Ω). Multiplying (3.2) by w − u, and using Green’s
formula (1.18), we obtain

∫

Ω

(w − u)vdx = −
∫

Ω

(w − u) div a(x,∇u) dx =

7



           

∫

Ω

(a(x,∇u), Dw −Du)−
∫

∂Ω

[a(x,∇u), ν](w − u) dHN−1 =

=

∫

Ω

(a(x,∇u), Dw)−
∫

∂Ω

[a(x,∇u), ν](w − ϕ) dHN−1−

−
∫

Ω

(a(x,∇u), Du)−
∫

∂Ω

[a(x,∇u), ν](ϕ− u) dHN−1 =

=

∫

Ω

(a(x,∇u), Dw)−
∫

∂Ω

[a(x,∇u), ν](w − ϕ) dHN−1−

−
∫

Ω

a(x,∇u) · ∇u dx−
∫

Ω

a(x,∇u) ·Dsu−
∫

∂Ω

|ϕ− u|f0(x, ν(x)) dHN−1 =

=

∫

Ω

(a(x,∇u), Dw)−
∫

∂Ω

[a(x,∇u), ν](w − ϕ) dHN−1−

−
∫

Ω

h(x,Du)−
∫

∂Ω

|ϕ− u|f0(x, ν(x)) dHN−1.

Therefore, if (u, v) ∈ Bϕ, we have that
∫

Ω

(w − u)v dx =

∫

Ω

(a(x,∇u), Dw)−
∫

∂Ω

[a(x,∇u), ν](w − ϕ) dHN−1−

−
∫

Ω

h(x,Du)−
∫

∂Ω

|ϕ− u|f0(x, ν(x)) dHN−1, ∀ w ∈ BV (Ω) ∩ L2(Ω).

(3.5)

Theorem 3.1 Let ϕ ∈ L1(∂Ω). Assume we are under assumptions (H), then the operator ∂Φϕ
has dense domain in L2(Ω) and

∂Φϕ = Bϕ.

We note that, in the particular case of the nonparametric area integrand f(x, ξ) =
√

1 + ‖ξ‖2,
the characterization of the subdifferential of Φϕ given in Theorem 3.1 coincides with the one
given by F. Demengel and R. Temam in [12], Theorem 3.1, where they used a different approach.
More precisely, they characterized the subdifferential by means of the duality method of convex
optimization introduced by R. T. Rockafellar in [19]. To prove Theorem 3.1 we need the following
proposition.

Proposition 3.2 Let ϕ ∈ L1(∂Ω). Assume we are under assumptions (H), then L∞(Ω) ⊂ R(I +
Bϕ) and D(Bϕ) is dense in L2(Ω).

We need to introduce the following sequence of auxiliar operators. For ϕ ∈W 1
2 ,2(Ω), let

W 1,2
ϕ (Ω) := {u ∈W 1,2(Ω) : u|∂Ω = ϕ HN−1 − a.e.}.

For every n ∈ N, consider an(x, ξ) := a(x, ξ) +
1

n
ξ. We define the operator An,ϕ in L2(Ω):

(u, v) ∈ An,ϕ ⇐⇒ u ∈W 1,2
ϕ (Ω) ∩ L∞(Ω), v ∈ L2(Ω), and

∫

Ω

(w − u)v dx ≤
∫

Ω

an(x,∇u) · ∇(w − u) dx ∀ w ∈W 1,2
ϕ (Ω).

A similar proof to the one given in Proposition 1 of [4] give us the following result.
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Lemma 3.3 Let ϕ ∈W 1
2 ,2(∂Ω) ∩ L∞(∂Ω). Then for every n ∈ N the operator An,ϕ satisfies

L∞(Ω) ⊂ R(I +An,ϕ).

We also need an appoximation lemma similar to the one given by Anzellotti in [7]. The proof
of this lemma will be given in the Appendix.

Lemma 3.4 Let Ω be an open bounded set in RN , N ≥ 2, and assume that ∂Ω is of class C1. If
v, u ∈ BV (Ω) and g ∈ L1(∂Ω), then there exists a sequence of functions vj ∈ C1(Ω) such that

vj → g in L1(∂Ω), (3.6)

vj → v in LN/(N−1)(Ω), (3.7)

∫

Ω

√
1 + |∇vj(x)|2dx→

∫

Ω

√
1 + |Dv(x)|2dx+

∫

∂Ω

|g − v|dHN−1 (3.8)

∇vj(x)→ ∇v(x) λN -a.e. in Ω (3.9)

|∇vj(x)| → ∞ and
∇vj(x)

|∇vj(x)| →
Dv(x)

|Dv(x)| |Dv|
s a.e. in Ω (3.10)

|∇vj(x)| → ∞ and
∇vj(x)

|∇vj(x)| →
Du(x)

|Du(x)| |Du|
ss a.e. in Ω (3.11)

where |Du|ss denotes the part of the singular measure |Du|s which is singular with respect to |Dv|s,

|∇vj(x)| → ∞ and
∇vj(x)

|∇vj(x)| →
g(x)− v(x)

|g(x)− v(x)|ν(x) (3.12)

HN−1 a.e. in {x ∈ Ω : g(x) 6= v(x)}

|∇vj(x)| → ∞ and
∇vj(x)

|∇vj(x)| →
v(x)− u(x)

|v(x)− u(x)|ν(x) (3.13)

HN−1 a.e. in {x ∈ Ω : g(x) = v(x), u(x) 6= v(x)}

The next Lemmas will be used to prove Theorem 3.1 and Proposition 3.2.

Lemma 3.5 Let ϕ,ϕn ∈ L1(∂Ω), ϕn → ϕ in L1(∂Ω). Let un, u ∈ BV (Ω) and z ∈ X(Ω) with
div(z) ∈ L2(Ω). We assume that

Φϕ(un)→ Φϕ(u), (3.14)

a(x,∇un) ⇀ z weakly∗ in L∞(Ω), (3.15)

|[z, ν(x)]| ≤ f0(x, ν(x)) a.e. in ∂Ω, (3.16)

|z ·Dsu| ≤ f0(x,Dsu) as measures in Ω, (3.17)

lim
n→∞

∫

Ω

h(x,Dun) +

∫

∂Ω

|un − ϕn|f0(x, ν(x)) dHN−1 =

=

∫

Ω

h(x,Du) +

∫

∂Ω

|u− ϕ|f0(x, ν(x)) dHN−1.

(3.18)
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and
∫

Ω

h(x,Du) +

∫

∂Ω

|u− ϕ|f0(x, ν(x)) dHN−1 ≤
∫

Ω

(z,Du) +

∫

∂Ω

[z, ν](ϕ− u) dHN−1. (3.19)

Then ∫

Ω

z · ∇u dx =

∫

Ω

h(x,∇u) dx =

∫

Ω

a(x,∇u) · ∇u dx (3.20)

z ·Dsu = f0(x,Dsu) (3.21)

[z, ν] ∈ sign (ϕ− u)f0(x, ν(x)) HN−1 − a.e.. (3.22)

Proof. By the convexity of f , we have

∫

Ω

a(x,∇un) · ∇u dx ≤
∫

Ω

a(x,∇un) · ∇un dx+

∫

Ω

f(x,∇u) dx−
∫

Ω

f(x,∇un) dx ≤

≤
∫

Ω

a(x,∇un) · ∇un dx+

∫

Ω

f0(x,Dsun) +

∫

∂Ω

|un − ϕn|f0(x, ν(x)) dHN−1+

+

∫

∂Ω

|ϕn − ϕ|f0(x, ν(x)) dHN−1 +

∫

Ω

f(x,∇u) dx−

−
(∫

Ω

f(x,∇un) dx+

∫

Ω

f0(x,Dsun) +

∫

∂Ω

|un − ϕ|f0(x, ν(x))

)
=

=

∫

Ω

h(x,Dun) dx+

∫

∂Ω

|un − ϕn|f0(x, ν(x)) dHN−1 +

∫

∂Ω

|ϕn − ϕ|f0(x, ν(x)) dHN−1+

+

∫

Ω

f(x,∇u) dx− Φϕ(un).

Letting n→∞, and using (3.14), (3.15) and (3.18), we obtain

∫

Ω

z · ∇u dx ≤
∫

Ω

h(x,Du) +

∫

∂Ω

|u− ϕ|f0(x, ν(x)) dHN−1 +

∫

Ω

f(x,∇u) dx− Φϕ(u) =

=

∫

Ω

a(x,∇u) · ∇u dx.

Now, since, using (3.16) and (3.17), we have

|[z, ν](ϕ− u)| ≤ |u− ϕ|f0(x, ν(x)),

and
|z ·Dsu| ≤ f0(x,Dsu).

Hence from (3.19), we obtain (3.20), (3.21) and (3.22). 2

Lemma 3.6 i) Let un ∈ BV (Ω) ∩ L2(Ω) and z ∈ X(Ω). Suppose that

a(x,∇un) ⇀ z weakly∗ in L∞(Ω,RN ) (3.23)

and
div (a(x,∇un)) ⇀ div z weakly in L2(Ω). (3.24)
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Then
[a(x,∇un), ν(x)] ⇀ [z, ν(x)] weakly in L2(∂Ω) and (3.25)

|z(x) · ν(x)| ≤ f0(x, ν(x)) a.e. in ∂Ω. (3.26)

ii) Let un ∈W 1,2(Ω). Let an(x, ξ) = a(x, ξ) + 1
nξ. Suppose that

‖un‖2 is bounded in L2(Ω), (3.27)

1

n
|∇un| → 0 in L2(Ω), (3.28)

an(x,∇un) ⇀ z weakly in L2(Ω,RN ) (3.29)

and
div (an(x,∇un)) ⇀ div z weakly in L2(Ω). (3.30)

Then
[an(x,∇un), ν(x)] ⇀ [z, ν(x)] weakly in W 1/2,2(∂Ω)∗ and (3.31)

|[z(x), ν(x)]| ≤ f0(x, ν(x)) a.e. in ∂Ω. (3.32)

Proof. Since both proofs are based on similar arguments, we shall only prove ii). Observe that,
if σ ∈ L2(Ω,RN ) and div(σ) ∈ L2(Ω), we can define [σ, ν] using the integration by parts formula

∫

∂Ω

[σ, ν]ψ =

∫

Ω

div(σ)ψ +

∫

Ω

σ · ∇ψ. (3.33)

for all ψ ∈ W 1,2(Ω). This is consistent with the classical notion of trace at the boundary and it
defines [σ, ν] as an element of W 1/2,2(∂Ω)∗. According to the assumptions (3.29), (3.30) we have
that [an(x,∇un), ν(x)] → [z, ν(x)] weakly in W 1/2,2(∂Ω)∗. In i), the analogous conclusion (3.25)
follows from the results in [5] and the fact that a(x,∇un) is uniformly bounded in L∞(Ω). In this
case, the traces [a(x,∇un), ν(x)] are in L∞(∂Ω).

To prove (3.32), again, we observe that [16] if σ ∈ L2(Ω,RN ) and div(σ) ∈ L2(Ω), then there
is a sequence σk ∈ C∞(Ω,RN ) satisfying

σk → σ in L2(Ω,RN ), (3.34)

div σk → div σ in L2(Ω). (3.35)

We recall the construction in [16]. We use a partition of unity θj , j = 1, 2, ...p, in Ω with 0 ≤ θj ≤ 1,
θj ∈ C∞0 (RN ), such that if the support of θj intersects ∂Ω, then for some bounded open cone Kj

with vertex 0, every x ∈ ∂Ω ∩ supp(θj) satisfies (x + Kj) ∩ Ω = ∅, and for some r > 0, every
x ∈ ∂Ω ∩ (supp(θj) + B(0, r)) satisfies (x − Kj) ⊂ Ω. For each j, we choose ρj ∈ C∞0 (RN ),

0 ≤ ρj ≤ 1, with

∫

RN
ρjdx = 1, and let ρj,k(x) = kNρj(kx). If j is such that the support of θj

intersects ∂Ω, we choose ρj such that supp(ρj) ⊆ Kj . Then we define

σk =

p∑

j=1

ρj,k ∗ (θjσχΩ).

As it was proved in [16], σk satisfies (3.34) and (3.35). As in the first part of the proof, we have
that ∫

∂Ω

[σk, ν]ψ →
∫

∂Ω

[σ, ν]ψ

11



             

for all ψ ∈ W 1,2(Ω). We shall use this observation for σ = an(x,∇un). Previously, we extend
un as a function in W 1,2(RN ) such that ‖un‖W 1,2(RN ) ≤ C‖un‖W 1,2(Ω), for some constant C > 0
depending only on Ω ([1]). Then we define

an,k(x,∇un) =

p∑

j=1

ρj,k ∗ (θja(x,∇un)χΩ + θj
∇un
n

).

Now, since an,k(x,∇un) ∈ C∞(Ω), [an,k(x,∇un), ν(x)] can be understood in a classical sense. Let
ψ ∈W 1/2,2(∂Ω). We may write

∫

∂Ω

[an,k(x,∇un), ν(x)]ψ =

p∑

j=1

∫

∂Ω

[ρj,k ∗ (θja(x,∇un)χΩ), ν(x)]ψ(x) +

+

p∑

j=1

1

n

∫

∂Ω

[ρj,k ∗ (θj∇un), ν(x)]ψ(x).

By taking k sufficiently large, we may assume that all θj used in the above expression are such
that supp(θj) intersects ∂Ω. We observe that

∫

∂Ω

|[ρj,k ∗ (θja(x,∇un)χΩ), ν(x)]||ψ(x)| ≤

≤
∫

∂Ω

∫

Ω

ρj,k(x− y)θj(y)|a(y,∇un(y)) · ν(x)||ψ(x)|dydx ≤

≤
∫

∂Ω

∫

Ω

ρj,k(x− y)θj(y)f0(y, ν(x))|ψ(x)|dydx.

Since
∇unθj = ∇(unθj)− un∇θj ,

we may write
∫

∂Ω

[ρj,k ∗ (θj∇un), ν(x)]ψ(x) =

∫

∂Ω

[∇ρj,k ∗ (θjun), ν(x)]ψ(x)−
∫

∂Ω

[ρj,k ∗ (∇θjun), ν(x)]ψ(x).

We estimate both integrals in the right hand side of the above expression. First,

∣∣∣∣
∫

∂Ω

[∇ρj,k ∗ (θjun), ν(x)]ψ(x)

∣∣∣∣ ≤
∥∥∥∥
∂

∂ν

(
ρj,k ∗ (unθj)

)∥∥∥∥
W 1/2,2(∂Ω)∗

‖ψ‖W 1/2,2(∂Ω) ≤

≤ C‖ρj,k ∗ (unθj)‖W 1,2(Ω)‖ψ‖W 1/2,2(∂Ω) ≤ C‖ρj,k ∗ (unθj)‖W 1,2(RN )‖ψ‖W 1/2,2(∂Ω) ≤
≤ C‖unθj‖W 1,2(RN )‖ψ‖W 1/2,2(∂Ω) ≤ C‖un‖W 1,2(RN )‖ψ‖W 1/2,2(∂Ω) ≤ C‖un‖W 1,2(Ω)‖ψ‖W 1,2(Ω)

for some constant C > 0 (which may change from line to line). A similar analysis proves that

∣∣∣∣
∫

∂Ω

[ρj,k ∗ (∇θjun), ν(x)]ψ(x)

∣∣∣∣ ≤ C‖un‖W 1,2(Ω)‖ψ‖W 1,2(Ω)

for some constant C > 0. Taking all the above into account , we obtain
∣∣∣∣
∫

∂Ω

[an,k(x,∇un), ν(x)]ψ

∣∣∣∣ ≤

12



            

≤
p∑

j=1

∫

∂Ω

∫

Ω

ρj,k(x− y)θj(y)f0(y, ν(x))|ψ(x)|dydx+
C

n
‖un‖W 1,2(Ω)‖ψ‖W 1,2(Ω).

Letting k → ∞, and taking into account the fact that θj is a partition of unity in Ω and our
assumptions on θj and Kj , we obtain

∣∣∣∣
∫

∂Ω

[an(x,∇un), ν(x)]ψ

∣∣∣∣ ≤
∫

∂Ω

f0(x, ν(x))|ψ(x)|dx+
C

n
‖un‖W 1,2(Ω)‖ψ‖W 1,2(Ω).

Now, letting n→∞, and using (3.27), (3.28), we obtain

∣∣∣∣
∫

∂Ω

[z, ν(x)]ψ

∣∣∣∣ ≤
∫

∂Ω

f0(x, ν(x))|ψ(x)|dx, (3.36)

for all ψ ∈ W 1,2(Ω). Now, since z ∈ L∞(Ω) and div(z) ∈ L2(Ω), [z, ν] coincides with the trace
given in the sense of Anzellotti ([5]), and, therefore, [z, ν] ∈ L∞(∂Ω). Hence, from (3.36), we
conclude that |[z(x), ν(x)]| ≤ f0(x, ν(x)). 2

Lemma 3.7 Suppose that any of the assumptions of Lemma 3.6 hold. Moreover we assume that

un → u in L2(Ω) and ‖un‖BV is bounded, (3.37)

Then
z(x) = a(x,∇u(x)) a.e. x ∈ Ω. (3.38)

Proof. Again, since both proofs are based on similar arguments, we shall only prove (3.38) under
the assumptions given in i) of Lemma 3.6. Let 0 ≤ φ ∈ C1

0 (Ω) and g ∈ C1(Ω). We observe that

∫

Ω

φ[(a(x,∇un), D(un − g))− a(x,∇g)D(un − g)] =

=

∫

Ω

φ[a(x,∇un)− a(x,∇g)) · ∇(un − g)] dx+

∫

Ω

φ[a(x,∇un)− a(x,∇g)] ·Ds(un − g)).

Since both terms at the right hand side of the above expression are positive, we have

∫

Ω

φ[(a(x,∇un), D(un − g))− a(x,∇g)D(un − g)] ≥ 0.

Since
∫

Ω

φ(a(x,∇un), D(un − g)) = −
∫

Ω

div(a(x,∇un))φ(un − g) dx−
∫

Ω

(un − g)a(x,∇un) · ∇φ dx,

we get

lim
n→∞

∫

Ω

φ(a(x,∇un), D(un − g)) = −
∫

Ω

div(z)φ(u− g) dx−
∫

Ω

(u− g)z · ∇φ dx =

=

∫

Ω

φ(z,D(u− g)).
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On the other hand,

lim
n→∞

∫

Ω

φa(x,∇g)D(un − g) =

∫

Ω

φa(x,∇g)D(u− g).

Consequently, we obtain

∫

Ω

φ[(z,D(u− g))− a(x,∇g)D(u− g)] ≥ 0, ∀ 0 ≤ φ ∈ C1
0 (Ω).

Thus the measure (z,D(u− g))− a(x,∇g)D(u− g) ≥ 0. Then its absolutely continuous part

(z − a(x,∇g)) · ∇(u− g) ≥ 0 a.e. in Ω.

Since we may take a countable set dense in C1(Ω) we have that the above inequality holds for all
x ∈ Ω̃, where Ω̃ ⊂ Ω is such that λN (Ω \ Ω̃) = 0, and all g ∈ C1(Ω). Now, fixed x ∈ Ω̃ and given
ξ ∈ RN , there is g ∈ C1(Ω) such that ∇g(x) = ξ. Then

(z(x)− a(x, ξ)) · (∇u(x)− ξ) ≥ 0, ∀ ξ ∈ RN .

These inequalities imply (3.38) by an application of Minty-Browder’s method in RN . 2

Proof of Proposition 3.2. We divide the proof in three steps.
Step 1. Suppose first that ϕ ∈ C1(Ω). Let v ∈ L∞(Ω). We shall find u ∈ BV (Ω) ∩ L2(Ω) such
that (u, v − u) ∈ Bϕ. That is, there is a(x,∇u) ∈ X(Ω) satisfying

(v − u) = −div a(x,∇u), in D′(Ω), (3.39)

a(x,∇u) ·Dsu = f0(x,Dsu), and (3.40)

[a(x,∇u), ν] ∈ sign (ϕ− u)f0(x, ν(x)) HN−1 − a.e. (3.41)

By Lemma 3.3, we know that for any n ∈ N there exists un ∈ W 1,2
ϕ (Ω) ∩ L∞(Ω) such that

(un, v − un) ∈ An,ϕ. Hence

∫

Ω

(w − un)(v − un) dx ≤
∫

Ω

an(x,∇un) · ∇(w − un) dx ∀ w ∈W 1,2
ϕ (Ω) dx. (3.42)

Let M1 := sup{‖ϕ‖∞, ‖v‖∞}. Then, taking w = un − (un −M1)+ as test function in (3.42), we
obtain ∫

Ω

(un −M1)+(un − v) dx ≤ 0.

Hence,

∫

{un>M1}
(un −M1)2 dx ≤

∫

{un>M1}
(un −M1)(un − v) dx =

∫

Ω

(un −M1)+(un − v) dx ≤ 0.

Consequently, un ≤M1 a.e. in Ω. Analogously, taking w = un + (un +M1)− as test function, we
get −M1 ≤ un a.e. in Ω. Therefore,

‖un‖∞ ≤M1 for all n ∈ N. (3.43)

Taking w = w0 ∈W 1,2
ϕ (Ω)∩L∞(Ω) in (3.42), applying Young’s inequality and using (3.43) we get
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∫

Ω

a(x,∇un) · ∇un dx+
1

n

∫

Ω

|∇un|2 dx ≤
∫

Ω

a(x,∇un) · ∇w0 dx+
1

n

∫

Ω

∇un · ∇w0 dx+

∫

Ω

(w0 − un)(un − v) dx ≤

≤M2

(∫

Ω

|∇w0|2 dx
) 1

2

+
1

2n

∫

Ω

|∇un|2 dx+
1

2n

∫

Ω

|∇w0|2 dx+M3 ≤M4 +
1

2n

∫

Ω

|∇un|2 dx.

Hence, by (2.5), we obtain ∫

Ω

|∇un| dx ≤M5 ∀ n ∈ N (3.44)

and
1

n

∫

Ω

|∇un|2 dx ≤M6 ∀n ∈ N (3.45)

Thus, {un : n ∈ N} is bounded in W 1,1(Ω) and, by extracting a subsequence if is necessary, we
may assume that un converges in L1(Ω) and converges almost everywhere to some u ∈ L1(Ω) as
n→ +∞. Now, by (3.43) and (3.44), we have that un → u in L2(Ω) and u ∈ BV (Ω) ∩ L∞(Ω).

Observe that by (2.4) and (3.45), {an(x,∇un) : n ∈ N} is bounded in L2(Ω,RN ). Consequently
we may assume that

an(x,∇un) ⇀ z as n→∞, weakly in L2(Ω,RN ). (3.46)

Given ψ ∈ C∞0 (Ω), taking w = un ± ψ in (3.42) we obtain
∫

Ω

ψ(v − un) dx =

∫

Ω

an(x,∇un) · ∇ψ dx.

Letting n→ +∞, we obtain ∫

Ω

(v − u)ψ dx =

∫

Ω

z · ∇ψ dx,

that is,
v − u = −div(z), in D′(Ω) (3.47)

and
div an(x,∇un) ⇀ div(z) weakly in L2(Ω). (3.48)

Since, by (3.45),
1

n
|∇un| → 0 in L2(Ω), (3.49)

as a consequence of (3.46), it follows that

a(x,∇un) ⇀ z as n→∞, weakly in L2(Ω,RN ). (3.50)

Moreover, by (2.4) we may assume that

a(x,∇un) ⇀ z as n→∞, weakly∗ in L∞(Ω,RN ). (3.51)

Let us prove that

lim
n→∞

∫

Ω

a(x,∇un) · ∇un dx =

∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u− ϕ) dHN−1. (3.52)
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By (3.42), we have ∫

Ω

(w − un)(v − un) dx+

∫

Ω

a(x,∇un) · ∇un dx ≤

≤
∫

Ω

a(x,∇un) · ∇w dx+
1

n

∫

Ω

∇un · ∇w dx (3.53)

for all w ∈ W 1,2
ϕ (Ω). By Lemma 3.4, there exists vj ∈ C1(Ω) such that vj |∂Ω = ϕ, vj → u in

L1(Ω). If we set w = vj in (3.53), taking the upper limit when n→∞, we get

∫

Ω

(vj − u)(v − u) dx+ lim sup
n→∞

∫

Ω

a(x,∇un) · ∇un dx ≤
∫

Ω

z · ∇vj dx. (3.54)

Now, by Green’s formula we have
∫

Ω

z · ∇vj dx = −
∫

Ω

div(z)vj dx+

∫

∂Ω

[z, ν]ϕ dHN−1 =

∫

Ω

(v − u)vj dx+

∫

∂Ω

[z, ν]ϕ dHN−1.

Hence, taking limit as j →∞ and applying again the Green’s formula we obtain that

lim
j→∞

∫

Ω

z · ∇vj dx =

∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u− ϕ) dHN−1. (3.55)

Letting j →∞ in (3.54) , we have

lim sup
n→∞

∫

Ω

a(x,∇un) · ∇un dx ≤
∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u− ϕ) dHN−1. (3.56)

On the other hand,
∫

Ω

a(x,∇un) · ∇un dx =

∫

Ω

(
a(x,∇un)− a(x,∇vj)

)
· ∇(un − vj) dx+

+

∫

Ω

(
a(x,∇un)− a(x,∇vj)

)
· ∇vj dx+

∫

Ω

a(x,∇vj) · ∇un dx ≥

≥
∫

Ω

(
a(x,∇un)− a(x,∇vj)

)
· ∇vj dx+

∫

Ω

a(x,∇vj) · ∇un dx.

Hence

lim inf
n→∞

∫

Ω

a(x,∇un) · ∇un dx ≥

≥ lim
n→∞

(∫

Ω

a(x,∇un) · ∇vj dx−
∫

Ω

a(x,∇vj) · ∇vj dx+

∫

Ω

a(x,∇vj) · ∇un dx
)
.

If we consider the RN -valued measures µn, µ on Ω which are defined as

µn(B) :=

∫

B∩Ω

∇un dx

µ(B) :=

∫

B∩Ω

Du+

∫

B∩∂Ω

(ϕ− u)ν dHN−1

for all Borel sets B ⊂ Ω, we have

µn ⇀ µ weakly as measures in Ω.
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Then, since a(x,∇vj(x)) ∈ C(Ω,RN ), we have

lim
n→∞

∫

Ω

a(x,∇vj) · ∇un dx =

∫

Ω

a(x,∇vj) dDu+

∫

∂Ω

a(x,∇vj) · ν(ϕ− u) dHN−1.

Therefore, we have

lim inf
n→∞

∫

Ω

a(x,∇un) · ∇un dx ≥
∫

Ω

z · ∇vj dx−
∫

Ω

a(x,∇vj) · ∇vj dx+

+

∫

Ω

a(x,∇vj) dDu+

∫

∂Ω

a(x,∇vj) · ν(ϕ− u) dHN−1.

Now, by Theorem 7.4 of [7], we have

lim
j→∞

∫

Ω

a(x,∇vj) · ∇vj dx =

=

∫

Ω

a(x,∇u) · ∇u dx+

∫

Ω

a∞(x,
−−→
Dsu) ·Dsu+

∫

∂Ω

a∞(x, (ϕ− u)ν) · ν(ϕ− u) dHN−1.

On the other hand, as a consequence of Lemma 3.4, we have

lim
j→∞

∫

Ω

a(x,∇vj) dDu = lim
j→∞

(∫

Ω

a(x,∇vj) · ∇u dx+

∫

Ω

a(x,∇vj)dDsu

)
=

=

∫

Ω

a(x,∇u) · ∇u dx+

∫

Ω

a∞(x,
−−→
Dsu) ·Dsu

and

lim
j→∞

∫

∂Ω

a(x,∇vj) · ν(ϕ− u) dHN−1 =

∫

∂Ω

a∞
(
x,

ϕ− u
|ϕ− u|ν

)
· ν(ϕ− u) dHN−1 =

=

∫

∂Ω

a∞
(
x, (ϕ− u)ν

)
· ν(ϕ− u) dHN−1.

Collecting all these facts, we obtain

lim inf
n→∞

∫

Ω

a(x,∇un) · ∇un dx ≥ lim
j→∞

∫

Ω

z · ∇vj dx =

∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u− ϕ) dHN−1.

Combining this inequality with (3.56), we obtain (3.52).

Our next purpose will be to show that
∫

Ω

h(x,Du) +

∫

∂Ω

|ϕ− u|f0(x, ν(x)) dHN−1 =

∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u− ϕ) dHN−1. (3.57)

According to [6], there exists a sequence {wj} ⊂ C1(Ω) ∩BV (Ω) such that wj |∂Ω = ϕ,

wj → u in L1(Ω), and Φϕ(wj)→ Φϕ(u).

Now, by the convexity of f , we have
∫

Ω

f(x,∇un) dx ≤
∫

Ω

a(x,∇un) · ∇un dx−
∫

Ω

a(x,∇un) · ∇wj dx+

∫

Ω

f(x,∇wj) dx.

17



        

Thus,

Φϕ(un) ≤
∫

Ω

a(x,∇un) · ∇un dx−
∫

Ω

a(x,∇un) · ∇wj dx+ Φϕ(wj).

Using (3.52), it follows that
lim sup
n→∞

Φϕ(un) ≤

≤
∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u− ϕ) dHN−1 − lim
n→∞

∫

Ω

a(x,∇un) · ∇wj dx+ Φϕ(wj) =

=

∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u− ϕ) dHN−1 −
∫

Ω

z · ∇wj dx+ Φϕ(wj).

Since

lim
j→∞

∫

Ω

z · ∇wj dx = lim
j→∞

(
−
∫

Ω

div(z)wj dx+

∫

∂Ω

[z, ν]ϕ dHN−1

)
=

= −
∫

Ω

div(z)u dx+

∫

∂Ω

[z, ν]ϕ dHN−1 =

∫

Ω

(z,Du)−
∫

∂Ω

[z, ν](u− ϕ) dHN−1,

letting j →∞ in the above inequalty, we obtain

lim sup
n→∞

Φϕ(un) ≤ lim
j→∞

Φϕ(wj) = Φϕ(u).

Thus, by the lower-semicontinuity of Φϕ, we get

Φϕ(u) = lim
n→∞

Φϕ(un). (3.58)

Now,

Φϕ(u) =

∫

Ω

f̃(x, µ̃) and Φϕ(un) =

∫

Ω

f̃(x, µ̃n).

Hence, (3.58) yields

lim
n→∞

∫

Ω

f̃(x, µ̃n) =

∫

Ω

f̃(x, µ̃).

Then, applying Theorem 3 of [18], it follows that

∫

Ω

h̃(x, µ̃) = lim
n→∞

∫

Ω

h̃(x, µ̃n) = lim
n→∞

∫

Ω

a(x,∇un) · ∇un. (3.59)

Since ∫

Ω

h̃(x, µ̃) =

∫

Ω

h̃(x, µ̃a(x)) dx+

∫

Ω

h̃
(
x,

dµ̃s

d|µ̃s| (x)
)
d|µ̃s| =

=

∫

Ω

h̃(x, µa(x), 1) dx+

∫

Ω

h̃
(
x,

dµs

d|µs| (x), 0
)
d|µs| =

=

∫

Ω

h(x, µa(x)) dx+

∫

Ω

h0
(
x,

dµs

d|µs| (x)
)
d|µs| =

=

∫

Ω

h(x,∇u(x)) dx+

∫

Ω

h0
(
x,
−−→
Dsu(x)) d|Dsu|+

∫

∂Ω

h0

(
x,

(ϕ− u) · ν
|(ϕ− u) · ν|

)
dHN−1 =

=

∫

Ω

h(x,Du) +

∫

∂Ω

|ϕ− u|f0(x, ν(x)) dHN−1,
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(3.57) follows from (3.52) and (3.59).

By (3.49), (3.50) and (3.48), applying Lemma 3.6 (ii), we get

|[z(x), ν(x)]| ≤ f0(x, ν(x)) a.e. in ∂Ω. (3.60)

Let vj ∈ C1(Ω) be a sequence such that vj → u in L2(Ω) and

∫

Ω

|∇vj | → ‖Du‖. According to

(H5), we have
|a(x,∇un) · ∇vj | ≤ f0(x,∇vj).

Then, if ψ, φ ∈ C1(Ω), with 0 ≤ ψ ≤ φ, we have

∣∣∣∣
∫

Ω

a(x,∇un) · ∇vj ψ dx

∣∣∣∣ ≤
∫

Ω

f0(x,∇vj)ψ dx,

and, letting n→∞, we get

∣∣∣∣
∫

Ω

z · ∇vj ψ dx

∣∣∣∣ ≤
∫

Ω

f0(x,∇vj)ψ dx.

Now, since ∣∣∣∣
∫

Ω

z · ∇vj ψ dx

∣∣∣∣ =

∣∣∣∣−
∫

Ω

div(z)vjψ dx−
∫

Ω

vjz · ∇ψ dx

∣∣∣∣,

letting j →∞ we obtain that

|〈(z,Du), ψ〉| =
∣∣∣∣−
∫

Ω

div(z)uψ dx−
∫

Ω

uz · ∇ψ dx

∣∣∣∣ ≤
∫

Ω

ψf0(x,Du) ≤
∫

Ω

φf0(x,Du).

Hence

〈|(z,Du)|, φ〉 ≤
∫

Ω

φf0(x,Du).

Thus, we have
|(z,Du)| ≤ f0(x,Du) as measures in Ω.

Then, the singular parts also satisfy a similar inequality,

|z ·Dsu| ≤ f0(x,Dsu) as measures in Ω. (3.61)

Now, by (3.58), (3.51), (3.60) and (3.61), the assumptions of Lemma 3.5 are satisfied, and we
have ∫

Ω

z · ∇u dx =

∫

Ω

h(x,∇u) dx =

∫

Ω

a(x,∇u) · ∇u dx, (3.62)

z ·Dsu = f0(x,Dsu), (3.63)

[z, ν] ∈ sign (ϕ− u)f0(x, ν(x)) HN−1 − a.e. (3.64)

Moreover, since the assumptions of Lemma 3.7 hold, we have that

z(x) = a(x,∇u(x)) a.e. x ∈ Ω. (3.65)

Observe that (3.39) follows from (3.47) and (3.65); (3.40) is a consequence of (3.62), (3.63) and
(3.65); and (3.41) follows from (3.64) and (3.65). This concludes the proof in the case ϕ ∈ C1(Ω).
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Step 2. Suppose now we are in the general case, that is, ϕ ∈ L1(∂Ω). Take ϕj ∈ C1(Ω) such
that ϕj → ϕ in L1(∂Ω). Given v ∈ L∞(Ω), from the Step 1, there exists uj ∈ D(Bϕj ) such that
(uj , v − uj) ∈ Bϕj . Hence, we have

−div(a(x,∇uj)) = v − uj , in D′(Ω), (3.66)

a(x,∇uj) ·Dsuj = f0(x,Dsuj), (3.67)

[a(x,∇uj), ν] ∈ sign(ϕj − uj)f0(x, ν(x)) HN−1 − a.e. (3.68)

By (3.66), (3.67) and (3.68), we get

∫

Ω

a(x,∇uj) · ∇uj dx+

∫

Ω

f0(x,Dsuj) +

∫

∂Ω

|ϕj − uj |f0(x, ν(x)) dHN−1+

+

∫

Ω

u2
j dx =

∫

Ω

ujv dx+

∫

∂Ω

(
a(x,∇uj) · ν

)
ϕj dH

N−1.

(3.69)

From (3.69), using Young’s inequality and (2.5), we obtain that

C0‖Duj‖+ C0

∫

∂Ω

|ϕj − uj |f0(x, ν(x)) dHN−1 +
1

2

∫

Ω

u2
j dx ≤ C ∀ j ∈ N,

for some constant C > 0. It follows that there exists u ∈ BV (Ω) ∩ L2(Ω), such that

uj ⇀ u weakly in L2(Ω), uj → u in Lq(Ω) for all 1 ≤ q < N

N − 1
. (3.70)

Hence, ∫

Ω

u2 dx ≤ lim sup
j→∞

∫

Ω

u2
j dx. (3.71)

After passing to a subsequence, if necessary, we may assume that

a(x,∇uj) ⇀ z as j →∞, weakly∗ in L∞(Ω,RN ) (3.72)

and
−div(z) = v − u in D′(Ω). (3.73)

According to [6], Fact 3.3, there exists a sequence {wk} ⊂ C1(Ω)∩BV (Ω) such that wk|∂Ω = ϕ,

wk → u in L2(Ω) and Φϕ(wk)→ Φϕ(u). (3.74)

Now, by the convexity of f we have

∫

Ω

f(x,∇uj) dx ≤
∫

Ω

a(x,∇uj) · ∇uj dx−
∫

Ω

a(x,∇uj) · ∇wk dx+

∫

Ω

f(x,∇wk) dx.

Thus, having in mind (3.66), (3.67) and (3.68), we get

Φϕj (uj) =

∫

Ω

f(x,∇uj) dx+

∫

Ω

f0(x,Dsuj) +

∫

∂Ω

|uj − ϕj |f0(x, ν(x)) dHN−1 ≤

≤
∫

Ω

f(x,∇wk) dx+

∫

Ω

a(x,∇uj) · ∇uj dx+

∫

Ω

f0(x,Dsuj)+
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+

∫

∂Ω

|uj − ϕj |f0(x, ν(x)) dHN−1 −
∫

Ω

a(x,∇uj) · ∇wk dx ≤
∫

Ω

f(x,∇wk) dx+

+

∫

Ω

(v − uj)uj dx+

∫

∂Ω

[a(x,∇uj), ν]ϕj dH
N−1 −

∫

Ω

a(x,∇uj) · ∇wk dx.

Using (3.71) and (3.72), it follows that

lim sup
j→∞

Φϕ(uj) = lim sup
j→∞

Φϕj (uj) ≤

≤
∫

Ω

f(x,∇wk) dx+

∫

Ω

uv dx−
∫

Ω

u2 dx+

∫

∂Ω

[z, ν]ϕ dHN−1 −
∫

Ω

z · ∇wk dx ≤

≤
∫

Ω

f(x,∇wk) dx+

∫

Ω

(v − u)u dx+

∫

Ω

div(z)wk dx.

Hence, by (3.73), letting k →∞, we arrive to

lim sup
j→∞

Φϕ(uj) ≤ lim
k→∞

Φϕ(wk) = Φϕ(u).

Thus, by the lower-semicontinuity of Φϕ, we get

Φϕ(u) = lim
j→∞

Φϕ(uj). (3.75)

Applying Theorem 3 of [18] as in the Step 1, it follows that

lim
j→∞

∫

Ω

h(x,Duj) +

∫

∂Ω

|uj − ϕj |f0(x, ν(x)) dHN−1 =

=

∫

Ω

h(x,Du) +

∫

∂Ω

|u− ϕ|f0(x, ν(x)) dHN−1.

(3.76)

On the other hand, by Green’s formula, (3.66), (3.67) and (3.68), we have

∫

Ω

h(x,Duj) +

∫

∂Ω

|uj − ϕj |f0(x, ν(x)) dHN−1 =

=

∫

Ω

(
a(x,∇uj), Duj

)
+

∫

∂Ω

[a(x,∇uj), ν](ϕj − uj) dHN−1 =

=

∫

Ω

uj(v − uj) dx+

∫

∂Ω

[a(x,∇uj), ν]ϕj dH
N−1.

Since [a(x,∇uj), ν] ⇀ [z, ν] weakly∗ in L∞(∂Ω), letting j → +∞, and using (3.76), it follows that

∫

Ω

h(x,Du) +

∫

∂Ω

|u− ϕ|f0(x, ν(x)) dHN−1 ≤
∫

Ω

u(v − u) dx+

∫

∂Ω

[z, ν]ϕ dHN−1 =

=

∫

Ω

(z,Du) +

∫

∂Ω

[z, ν](ϕ− u) dHN−1.

Now, by Lemma 3.6 (i), we have

|[z(x), ν(x)]| ≤ f0(x, ν(x)) HN−1 − a.e in ∂Ω.
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Moreover, as in the Step 1, we get

|z ·Dsu| ≤ f0(x,Dsu) as measures in Ω.

With this and using Lemma 3.5, we obtain
∫

Ω

z · ∇u dx =

∫

Ω

h(x,∇u) dx =

∫

Ω

a(x,∇u) · ∇u dx, (3.77)

z ·Dsu = f0(x,Dsu), (3.78)

[z, ν] ∈ sign (ϕ− u)f0(x, ν(x)) HN−1 − a.e. (3.79)

As in the Step 1, to get that (u, v − u) ∈ Bϕ, we only need to prove that

div z = div a(x,∇u), in D′(Ω), (3.80)

and
[z, ν] = [a(x,∇u), ν] HN−1 − a.e. on ∂Ω. (3.81)

Now, by (3.66), (3.70) and using Fatou’s Lemma, we are able to adapt the proof of Lemma 3.7
obtaining that z(x) = a(x,∇u(x)) a.e. in Ω and this implies both (3.80) and (3.81).

Step 3. To prove the density of D(Bϕ) in L2(Ω), we prove that C∞0 (Ω) ⊆ D(Bϕ)
L2(Ω)

. Let
v ∈ C∞0 (Ω). By the above, v ∈ R(I + 1

nBϕ) for all n ∈ N. Thus, for each n ∈ N, there
exists un ∈ D(Bϕ) such that (un, n(v − un)) ∈ Bϕ. Consequently, we have a(x,∇un) ∈ X(Ω),
n(v − un) = −div(a(x,∇un)) in D′(Ω) and

∫

Ω

(w − un)n(v − un) dx =

∫

Ω

(a(x,∇un), Dw)−

−
∫

∂Ω

[a(x,∇un), ν](w − ϕ) dHN−1 −
∫

Ω

h(x,Dun)−
∫

∂Ω

|ϕ− un|f0(x, ν(x)) dHN−1.

for every w ∈ BV (Ω) ∩ L2(Ω). Taking w = v, we get

∫

Ω

(v − un)2 dx =
1

n

(∫

Ω

a(x,∇un) · ∇v dx−
∫

∂Ω

[a(x,∇un), ν](v − ϕ) dHN−1−

−
∫

Ω

h(x,Dun)−
∫

∂Ω

|ϕ− un|f0(x, ν(x)) dHN−1

)
≤

≤ 1

n

(∫

Ω

a(x,∇un) · ∇v dx−
∫

∂Ω

[a(x,∇un), ν](v − ϕ) dHN−1

)
≤

≤ M

n

(∫

Ω

|∇v| dx+

∫

∂Ω

|v − ϕ| dHN−1

)
.

Letting n → ∞, it follows that un → v in L2(Ω). Therefore v ∈ D(Bϕ)
L2(Ω)

and the proof is
complete. 2

Proof of Theorem 3.1. First, we prove that Bϕ ⊂ ∂Φϕ. Let (u, v) ∈ Bϕ and w ∈ W 1,2
ϕ (Ω).

Then, by (2.2), and applying Green’s formula we get
∫

Ω

(w − u)v dx = −
∫

Ω

(w − u) div a(x,∇u) dx =
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=

∫

Ω

(a(x,∇u), Dw −Du)−
∫

∂Ω

[a(x,∇u), ν](ϕ− u) dHN−1 =

=

∫

Ω

a(x,∇u) · ∇w dx−
∫

Ω

a(x,∇u) · ∇u dx−
∫

Ω

a(x,∇u) ·Dsu−

−
∫

∂Ω

[a(x,∇u), ν](ϕ− u) dHN−1 ≤

≤
∫

Ω

f(x,∇w) dx−
∫

Ω

f(x,Du) dx−
∫

∂Ω

|ϕ− u|f0(x, ν(x)) dHN−1 = Φϕ(w)− Φϕ(u).

Suppose that w ∈ BV (Ω) ∩ L2(Ω). According to [6], Fact 3.3, there exists a sequence wn ∈
W 1,2
ϕ (Ω), with wn → w in L2(Ω), and Φϕ(wn)→ Φϕ(w). Then, by the above inequality, we have

∫

Ω

(wn − u)v dx ≤ Φϕ(wn)− Φϕ(u).

Now, letting n→∞, we get
∫

Ω

(w − u)v dx ≤ Φϕ(w)− Φϕ(u),

and therefore, (u, v) ∈ ∂Φϕ.

Since Bϕ ⊂ ∂Φϕ, and, by Proposition 3.2, L∞(Ω) ⊂ R(I + Bϕ), we have ∂Φϕ = Bϕ
L2(Ω)

. To
finish the proof we only need to prove that the operator Bϕ is closed. Let (un, vn) ∈ Bϕ, and assume
that (un, vn) → (u, v) in L2(Ω) × L2(Ω). Let us prove that (u, v) ∈ Bϕ. Since (un, vn) ∈ Bϕ, we
know that a(x,∇un) ∈ X(Ω) is such that

−vn = div a(x,∇un), in D′(Ω), (3.82)

a(x,∇un) ·Dsun = f0(x,Dsun), (3.83)

[a(x,∇un), ν] ∈ sign (ϕ− un)f0(x, ν(x)) HN−1 − a.e. (3.84)

Multiplying (3.82) by un and applying Green’s formula we obtain

−
∫

Ω

unvn dx =

∫

∂Ω

[a(x,∇un), ν]ϕ dHN−1 −
∫

Ω

h(x,Dun)−
∫

∂Ω

|ϕ− un|f0(x, ν(x)) dHN−1.

Hence, ∫

Ω

h(x,Dun) ≤
∫

Ω

unvn dx+

∫

∂Ω

[a(x,∇un), ν]ϕ dHN−1. (3.85)

From (2.5) and (3.85), we have

C0

∫

Ω

|Dun| dx−D1λN (Ω) ≤
∫

Ω

h(x,Dun) dx ≤
∫

Ω

unvn dx+

∫

∂Ω

[a(x,∇un), ν]ϕ dHN−1.

Hence, ∫

Ω

|Dun| dx ≤M1 ∀ n ∈ N. (3.86)

Therefore, u ∈ BV (Ω) ∩ L2(Ω). On the other hand, since ‖a(x,∇un)‖∞ ≤ M , we may assume
that

a(x,∇un) ⇀ z in the weak∗ topology of L∞(Ω,RN ), (3.87)
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with ‖z‖∞ ≤ M . Moreover, since vn → v in L2(Ω), we have that v = −div(z) in D′(Ω). By the
definition of the weak trace on ∂Ω of the normal component of z, it is easy to see that

[a(x,∇un), ν] ⇀ [z, ν] weakly∗ in L∞(∂Ω). (3.88)

Now, we prove the convergence of the energies. According to [6], Fact 3.3, there exists a sequence
wj ∈ C1(Ω)∩BV (Ω), with wj |∂Ω = ϕ, wj → u in L1(Ω), and Φϕ(wj)→ Φϕ(u). Moreover, looking

at the proof of Fact 3.3 in [6], we have that, wj = w1
j + w2

j with w1
j |∂Ω

= u|∂Ω and w1
j → u in

L1(Ω), w2
j |∂Ω

= ϕ− u|∂Ω, w2
j → 0 in L1(Ω), and, using [5], Lemma 1.8, we have that

∫

Ω

(z,Dw1
j )→

∫

Ω

(z,Du).

By the convexity of f and taking (3.83) and (3.84) into account we have

Φϕ(un) =

∫

Ω

f(x,∇un) dx+

∫

Ω

f0(x,Dsun) +

∫

∂Ω

|un − ϕ|f0(x, ν(x)) dHN−1 ≤

≤
∫

Ω

a(x,∇un) · ∇un dx−
∫

Ω

a(x,∇un) · ∇wj dx+

∫

Ω

f(x,∇wj) dx+

+

∫

Ω

a(x,∇un) ·Dsun +

∫

∂Ω

[a(x,∇un), ν](ϕ− un) dHN−1 =

=

∫

Ω

(a(x,∇un), Dun)−
∫

Ω

a(x,∇un) · ∇wj dx+ Φϕ(wj)+

+

∫

∂Ω

[a(x,∇un), ν](ϕ− un) dHN−1 = Φϕ(wj)−
∫

Ω

a(x,∇un) · ∇wj dx−

−
∫

Ω

div(a(x,∇un))un dx+

∫

∂Ω

[a(x,∇un), ν]ϕ dHN−1 =

= Φϕ(wj)−
∫

Ω

a(x,∇un) · ∇wj dx+

∫

Ω

vnun dx+

∫

∂Ω

[a(x,∇un), ν]ϕ dHN−1.

Hence, by (3.87) and (3.88), it follows that

lim sup
n→∞

Φϕ(un) ≤ Φϕ(wj)−
∫

Ω

(z,Dwj) +

∫

Ω

uv dx+

∫

∂Ω

[z, ν]ϕ dHN−1 =

= Φϕ(wj)−
∫

Ω

(z,Dw1
j )−

∫

Ω

(z,Dw2
j )−

∫

Ω

div(z)u dx+

∫

∂Ω

[z, ν]ϕ dHN−1 =

= Φϕ(wj)−
∫

Ω

(z,Dw1
j ) +

∫

Ω

div(z)w2
j dx+

∫

∂Ω

[z, ν]u dHN−1 −
∫

Ω

div(z)u dx.

Letting j →∞, we have that

lim sup
n→∞

Φϕ(un) ≤ Φϕ(u)−
∫

Ω

(z,Du) +

∫

∂Ω

[z, ν]u dHN−1 −
∫

Ω

div(z)u dx = Φϕ(u).

Finally, by the lower-semicontinuity of Φϕ, we obtain

Φϕ(u) = lim
n→∞

Φϕ(un). (3.89)
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If we consider the RN -valued measures µn, µ on Ω which are defined as

µn(B) :=

∫

B∩Ω

Dun +

∫

B∩∂Ω

(ϕ− un)ν dHN−1,

µ(B) :=

∫

B∩Ω

Du+

∫

B∩∂Ω

(ϕ− u)ν dHN−1

for all Borel sets B ⊂ Ω, we have

µj ⇀ µ weakly as measures in Ω.

Moreover,

Φϕ(u) =

∫

Ω

f̃(x, µ̃) and Φϕ(un) =

∫

Ω

f̃(x, µ̃n).

Hence, (3.89) yields

lim
n→∞

∫

Ω

f̃(x, µ̃n) =

∫

Ω

f̃(x, µ̃).

Then, applying [18], Theorem 3, it follows that

∫

Ω

h̃(x, µ̃) = lim
n→∞

∫

Ω

h̃(x, µ̃n) = lim
n→∞

∫

Ω

h(x,Dun) +

∫

∂Ω

|un − ϕ|f0(x, ν(x)) dHN−1.

Since ∫

Ω

h̃(x, µ̃) =

∫

Ω

h(x,Du) +

∫

∂Ω

|ϕ− u|f0(x, ν(x)) dHN−1,

we have ∫

Ω

h(x,Du) +

∫

∂Ω

|ϕ− u|f0(x, ν(x)) dHN−1 =

= lim
n→∞

∫

Ω

h(x,Dun) +

∫

∂Ω

|un − ϕ|f0(x, ν(x)) dHN−1.

(3.90)

Now, since

lim
n→∞

∫

Ω

h(x,Dun) +

∫

∂Ω

|un − ϕ|f0(x, ν(x)) dHN−1 =

= lim
n→∞

∫

Ω

a(x,∇un) · ∇un dx+

∫

Ω

f0(x,Dsun) +

∫

∂Ω

[a(x,∇un), ν](ϕ− un) dHN−1 =

= lim
n→∞

∫

Ω

(a(x,∇un), Dun) +

∫

∂Ω

[a(x,∇un), ν](ϕ− un) dHN−1 =

= lim
n→∞

∫

∂Ω

[a(x,∇un), ν]ϕ dHN−1 −
∫

Ω

div(a(x,∇un))un dx =

=

∫

∂Ω

[z, ν]ϕ dHN−1 −
∫

Ω

div(z)u dx =

∫

Ω

(z,Du) +

∫

∂Ω

[z, ν](ϕ− u) dHN−1,

we finally obtain

∫

Ω

h(x,Du) +

∫

∂Ω

|ϕ− u|f0(x, ν(x)) dHN−1 =

∫

Ω

(z,Du) +

∫

∂Ω

[z, ν](ϕ− u) dHN−1. (3.91)
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Again, by (3.87) and (3.88) we can apply Lemma 3.6 obtaining that

|[z(x), ν(x)]| ≤ f0(x, ν(x)) a.e. in ∂Ω. (3.92)

Moreover, acting as in the proof of Proposition 3.2, we get that

|z ·Dsu| ≤ f0(x,Dsu) as measures in Ω. (3.93)

Hence by (3.89), (3.90), (3.91), (3.87) (3.93) and (3.92), we can apply Lemma 3.5, to obtain

∫

Ω

z · ∇u dx =

∫

Ω

h(x,∇u) dx =

∫

Ω

a(x,∇u) · ∇u dx, (3.94)

z ·Dsu = f0(x,Dsu), (3.95)

[z, ν] ∈ sign (ϕ− u)f0(x, ν(x)) HN−1 − a.e. (3.96)

Now, using Lemma 3.7, we have

div z = div a(x,∇u), in D′(Ω), (3.97)

and
[z, ν] = [a(x,∇u), ν] HN−1 − a.e. on ∂Ω. (3.98)

Since v = −div(z) in D′(Ω), taking (3.97) into account, we get

v = −div(a(x,∇u)), in D′(Ω),

and, using (3.94), (3.95) and (3.97), we get

a(x,∇u) ·Dsu = f0(x,Dsu).

Finally, by (3.96) and (3.98) we get

[a(x,∇u), ν] ∈ sign (ϕ− u)f0(x, ν(x)) HN−1 − a.e.

Therefore, (u, v) ∈ Bϕ. 2

Proof of Theorem 2.2. Let (S(t))t≥0 be the semigroup in L2(Ω) generated by the subdifferential

of Φϕ. Then by the nonlinear semigroup theory ([9]), given u0 ∈ L2(Ω) = D(∂Φϕ), u(t) = S(t)u0

is the only strong solution of problem (3.1). Thus, by Theorem 3.1, we have that for almost all
t ∈ [0,+∞[, u(t) ∈ D(Bϕ) and −u′(t) ∈ Bϕ(u(t)). This concludes the proof. 2

4 Behaviour of the solution

We have the following weak form of the maximum principle.

Theorem 4.1 Suppose u1 and u2 are two solutions of (1.1) corresponding to initial data u1,0 and
u2,0 in L2(Ω) and boundary data ϕ1 and ϕ2 in L1(∂Ω), respectively. If

u1,0 ≥ u2,0 and ϕ1 ≥ ϕ2,

then u1 ≥ u2.
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Proof. For almost all t ∈ [0,+∞[, we have u′i(t) ∈ L2(Ω), ui(t) ∈ BV (Ω) ∩ L2(Ω), a(x,∇ui(t)) ∈
X(Ω), and

u′2(t)− u′1(t) = div[a(x,∇u2(t))− a(x,∇u1(t))], in D′(Ω), (4.1)

a(x,∇ui(t)) ·Dsui(t) = f0(x,Dsui(t)), (4.2)

[a(x,∇ui(t)), ν] ∈ sign(ϕi − ui(t))f0(x, ν(x)) HN−1 − a.e. on ∂Ω. (4.3)

Multiplying in (4.1) by
(
u2(t)− u1(t)

)+
, integrating in Ω, and using Green’s formula, we get

1

2

∫

Ω

d

dt

[(
u2(t)− u1(t)

)+]2
dx =

=

∫

Ω

div
[
a(x,∇u2(t))− a(x,∇u1(t))

](
u2(t)− u1(t)

)+
dx =

= −
∫

Ω

(
a(x,∇u2(t))− a(x,∇u1(t)), D

((
u2(t)− u1(t)

)+))
+

+

∫

∂Ω

[a(x,∇u2(t))− a(x,∇u1(t)), ν]
(
u2(t)− u1(t)

)+
dHN−1.

(4.4)

Now, by the chain rule for BV-functions ([2], [14], Lemma 1.2), there exists a scalar function η(t),
with 0 ≤ η(t) ≤ 1, such that

∫

Ω

(
a(x,∇u2(t))− a(x,∇u1(t)), D

((
u2(t)− u1(t)

)+))
=

=

∫

{u2≥u1}

(
a(x,∇u2(t))− a(x,∇u1(t)

)
·
(
∇u2(t)−∇u1(t)

)
dx+

+

∫

Ω

η(t)
(
a(x,∇u2(t))− a(x,∇u1(t)

)
·Ds

(
u2(t)− u1(t)

)
.

Observe that, by the monotonicity of a, (H5) and (4.2), we have that
∫

Ω

(
a(x,∇u2(t))− a(x,∇u1(t)), D

((
u2(t)− u1(t)

)+)) ≥ 0. (4.5)

On the other hand, since ϕ1 ≥ ϕ2, from (4.3), it is easy to see that
∫

∂Ω

[a(x,∇u2(t))− a(x,∇u1(t)), ν]
(
u2(t)− u1(t)

)+
dHN−1 ≤ 0. (4.6)

From (4.4), (4.5) and (4.6), it follows that

1

2

∫

Ω

d

dt

[(
u2(t)− u1(t)

)+]2
dx ≤ 0.

Since u1,0 ≥ u2,0, we have u1 ≥ u2, and the proof is concluded. 2

We shall now prove that the solution u(t) stabilizes as t→ +∞ by converging to a solution of
the steady-state problem. To do that, we follow the proof of Theorem 4.2 in [17].
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Theorem 4.2 Suppose u0 ∈ L2(Ω) ∩ BV (Ω) and ϕ ∈ L∞(∂Ω). Then the solution u(t) of (1.1)
converges as t→ +∞ to some limit w ∈ B−1

ϕ (0) in the following sense:

u(t)→ w strongly in L1(Ω) and weakly in L2(Ω).

Proof. Since Bϕ is the subdifferential of Φϕ, by a classical result of Bruck ([10], Theorem 4), to
prove the weak convergence in L2(Ω), it is sufficient to prove that Φϕ attains its minimun in L2(Ω).
In fact, let {un} be a minimizing sequence for Φϕ. Without loss of generality, we may assume that
un ∈ BV (Ω)∩L2(Ω). Now, by approximation we may assume that un ∈W 1,1(Ω)∩L2(Ω). Denote
by J : R→ R the truncature function

J(r) :=





−‖ϕ‖∞ if r < −‖ϕ‖∞

r if |r| ≤ ‖ϕ‖∞

‖ϕ‖∞ if x > ‖ϕ‖∞.

If we take wn := J ◦ un, wn ∈W 1,1(Ω) ∩ L∞(Ω), and using that |J ′| ≤ 1, we have

Φϕ(wn) =

∫

Ω

f(x,∇wn) dx+

∫

∂Ω

|wn − ϕ|f0(x, ν(x)) dHN−1 =

=

∫

{|un|≤‖ϕ‖∞}
f(x,∇un) dx+

∫

∂Ω

|J ◦ un − J ◦ ϕ|f0(x, ν(x)) dHN−1 ≤

≤
∫

Ω

f(x,∇un) dx+

∫

∂Ω

|un − ϕ|f0(x, ν(x)) dHN−1.

Thus, {wn} is still a minimizing sequence for Φϕ. Moreover, this sequence is bounded in W 1,1(Ω)∩
L∞(Ω), hence, relatively compact in L1(Ω). We may extract a subsequence converging in L1(Ω)
to some u ∈ L1(Ω) ∩BV (Ω). Therefore,

Φϕ(u) = inf
u∈L2(Ω)

Φϕ(u).

Then, by Bruck’s result ([10], Theorem 4), there exists w ∈ B−1
ϕ (0), such that u(t)→ w weakly in

L2(Ω). Finally, we prove the strong convergence in L1(Ω). Since (u(t),−u′(t)) ∈ ∂Φϕ, using [9],
Lemma 3.3, we have

d

ds
Φϕ
(
u(s)

)
= −

∫

Ω

u′(s)2 dx ≤ 0,

hence,
Φϕ
(
u(t)

)
≤ Φϕ

(
u0

)
∀ t > 0.

Thus, {u(t) : t ≥ 0} is bounded in BV (Ω), and therefore relatively compact in L1(Ω). The result
follows. 2

5 Appendix

In this appendix we prove the approximation Lemma. Before giving the proof, let us construct
a substitute for the distance function to the boundary d(., ∂Ω). That construction would be
unnecessary if ∂Ω would be of class W 2,∞ ([7]). We follow the proof of Lemma 5.1 in [7] for C2

domains.
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If ∂Ω is a manifold of class C1, then there is some ε > 0 such that for all points y ∈ Ω such
that d(y,Ω) < ε there is z ∈ ∂Ω and t ∈ (0, ε) such that y = z − tν(z), ν(z) being the outer unit
normal to ∂Ω at z ([11]). In other words, Ωε := {x ∈ Ω : x = y− tν(y), y ∈ ∂Ω, t ∈ (0, ε)} is open.
Then there is a function D ∈ C1(Ω) such that D = 0 on ∂Ω, D > 0 on Ω and ∇D(x) = −ν(x)
for all x ∈ ∂Ω. This is a consequence of Withney’s extension Theorem ([15], p.48, [13], p.245).
Indeed, since

ν(y)
x− y
|x− y| → 0 as x, y → p, x 6= y, x, y ∈ ∂Ω,

by Withney’s Theorem , we know that there exists a function D̃ ∈ C1(Ω) such that D̃ = 0 on
∂Ω and ∇D̃(x) = −ν(x) for all x ∈ ∂Ω. Now, let y ∈ ∂Ω and t ∈ (0, ε). Using the mean value
theorem, we know that

D̃(y − tν(y)) = D̃(y)− t∇D̃(y − sν(y)) · ν(y) = −t∇D̃(y − sν(y)) · ν(y).

Since D̃ ∈ C1(Ω), we have
D̃(y − tν(y)) = t(1 + ω(t))

where ω(t) = o(1) as t → 0+ and is the modulus of continuity of ∇D̃. Without loss of generality
we may assume that ε > 0 is such that ω(t) < 1

2 for all t ∈ (0, ε). In particular, we have that

D̃(x) > 0 for all x ∈ Ωε. (5.1)

We shall modify D̃ so that the modified function is > 0 in Ω. Let η ∈ C([0,∞)), η(t) > 0, for
all t ∈ (0,∞), η(t) = o(t) as t → 0+. Let Ω1 be an open set, Ω1 ⊂ Ω, with smooth boundary
∂Ω1 ⊂ Ωε such that 0 < δ − η(δ) < D̃(x) < δ + η(δ) for all x ∈ ∂Ω1 for some δ > 0. Let
Ω′2 be an open set with smooth boundary such that Ω′2 ⊂ Ω1 and η(δ) < d(∂Ω1, ∂Ω′2) < 2η(δ),
where d(∂Ω1, ∂Ω′2) = inf{|x − y| : x ∈ ∂Ω1, y ∈ ∂Ω′2}. Let d∂Ω′2 be the distance function to
∂Ω′2, > 0 in Ω′2, negative outside. Let d∂Ω′2,n = ρn ∗ d∂Ω′2 , ρn being a positive regularizing kernel.

Observe that ‖∇d∂Ω′2,n‖∞ ≤ 1. We may choose n large enough, and Ω2 such that Ω2 ⊂ Ω′2,

η(δ) < d(∂Ω1, ∂Ω2) < 2η(δ), 0 < d∂Ω′2,n < η(δ) in ∂Ω2, and d∂Ω′2,n > 0 in Ω2. Let B1,2 = Ω1 \ Ω2.

Then, using again Withney’s extension Theorem, there is a function R ∈ C1(B1,2) such that

R = D̃ − δ and ∇R = ∇D̃ on ∂Ω1, and R = d∂Ω′2,n, ∇R = ∇d∂Ω′2,n on ∂Ω2. Moreover, ‖∇R‖∞
is bounded by a constant depending on ‖D̃‖∞,∂Ω1 , ‖d∂Ω′2,n‖∞,∂Ω2 , ‖∇D̃‖∞,∂Ω1 , ‖∇d∂Ω′2,n‖∞,∂Ω2

and

sup
x∈∂Ω1,y∈∂Ω2

|D̃(x)− δ − d∂Ω′2,n(y)|
|x− y| ≤ 2η(δ)

η(δ)
= 2.

We define D : Ω→ R by
D = D̃ in Ω1,

D = R+ δ in B1,2,

D = d∂Ω′2,n + δ in Ω2.

Then D ∈ C1(Ω), D = 0 on ∂Ω, D > 0 on Ω and ∇D(x) = −ν(x) for all x ∈ ∂Ω.

Proof of Lemma 3.4. We may think that u and v are extended as BV functions in RN in such
a way that ∫

∂Ω

|Du| =
∫

∂Ω

|Dv| = 0. (5.2)
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We consider a family of radially symmetric positive mollifiers ηj = 1
τNj
η( xτj ), η ≥ 0,

∫

RN
η(x)dx = 1,

τj ↓ 0+, and we set

zj = ηj ∗ (v +
u

j
) (5.3)

Clearly, we have zj ∈ C1(Ω) and obviously we have

zj → v in LN/(N−1)(Ω). (5.4)

Also, from (5.2) it follows that

∫

Ω

√
1 + |Dzj(x)|2dx→

∫

Ω

√
1 + |Dv(x)|2dx. (5.5)

This implies, by the Theorem of convergence of traces for BV functions that

zj |∂Ω → v|∂Ω in L1(∂Ω). (5.6)

By the Theorem of differentiation of measures ([7]), we obtain

Dzj(x)→ ∇v(x) λN a.e. in Ω. (5.7)

Indeed, since Dzj = ηj ∗Dv + 1
j ηj ∗Du, this is a consequence of the four following limits

lim
j

[ηj ∗ ∇v](x) = ∇v(x) λN a.e. in Ω, (5.8)

lim
j

[ηj ∗ (Dv)s](x) = (Dv)s(x) = 0 λN a.e. in Ω, (5.9)

lim
j

1

j
[ηj ∗ ∇u](x) = ∇u(x) lim

j

1

j
= 0 λN a.e. in Ω, (5.10)

lim
j

1

j
[ηj ∗ (Du)s](x) = 0 λN a.e. in Ω, (5.11)

since (Du)s, (Dv)s are singular with respect to λN and |∇u(x)| < ∞ λN a.e. in Ω. In the same
way, using the Theorem of differentiation of measures, we have

lim
j

[ηj ∗ ∇v](x) = 0 |Dv|s a.e. in Ω, (5.12)

lim
j

[ηj ∗ ∇u](x) = 0 |Dv|s a.e. in Ω, (5.13)

lim
j

[ηj ∗ (Du)ss](x) = 0 |Dv|s a.e. in Ω, (5.14)

lim
j

1

j
[ηj ∗ (Du)sa](x) = (Du)sa(x) lim

1

j
= 0 |Dv|s a.e. in Ω, (5.15)

where (Du)sa, (Du)ss denote the absolutely continuous and singular part of (Du)s with respect
to (Dv)s, and we obtain

lim
j

Dzj(x)

|Dzj(x)| = lim
j

Dzj(x)

|[ηj ∗ (Dv)s]|(x)
=

Dv

|Dv| (x) |Dv|s a.e. in Ω. (5.16)
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Similarly
lim
j
|Dzj(x)| = lim

j
|[ηj ∗ |Dv|s](x)| =∞ |Dv|s a.e. in Ω. (5.17)

Next, we prove that for a suitable choice of the numbers τj one has

lim
j

Dzj(x)

(1/j)[ηj ∗ |Du|ss](x)
=

Du

|Du| (x) |Du|ss a.e.. (5.18)

Assuming this, it is easy to prove that

lim
j

Dzj(x)

|Dzj(x)| =
Du

|Du| (x) |Du|ss a.e.. (5.19)

Indeed,

Dzj = ηj ∗Dv(x) +
1

j
ηj ∗Du(x) =

= ηj ∗ ∇v(x) + ηj ∗ (Dv)s(x) +
1

j
ηj ∗ ∇u(x) +

1

j
ηj ∗ (Du)sa(x) +

1

j
ηj ∗ (Du)ss(x).

Since ηj ∗ ∇v(x) → 0, ηj ∗ (Dv)s(x) → 0, 1
j ηj ∗ ∇u(x) → 0, 1

j ηj ∗ (Du)sa(x) → 0 |Du|ss-a.e., we

see that (5.19) follows from (5.18). To prove (5.18) we observe that

Dzj(x)

(1/j)[ηj ∗ |Du|ss](x)
=

[ηj ∗Dv](x)

(1/j)[ηj ∗ |Du|ss](x)
+

[ηj ∗Du](x)

[ηj ∗ |Du|ss](x)
. (5.20)

Since
[ηj ∗Du](x)

[ηj ∗ |Du|ss](x)
→ Du

|Du| (x) |Du|ss a.e., (5.21)

it is sufficient to prove that

[ηj ∗Dv](x)
1
j [ηj ∗ |Du|ss](x)

→ 0 |Du|ss a.e.. (5.22)

To prove (5.22), we define

aτ (x) =
[ητ ∗Dv](x)

[ητ ∗ |Du|ss](x)
. (5.23)

Since Dv and |Du|ss are mutually singular, then

aτ (x)→ 0 |Du|ss a.e..

Thus, if we consider the sets

E(τ, j) = {x ∈ Ω : |aτ (x)| > 1

j2
},

for any fixed j ∈ N we have
lim
τ→0
|Du|ss(E(τ, j)) = 0.

For each j ∈ N, there is some τj such that

|Du|ss(E(τj , j)) <
1

2j
,
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that is

|Du|ss({x ∈ Ω : j|aτ (x)| > 1

j
}) < 1

2j
.

This easily implies that
lim
j→∞

jaτj (x) = 0, |Du|ss a.e..

which is exactly (5.22). Moreover, we may choose τj such that 1
j [ηj ∗ |Du|ss](x)→∞ |Du|ss a.e..

From this, and (5.18), it follows that

|Dzj |(x)→∞ |Du|ss a.e.. (5.24)

We observe that up to know we have not used neither the hypothesis on the regularity of ∂Ω nor
the regularity of g.

We observe that the functions zj that we have constructed satisfy some of the requirements of
the Lemma but not all of them, in particular, (3.6), (3.8), (3.12), (3.13) have yet to be satisfied.
For that, we construct suitable correction functions σj and ρj around the boundary and we shall
define

vj = zj + σj + ρj .

Let gj ∈ C1(∂Ω) be such that gj → g in L1(∂Ω). We shall construct the sequence of functions
σj ∈ C1(Ω) such that

σj = gj − zj on ∂Ω, (5.25)
∫

Ω

|σj |
N
N−1 → 0, (5.26)

σj(x) = 0 if D(x) > εj + ε2
j , (5.27)

∫

Ω

ψ ·Dσj →
∫

∂Ω

ψ · ν(g − v)dHN−1 (5.28)

for all ψ ∈ C(Ω,RN ), ∫

Ω

|Dσj | →
∫

∂Ω

|v − g|dHN−1, (5.29)

|D(σj + zj)(x)| → ∞ HN−1 a.e. in T = {x ∈ ∂Ω : g(x) 6= v(x)}, (5.30)

D(σj + zj)(x)

|D(σj + zj)(x)| →
g(x)− v(x)

|g(x)− v(x)|ν(x) HN−1 a.e. in T = {x ∈ ∂Ω : g(x) 6= v(x)}. (5.31)

Construction of σj.

For each number ε ∈ (0, ε0) we consider a function hε(t) : [0,∞)→ [0,∞) such that

hε ∈ C1([0,∞)),

h′ε(t) ≤ 0, h′ε(0) = −1

ε
,

h′ε(t) is not decreasing,

hε(0) = 1, hε(t) = 0 for t ≥ ε+ ε2.
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Let {εn}∞n=1 be a decreasing sequence of numbers such that

2ε1 < ε0 < 1, lim
j
εj = 0.

Now, let G ∈ W 1,1(Ω) such that G|∂Ω = g. Since gj ∈ C1(∂Ω), we may consider a function

Gj ∈ C1(Ω) which is an extension of gj . We may assume that Gj → G in L1(Ω) and

∫

Ω

|∇Gj | →
∫

Ω

|∇G|. We define

σj = [Gj(x)− zj(x)]hεj (D(x)). (5.32)

Clearly, σj ∈ C1(Ω),
σj = gj − zj on ∂Ω,

and, if D(x) > εj + ε2
j , then hεj (D(x)) = 0, and, therefore

σj(x) = 0.

Now,
∫

Ω

|σj |N/(N−1) =

∫

Ω2εj

|σj |N/(N−1) ≤
∫

Ω2εj

|Gj(x)− zj(x)|N/(N−1)

where, for any ε > 0, we denote

Ωε = {x ∈ Ω : D(x) < ε}.

The functions Gj , zj being independent of εj , we may choose εj > 0 small enough such that

∫

Ω2εj

|Gj(x)− zj(x)|N/(N−1) <
1

j
.

Hence ∫

Ω

|σj |N/(N−1) → 0 as j →∞.

Let ψ ∈ C(Ω,RN ). Since

∇σj(x) = ∇(Gj − zj)(x)hεj (D(x)) + (Gj − zj)(x)h′εj (D(x))∇D(x),

we have ∫

Ω

ψ(x) · ∇σj(x)dx =

∫

Ω

ψ(x) · (∇Gj(x)−∇zj(x))hεj (D(x))dx+

+

∫

Ω

(Gj(x)− zj(x))ψ(x) · ∇(hεj (D(x)))dx =

∫

Ω
εj+ε2

j

ψ(x) · (∇Gj(x)−∇zj(x))hεj (D(x))dx

+

∫

Ω
εj+ε2

j

(Gj(x)− zj(x))ψ(x) · h′εj (D(x))∇D(x)dx.

Again, since |hε| ≤ 1 for all ε > 0, a proper choice of εj guarantees that

∫

Ω
εj+ε2

j

ψ(x) · (∇Gj(x)−∇zj(x))hεj (D(x))dx→ 0
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as j →∞. Now, by our choice of Gj , (5.5) and a proper choice of εj , we have that
∫

Ω
εj+ε2

j

(Gj(x)− zj(x))ψ(x) · h′εj (D(x))∇D(x)dx→
∫

∂Ω

ψ · ν(g − v)dHN−1. (5.33)

Indeed, using the change of variable’s formula ([13], p. 118, [20], p. 96),
∫

Ω
εj+ε2

j

(Gj(x)− zj(x))ψ(x) · h′εj (D(x))∇D(x)dx =

=

∫ εj+ε
2
j

0

∫

[D=λ]

(Gj(y)− zj(y))ψ(y) · h′εj (D(y))
∇D(y)

|∇D(y)|dH
N−1(y)dλ =

= (εj + ε2
j )

∫

[D=λj ]

(Gj(y)− zj(y))ψ(y) · h′εj (D(y))
∇D(y)

|∇D(y)|dH
N−1(y)

for some λj ∈ (0, εj + ε2
j ) by the intermediate value Theorem. Now, since Gj , zj do not depend on

our choice of εj , by choosing εj → 0+ sufficiently fast, we obtain(5.33). Hence
∫

Ω

ψ(x) · ∇σj(x)dx→
∫

∂Ω

ψ · ν(g − v)dHN−1

as j →∞. In particular, we have

lim inf
j

∫

Ω

|∇σj(x)|dx ≥
∫

∂Ω

|g − v|dHN−1. (5.34)

On the other hand, we have
∫

Ω

|∇σj(x)|dx ≤
∫

Ω
εj+ε2

j

|∇Gj(x)−∇zj(x)|dx+

∫

Ω
εj+ε2

j

|Gj(x)− zj(x)||h′εj (D(x))||∇D(x)|dx.

Again, a suitable choice of εj guarantees that
∫

Ω
εj+ε2

j

|∇Gj(x)−∇zj(x)|dx→ 0

as j →∞. Similarly, the properties of Gj , zj and a choice of εj imply that
∫

Ω
εj+ε2

j

|Gj(x)− zj(x)||h′εj (D(x))||∇D(x)|dx→
∫

∂Ω

|g(x)− v(x)|dHN−1.

Hence

lim sup
j

∫

Ω

|∇σj(x)|dx ≤
∫

∂Ω

|g(x)− v(x)|dHN−1.

This, together with (5.34) proves that

lim
j

∫

Ω

|∇σj(x)|dx =

∫

∂Ω

|g − v|dHN−1. (5.35)

Finally, since

Dσj +Dzj = ∇Gjhεj (D) +∇zj(1− hεj (D)) + (Gj − zj)h′εj (D)∇D,
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we may write on ∂Ω
Dσj +Dzj = ∇Gj − (Gj − zj)h′εj (0)ν(x). (5.36)

Hence, on ∂Ω, we have

Dσj +Dzj
|Dσj +Dzj |

=
∇Gj − (Gj − zj)h′εj (0)ν

|∇Gj − (Gj − zj)h′εj (0)ν| =
εj∇Gj + (Gj − zj)ν
|εj∇Gj + (Gj − zj)ν|

.

Now, choosing εj such that εj∇Gj → 0 as j →∞, we obtain that

Dσj +Dzj
|Dσj +Dzj |

→ g(x)− v(x)

|g(x)− v(x)|ν(x) (5.37)

HN−1 a.e. in T = {x ∈ ∂Ω : g(x) 6= v(x)}. Next, a proper choice of εj in (5.36) guarantees that

|Dσj(x) +Dzj(x)| → ∞ (5.38)

HN−1 a.e. in T .

Next, we construct a sequence of functions ρj ∈ C1(Ω) such that

ρj = 0 on ∂Ω, (5.39)
∫

Ω

|ρj |
N
N−1 → 0, (5.40)

ρj = 0 if D(x) > δ2
j (5.41)

for some δj > 0, ∫

Ω

|Dρj | → 0 (5.42)

For HN−1 -a.e. x ∈ T , there is j0(x) such that Dρj(x) = 0 for all j ≥ j0(x) (5.43)

If we set vj = zj + σj + ρj then (3.13) holds. (5.44)

Construction of ρj.

For all δ > 0 consider a function ψδ : [0,∞)→ [0,∞) such that

ψδ ∈ C1([0,∞)),

ψδ(0) = 0, ψδ(t) = 0 for t ≥ δ2,

|ψ′δ(t)| ≤
4

δ
, for t ∈ (0, δ2),

ψ′δ(0) ≥ 1

δ
,

∫ ∞

0

|ψ′δ(t)|dt ≤ 2δ.

We define ζ : ∂Ω→ R

ζ(x) =





u(x)− g(x)

|u(x)− g(x)| if g(x) = v(x) and g(x) 6= u(x)

0 elsewhere

(5.45)
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Let ζj be a sequence of functions in C1(∂Ω) converging to ζ in L1(∂Ω). Now, we may assume
that ζ is the trace of a function Θ ∈W 1,1(Ω) and ζj are traces of functions Θj ∈ C1(Ω) such that
Θj → Θ in L1(Ω) and

∫
Ω
|DΘj | →

∫
Ω
|DΘ|. Let δj be a decreasing sequence of positive numbers

that converges to 0 and consider the functions

ρj(x) = Θj(x)ψδj (D(x)). (5.46)

Clearly, ρj ∈ C1(Ω), ρj(x) = 0 if x ∈ ∂Ω. Also (5.41) holds. Since, by our choice of the functions
ψδ, we have

|ψδ(t)| ≤ 2δ. (5.47)

Now, ∫

Ω

|ρj |N/(N−1) ≤ 2δj

∫

Ω

|Θj |N/(N−1)

which tends to 0 as j →∞, which proves (5.40).

Our purpose now is to choose the functions ζj such that (5.43) holds. For that, we consider
the sets

N+ = {x ∈ ∂Ω : ζ(x) = 1},
N− = {x ∈ ∂Ω : ζ(x) = −1},

N = N+ ∪N−.
We consider increasing sequences of compact sets K+

j ⊆ N+, K−j ⊆ N− such that

lim
j
HN−1(N+ \K+

j ) = lim
j
HN−1(N− \K−j ) = 0.

We consider also decreasing sequences of open sets G+
j ⊇ N+, G−j ⊇ N− such that

lim
j
HN−1(G+

j \N+) = lim
j
HN−1(G−j \N−) = 0.

Now, we take functions ζ+
j , ζ

−
j ∈ C1(∂Ω) with values in [0, 1] such that

ζ+
j (x) =





1 in K+
j

0 in ∂Ω \G+
j

(5.48)

ζ−j (x) =





1 in K−j

0 in ∂Ω \G−j ,
(5.49)

and we set
ζj = ζ+

j − ζ−j .
The functions ζj satisfy

ζj(x) =





1 in K+
j \G−j

0 in ∂Ω \ (G+
j ∪G−j )

−1 in K−j \G+
j .

(5.50)
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Moreover
lim
j
HN−1(T ∩ (G+

j ∪G−j )) = 0. (5.51)

Recall that the functions Θj are extensions of ζj to Ω. Now,

∇ρj(x) = ∇Θj(x)ψδj (D(x)) + Θj(x)ψ′δj (D(x))∇D(x).

If x ∈ ∂Ω, then
∇ρj(x) = −Θj(x)ψ′δj (0)ν(x).

Now, using (5.51), for almost all x ∈ T = {x ∈ ∂Ω : g(x) 6= v(x)}, there exists j0(x) ∈ N such that
ζj(x) = 0 for all j ≥ j0(x). Hence, also

∇ρj(x) = 0 for all j ≥ j0(x).

Next
∫

Ω

|∇ρj | ≤ 2δj

∫

Ω

|∇Θj |+ ‖Θj‖∞‖∇D‖∞
∫

Ω
δ2
j

|ψ′δj (D(x))|dx

≤ 2δj

∫

Ω

|∇Θj |+ ‖Θj‖∞‖∇D‖∞
4

δj

∫

Ω
δ2
j

dx.

Now, for j large enough

∫

Ω
δ2
j

dx =

∫ δ2
j

0

∫

[D=λ]

dHN−1(z)

|∇D(z)| dλ ≤ 2

∫ δ2
j

0

∫

[D=λ]

dHN−1(z)dλ ≤ Cδ2
j

where C depends on Per(∂Ω). Hence

∫

Ω

|∇ρj | ≤ 2δj

∫

Ω

|∇Θj |+ ‖Θj‖∞‖∇D‖∞4Cδj .

Now, choosing δj we may guarantee that

∫

Ω

|∇ρj | → 0 as j →∞.

Since
∇vj = ∇Gjhεj +∇zj(1− hεj ) + (Gj − zj)h′εj (D)∇D +∇Θjψδj + Θjψ

′
δj∇D,

on ∂Ω, we have

∇vj(x) = ∇Gj(x)− (Gj(x)− zj(x))h′εj (0)ν(x)−Θj(x)ψ′δj (0)ν(x) (5.52)

and we may write on ∂Ω

∇vj
|∇vj |

=
∇Gj − (Gj − zj)h′εj (0)ν −Θjψ

′
δj

(0)ν

|∇Gj − (Gj − zj)h′εj (0)ν −Θjψ′δj (0)ν| =

=
δj∇Gj − δj(Gj − zj)h′εj (0)ν − δjΘjψ

′
δj

(0)ν

|δj∇Gj − δj(Gj − zj)h′εj (0)ν − δjΘjψ′δj (0)ν| .
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Now, we choose δj such that δj∇Gj → 0, δj(Gj − zj)h′εj (0)→ 0, as j →∞, we obtain that

∇vj
|∇vj |

→ g(x)− u(x)

|g(x)− u(x)|ν(x)

HN−1 a.e. on {x ∈ ∂Ω : g(x) = v(x), u(x) 6= v(x)}. By choosing δj to converge sufficiently fast to
0, from (5.52), we obtain that

|∇vj(x)| → ∞
HN−1 a.e. on {x ∈ ∂Ω : g(x) = v(x), u(x) 6= v(x)}.

Let us now check that vj = zj + σj + ρj satisfies the required properties. Since vj = gj on ∂Ω,
(3.6) follows immediately. The property (3.7) follows from (5.4), (5.26) and (5.40). To check (3.8),
let ψ ∈ C1(Ω,RN ), ψ = (ψ1, ..., ψn) and ψN+1 ∈ C1(Ω,R). Using (3.6) and (3.7), we obtain

lim
j

∫

Ω

[

N∑

i=1

ψi(x)Divj(x) + ψN+1(x)]dx =

= − lim
j

∫

Ω

div ψ(x)vj(x)dx+

∫

∂Ω

gjψ · ν dHN−1 +

∫

Ω

ψN+1(x)dx =

= −
∫

Ω

div ψ(x)v(x)dx+

∫

∂Ω

gψ · ν dHN−1 +

∫

Ω

ψN+1(x)dx =

=

∫

Ω

[ψ(x) ·Dv(x) + ψN+1(x)]dx+

∫

∂Ω

(g − v)ψ · ν dHN−1.

Now, because of the lower semicontinuity of the total variation with respect to weak convergence,
we have ∫

Ω

√
1 + |Dv|2 +

∫

∂Ω

|g − v|dHN−1 ≤ lim inf
j

∫

Ω

√
1 + |Dvj |2dx.

On the other hand, since

∫

Ω

√
1 + |∇vj |2dx ≤

∫

Ω

√
1 + |∇zj |2dx+

∫

Ω

|∇σj |dx+

∫

Ω

|∇ρj |dx,

using (5.5), (5.29) and (5.42) we obtain that

lim sup
j

∫

Ω

√
1 + |Dvj |2dx ≤

∫

Ω

√
1 + |Dv|2 +

∫

∂Ω

|g − v|dHN−1.

This proves (3.8). Now, using (5.7), (5.27) and (5.41) we obtain (3.9). Next, we observe that
(3.10) is a consequence of (5.16), (5.27) and (5.41). In the same way, (3.11) is a consequence of
(5.19), (5.27) and (5.41). We observe that (3.12) follows from (5.31) and (5.43). Finally, (3.13)
has already been proved. 2
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