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Abstract

In this paper we study the questions of existence and uniqueness of weak and entropy solutions
for equations of type −div a(x,Du) + γ(u) 3 φ, posed in an open bounded subset Ω of RN , with
nonlinear boundary conditions of the form a(x,Du) · η + β(u) 3 ψ. The nonlinear elliptic operator
div a(x,Du) modeled on the p-Laplacian operator ∆p(u) = div (|Du|p−2Du), with p > 1, γ and
β maximal monotone graphs in R2 such that 0 ∈ γ(0) and 0 ∈ β(0), and the data φ ∈ L1(Ω) and
ψ ∈ L1(∂Ω).

Résumé

Dans ce papier nous étudions les questions d’existence et d’unicité de solution faibles et en-
tropiques pour des équations elliptiques de la forme −div a(x,Du) + γ(u) 3 φ, dans un domaine
borné Ω ⊂ R, avec des conditions au bord générale de la forme a(x,Du) · η+ β(u) 3 ψ. L’opérateur
div a(x,Du) généralise l’operateur p-Laplacien ∆p(u) = div (|Du|p−2Du), avec p > 1, γ et β sont
des graphes maximaux monotonnes dans R2 tels que 0 ∈ γ(0)∩β(0), et les données φ et ψ sont des
fonctions L1.

Mathematics Subject Classification (2000): 35J60, 35D02

1 Introduction

Let Ω be a bounded domain in RN with smooth boundary ∂Ω and 1 < p < N , and let a : Ω×RN → RN
be a Carathéodory function satisfying

(H1) there exists λ > 0 such that a(x, ξ) · ξ ≥ λ|ξ|p for a.e. x ∈ Ω and for all ξ ∈ RN ,

(H2) there exists σ > 0 and g ∈ Lp′(Ω) such that |a(x, ξ)| ≤ σ(g(x) + |ξ|p−1) for a.e. x ∈ Ω and for
all ξ ∈ RN , where p′ = p

p−1 ,
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(H3) (a(x, ξ)− a(x, η)) · (ξ − η) > 0 for a.e. x ∈ Ω and for all ξ, η ∈ RN , ξ 6= η.

The hypotheses (H1 − H3) are classical in the study of nonlinear operators in divergent form (cf.
[23] or [5]). The model example of function a satisfying these hypotheses is a(x, ξ) = |ξ|p−2ξ. The
corresponding operator is the p-Laplacian operator ∆p(u) = div(|Du|p−2Du).

We are interested in the elliptic problem

(Sγ,βφ,ψ)

 −div a(x,Du) + γ(u) 3 φ in Ω

a(x,Du) · η + β(u) 3 ψ on ∂Ω,

where η is the unit outward normal on ∂Ω, ψ ∈ L1(∂Ω) and φ ∈ L1(Ω). The nonlinearities γ and β are
maximal monotone graphs in R2 (see, e.g. [12]) such that 0 ∈ γ(0) and 0 ∈ β(0). In particular, they may
be multivalued and this allows to include the Dirichlet condition (taking β to be the monotone graph
D defined by D(0) = R) and the Neumann condition (taking β to be the monotone graph N defined
by N(r) = 0 for all r ∈ R) as well as many other nonlinear fluxes on the boundary that occur in some
problems in Mechanic and Physics (see, e.g., [16] or [11]). Note also that, since γ may be multivalued,
problems of type (Sγ,βφ,ψ) appears in various phenomena with changes of state like multiphase Stefan
problem (cf [14]) and in the weak formulation of the mathematical model of the so called Hele Shaw
problem (cf. [15] and [17]).

Particular instances of problem (Sγ,βφ,ψ) have been studied in [9], [5], [3] and [1]. Let us describe their
results in some detail. The work of Bénilan, Crandall and Sacks [9] was pioneer in this kind of problems.
They study problem (Sγ,βφ,0 ) for any γ and β maximal monotone graphs in R2 such that 0 ∈ γ(0) and
0 ∈ β(0), for the Laplacian operator, i.e., for a(x, ξ) = ξ, and prove, between other results, that, for
any φ ∈ L1(Ω),

inf{Ran(γ)}meas(Ω) + inf{Ran(β)}meas(∂Ω) <
∫

Ω

φ

< sup{Ran(γ)}meas(Ω) + sup{Ran(β)}meas(∂Ω),

there exists a unique, up to a constant for u, named weak solution, [u, z, w] ∈W 1,1(Ω)×L1(Ω)×L1(∂Ω),
z(x) ∈ γ(u(x)) a.e. in Ω, w(x) ∈ β(u(x)) a.e. in ∂Ω, such that∫

Ω

Du ·Dv +
∫

Ω

zv +
∫
∂Ω

wv =
∫

Ω

φv,

for all v ∈ W 1,∞(Ω). For nonhomogeneous boundary condition, i.e. ψ 6≡ 0, one can see [18] for
ψ ∈ Ran(β), and [19, 20] for some particular situations of β and γ.

Another important work in the L1-Theory for p-Laplacian type equations is [5], where problem

(Dγ
φ)

 −div a(x,Du) + γ(u) 3 φ in Ω

u = 0 on ∂Ω

is studied for any γ maximal monotone graph in R2 such that 0 ∈ γ(0). It is proved that, for any
φ ∈ L1(Ω), there exists a unique, named entropy solution, [u, z] ∈ T 1,p

0 (Ω)×L1(Ω), z(x) ∈ γ(u(x)) a.e.
in Ω, such that ∫

Ω

a(., Du) ·DTk(u− v) +
∫

Ω

zTk(u− v) ≤
∫

Ω

φTk(u− v) ∀k > 0,

for all v ∈ L∞(Ω) ∩W 1,p(Ω), v(x) = 0 a.e. in ∂Ω (see Section 2 for the definition of T 1,p
0 (Ω)).
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Following [5], problems (Sid,βφ,0 ) and (Sid,βφ,ψ ), where id(r) = r for all r ∈ R, are studied in [3] and [1],
for any β maximal monotone graph in R2 with closed domain such that 0 ∈ β(0). It is proved that,
for any φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), there exists a unique u ∈ T 1,p

tr (Ω), and there exists w ∈ L1(∂Ω),
w(x) ∈ β(u(x)) a.e. in ∂Ω, such that∫

Ω

a(., Du) ·DTk(u− v) +
∫

Ω

uTk(u− v) +
∫
∂Ω

wTk(u− v)

≤
∫
∂Ω

ψTk(u− v) +
∫

Ω

φTk(u− v) ∀k > 0,

for all v ∈ L∞(Ω) ∩W 1,p(Ω), v(x) ∈ β(u(x)) a.e. in ∂Ω.

Our aim is to prove existence and uniqueness of weak and entropy solutions for the general elliptic
problem (Sγ,βφ,ψ). The main interest in our work is that we are dealing with general nonlinear operator
−div a(x,Du) with nonhomogeneous boundary condition and general nonlinearities β and γ. As in [9], a
range condition relating the average of φ and ψ to the range of β and γ is necessary for existence of weak
and entropy solution. However, in contrast to the smooth homogeneous case, a smooth and ψ = 0, for
the nonhomogeneous case this range condition is not sufficient for the existence of weak solution. Indeed,
in general, the intersection of the domains of β and γ seems to create some obstruction phenomena for
the existence of these solutions. In general, even if D(β) = R, it does not exist weak solution, as the
following example shows. Let γ be such that D(γ) = [0, 1], β = R× {0}, and let φ ∈ L1(Ω), φ ≤ 0 a.e.
in Ω, and ψ ∈ L1(∂Ω), ψ ≤ 0 a.e. in ∂Ω. If there exists [u, z, w] weak solution of problem (Sγ,βφ,ψ), then
z ∈ γ(u), therefore 0 ≤ u ≤ 1 a.e. in Ω, w = 0, and it holds that for any v ∈W 1,p(Ω) ∩ L∞(Ω),∫

Ω

a(x,Du)Dv +
∫

Ω

zv =
∫
∂Ω

ψv +
∫

Ω

φv.

Taking v = u, as u ≥ 0, we get

0 ≤
∫

Ω

a(x,Du)Du+
∫

Ω

zu =
∫
∂Ω

ψu+
∫

Ω

φu ≤ 0.

Therefore, we obtain that
∫
Ω
|Du|p = 0, so u is constant and∫

Ω

zv =
∫
∂Ω

ψv +
∫

Ω

φv,

for any v ∈ W 1,p(Ω) ∩ L∞(Ω), and in particular, for any v ∈ W 1,p
0 (Ω) ∩ L∞(Ω). Consequently, φ = z

a.e. in Ω, and ψ must be 0 a.e. in ∂Ω.

The main applications we have in mind is the study of doubly nonlinear evolution problems of
elliptic-parabolic type and degenerate parabolic problems of Stefan or Hele-Shaw type, with nonhomo-
geneous boundary conditions and/or dynamical boundary conditions (see [2]). Notice that in all these
applications one has D(γ) = R, which is sufficiently covered in this paper.

The results we obtain have an interpretation in terms of accretive operators. Indeed, we can define
the (possibly multivalued) operator Bγ,β in X := L1(Ω)× L1(∂Ω) as

Bγ,β :=
{

((v, w), (v̂, ŵ)) ∈ X ×X : ∃u ∈ T 1,p
tr (Ω), with [u, v, w] an entropy solution of (Sγ,βv+v̂,w+ŵ)

}
.

Then, under certain assumptions, Bγ,β is an m-T-accretive operator in X. Therefore, by the theory of
Evolution Equations Governed by Accretive Operators (see, [4], [8] or [13]), for any (v0, w0) ∈ D(Bγ,β)

X

and any (f, g) ∈ L1(0, T ;L1(Ω))× L1(0, T ;L1(∂Ω)), there exists a unique mild-solution of the problem

V ′ + Bγ,β(V ) 3 (f, g), V (0) = (v0, w0),
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which rewrites, as an abstract Cauchy problem in X, the following degenerate elliptic-parabolic problem
with nonlinear dynamical boundary conditions

DP (γ, β)


vt − diva(x,Du) = f, v ∈ γ(u), in Ω× (0, T )

wt + a(x,Du) · η = g, w ∈ β(u), on ∂Ω× (0, T )

v(0) = v0 in Ω, w(0) = w0 in ∂Ω.

In principle, it is not clear how these mild solutions have to be interpreted respect to the problem
DP (γ, β). In a next paper ([2]) we characterize these mild solutions.

Let us briefly summarize the contents of the paper. In Section 2 we fix the notation and give some
preliminaries. In Section 3 we give the definitions of the different concepts of solution we use. The next
section is dedicated to establish the uniqueness results. Finally, in Section 5 we prove the existence
results. First, we study the existence of solutions of approximated problems, next we prove the existence
of weak solutions for data in Lp

′
and finally the existence of entropy solutions for data in L1.

2 Preliminaires

For 1 ≤ p < +∞, Lp(Ω) and W 1,p(Ω) denote respectively the standard Lebesgue space and Sobolev
space, andW 1,p

0 (Ω) is the closure of D(Ω) inW 1,p(Ω). For u ∈W 1,p(Ω), we denote by u or τ(u) the trace
of u on ∂Ω in the usual sense and by W

1
p′ ,p(∂Ω) the set τ(W 1,p(Ω)). Recall that Ker(τ) = W 1,p

0 (Ω).

In [5], the authors introduce the set

T 1,p(Ω) = {u : Ω −→ R measurable such that Tk(u) ∈W 1,p(Ω) ∀k > 0},

where Tk(s) = sup(−k, inf(s, k)). They also prove that given u ∈ T 1,p(Ω), there exists a unique
measurable function v : Ω → RN such that

DTk(u) = vχ{|v|<k} ∀k > 0.

This function v will be denoted by Du. It is clear that if u ∈ W 1,p(Ω), then v ∈ Lp(Ω) and v = Du in
the usual sense.

As in [3], T 1,p
tr (Ω) denotes the set of functions u in T 1,p(Ω) satisfying the following conditions, there

exists a sequence un in W 1,p(Ω) such that

(a) un converges to u a.e. in Ω,

(b) DTk(un) converges to DTk(u) in L1(Ω) for all k > 0,

(c) there exists a measurable function v on ∂Ω, such that un converges to v a.e. in ∂Ω.

The function v is the trace of u in the generalized sense introduced in [3]. In the sequel, the trace of
u ∈ T 1,p

tr (Ω) on ∂Ω will be denoted by tr(u) or u. Let us recall that in the case where u ∈W 1,p(Ω), tr(u)
coincides with the trace of u, τ(u), in the usual sense, and the space T 1,p

0 (Ω), introduced in [5] to study
(Dγ

φ), is equal to Ker(tr). Moreover, for every u ∈ T 1,p
tr (Ω) and every k > 0, τ(Tk(u)) = Tk(tr(u)), and,

if φ ∈W 1,p(Ω) ∩ L∞(Ω), then u− φ ∈ T 1,p
tr (Ω) and tr(u− φ) = tr(u)− τ(φ).

We denote

V 1,p(Ω) :=
{
φ ∈ L1(Ω) : ∃M > 0 such that

∫
Ω

|φv| ≤M‖v‖W 1,p(Ω) ∀v ∈W 1,p(Ω)
}
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and

V 1,p(∂Ω) :=
{
ψ ∈ L1(∂Ω) : ∃M > 0 such that

∫
∂Ω

|ψv| ≤M‖v‖W 1,p(Ω) ∀v ∈W 1,p(Ω)
}
.

V 1,p(Ω) is a Banach space endowed with the norm

‖φ‖V 1,p(Ω) := inf{M > 0 :
∫

Ω

|φv| ≤M‖v‖W 1,p(Ω) ∀v ∈W 1,p(Ω)},

and V 1,p(∂Ω) is a Banach space endowed with the norm

‖ψ‖V 1,p(∂Ω) := inf{M > 0 :
∫
∂Ω

|ψv| ≤M‖v‖W 1,p(Ω) ∀v ∈W 1,p(Ω)}.

Observe that, Sobolev embeddings and Trace theorems imply, for 1 ≤ p < N ,

Lp
′
(Ω) ⊂ L(Np/(N−p))′(Ω) ⊂ V 1,p(Ω)

and
Lp

′
(∂Ω) ⊂ L((N−1)p/(N−p))′(∂Ω) ⊂ V 1,p(∂Ω).

Also,
V 1,p(Ω) = L1(Ω) and V 1,p(∂Ω) = L1(∂Ω) when p > N,

Lq(Ω) ⊂ V 1,N (Ω) and Lq(∂Ω) ⊂ V 1,N (∂Ω) for any q > 1.

We say that a is smooth (see [3]) when, for any φ ∈ L∞(Ω) such that there exists a bounded weak
solution u of the homogeneous Dirichlet problem

(D)
{
− div a(x,Du) = φ in Ω
u = 0 on ∂Ω,

there exists g ∈ L1(∂Ω) such that u is also a weak solution of the Neumann problem

(N)
{
− div a(x,Du) = φ in Ω
a(x,Du) · η = g on ∂Ω.

Functions a corresponding to linear operators with smooth coefficients and p-Laplacian type oper-
ators are smooth (see [11] and [22]). The smoothness of the Laplacian operator is even stronger than
this, in fact, there is a bounded linear mapping T : L1(Ω) → L1(∂Ω), such that the weak solution of
(D) for φ ∈ L1(Ω) is also a weak solution of (N) for g = T (φ) (see [9]).

For a maximal monotone graph η in R×R and r ∈ N we denote by ηr the Yosida approximation of
η, given by ηr = r(I − (I + 1

rη)
−1). The function ηr is maximal monotone and Lipschitz. We recall the

definition of the main section η0 of η

η0(s) :=


the element of minimal absolute value of η(s) si η(s) 6= ∅

+∞ if [s,+∞) ∩D(η) = ∅

−∞ if (−∞, s] ∩D(η) = ∅.

If s ∈ D(η), |ηr(s)| ≤ |η0(s)| and ηr(s) → η0(s) as r → +∞, and if s /∈ D(η), |ηr(s)| → +∞ as r → +∞.
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We will denote by P0 the following set of functions,

P0 = {p ∈ C∞(R) : 0 ≤ p′ ≤ 1, supp(p′) is compact, and 0 /∈ supp(p)} .

In [7] the following relation for u, v ∈ L1(Ω) is defined,

u� v if∫
Ω

(u− k)+ ≤
∫

Ω

(v − k)+ and
∫

Ω

(u+ k)− ≤
∫

Ω

(v + k)− for any k > 0,

and the following facts are proved.

Proposition 2.1 Let Ω be a bounded domain in RN .

(i) For any u, v ∈ L1(Ω), if
∫
Ω
up(u) ≤

∫
Ω
vp(u) for all p ∈ P0, then u� v.

(ii) If u, v ∈ L1(Ω) and u� v, then ‖u‖q ≤ ‖v‖q for any q ∈ [1,+∞].

(iii) If v ∈ L1(Ω), then {u ∈ L1(Ω) : u� v} is a weakly compact subset of L1(Ω).

3 Weak solutions and entropy solutions

In this section we give the different concepts of solutions we use. The first one is the concept of weak
solution.

Definition 3.1 Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z, w] ∈ W 1,p(Ω) × L1(Ω) ×
L1(∂Ω) is a weak solution of problem (Sγ,βφ,ψ) if z(x) ∈ γ(u(x)) a.e. in Ω, w(x) ∈ β(u(x)) a.e. in ∂Ω, and∫

Ω

a(x,Du) ·Dv +
∫

Ω

zv +
∫
∂Ω

wv =
∫
∂Ω

ψv +
∫

Ω

φv, (1)

for all v ∈ L∞(Ω) ∩W 1,p(Ω).

In general, as it is remarked in [5], for 1 < p ≤ 2− 1
N , there exists f ∈ L1(Ω) such that the problem

u ∈W 1,1
loc (Ω), u−∆p(u) = f in D′(Ω),

has no solution. In [5], to overcome this difficulty and to get uniqueness, it was introduced a new
concept of solution, named entropy solution. As in [3] or [1], following these ideas, we introduce the
following concept of solution.

Definition 3.2 Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z, w] ∈ T 1,p
tr (Ω) × L1(Ω) ×

L1(∂Ω) is an entropy solution of problem (Sγ,βφ,ψ) if z(x) ∈ γ(u(x)) a.e. in Ω, w(x) ∈ β(u(x)) a.e. in ∂Ω
and ∫

Ω

a(x,Du) ·DTk(u− v) +
∫

Ω

zTk(u− v) +
∫
∂Ω

wTk(u− v)

≤
∫
∂Ω

ψTk(u− v) +
∫

Ω

φTk(u− v) ∀k > 0,

(2)

for all v ∈ L∞(Ω) ∩W 1,p(Ω).
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Obviously, every weak solution is an entropy solution and an entropy solution with u ∈ W 1,p(Ω) is
a weak solution.

Remark 3.3 If we take v = Th(u)± 1 as test functions in (2) and let h go to +∞, we get that∫
Ω

z +
∫
∂Ω

w =
∫
∂Ω

ψ +
∫

Ω

φ.

Then necessarily φ and ψ must satisfy

R−
γ,β ≤

∫
∂Ω

ψ +
∫

Ω

φ ≤ R+
γ,β ,

where
R+
γ,β := sup{Ran(γ)}meas(Ω) + sup{Ran(β)}meas(∂Ω)

and
R−
γ,β := inf{Ran(γ)}meas(Ω) + inf{Ran(β)}meas(∂Ω).

We will write Rγ,β :=]R−
γ,β ,R

+
γ,β [ when R−

γ,β < R+
γ,β .

Remark 3.4 Let φ ∈ V 1,p(Ω) and ψ ∈ V 1,p(∂Ω). Then, if [u, z, w] is a weak solution of problem
(Sγ,βφ,ψ), it is easy to see that∫

Ω

a(x,Du) ·Du+
∫

Ω

zu+
∫
∂Ω

wu =
∫
∂Ω

ψu+
∫

Ω

φu.

Moreover, if D(γ) 6= {0} and D(β) 6= {0}, it follows that z ∈ V 1,p(Ω), w ∈ V 1,p(∂Ω) and∫
Ω

a(x,Du) ·Dv +
∫

Ω

zv +
∫
∂Ω

wv =
∫
∂Ω

ψv +
∫

Ω

φv,

for any v ∈W 1,p(Ω).

In fact, let v ∈W 1,p(Ω) and take Tk(|v|) 1
rTr(u) as test function in (1). Then, letting r go to 0, there

exists M1 > 0 such that∫
{x∈Ω:u(x) 6=0}

|z|Tk(|v|) +
∫
{x∈∂Ω:u(x) 6=0}

|w|Tk(|v|) ≤M1‖v‖W 1,p(Ω).

Letting now k go to +∞, applying Fatou’s Lemma, we get∫
{x∈Ω:u(x) 6=0}

|z||v|+
∫
{x∈∂Ω:u(x) 6=0}

|w||v| ≤M1‖v‖W 1,p(Ω).

If β(0) is bounded, there exists M2 > 0 such that∫
{x∈∂Ω:u(x)=0}

|w||v| ≤M2‖v‖W 1,p(Ω).

In the case β(0) is unbounded from above (a similar argument can be done in the case of being unbounded
from below) let us take Tk(|v|)Sr(u) as test function in (1), where Sr(s) := s+r

r χ[−r,0](s) + χ[0,+∞[(s),
then, letting r go to 0, there exists M2 > 0 such that∫

{x∈∂Ω:u(x)=0}
wTk(|v|) ≤M2‖v‖W 1,p(Ω),
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and consequently, since β(0) must be bounded from below (because D(β) 6= {0}), there exists M3 > 0
such that ∫

{x∈∂Ω:u(x)=0}
|w|Tk(|v|) ≤M3‖v‖W 1,p(Ω).

Letting now k go to +∞, applying Fatou’s Lemma, we get∫
{x∈∂Ω:u(x)=0}

|w||v| ≤M4‖v‖W 1,p(Ω).

Similarly, there exists M5 > 0 such that∫
{x∈Ω:u(x)=0}

|z||v| ≤M5‖v‖W 1,p(Ω).

4 Uniqueness results

This section deals with uniqueness results for entropy solutions and therefore for weak solutions. We
firstly need the following result.

Lemma 4.1 Let [u, z, w] be an entropy solution of problem (Sγ,βφ,ψ). Then, for all h > 0,

λ

∫
{h<|u|<h+k}

|Du|p ≤ k

∫
∂Ω∩{|u|≥h}

|ψ|+ k

∫
Ω∩{|u|≥h}

|φ|.

Proof. Taking Th(u) as test function in (2), we have∫
Ω

a(x,Du) ·DTk(u− Th(u)) +
∫

Ω

zTk(u− Th(u)) +
∫
∂Ω

wTk(u− Th(u))

≤
∫
∂Ω

ψTk(u− Th(u)) +
∫

Ω

φTk(u− Th(u)).

Now, using (H1) and the positivity of the second and third terms, it follows that

λ

∫
{h<|u|<h+k}

|Du|p ≤ k

∫
∂Ω∩{|u|≥h}

|ψ|+ k

∫
Ω∩{|u|≥h}

|φ|.

�

Theorem 4.2 Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), and let [u1, z1, w1] and [u2, z2, w2] be entropy solutions
of problem (Sγ,βφ,ψ). Then, there exists a constant c ∈ R such that

u1 − u2 = c a.e. in Ω,

z1 − z2 = 0 a.e. in Ω.

w1 − w2 = 0 a.e. in ∂Ω.

Moreover, if c 6= 0, there exists a constant k such that z1 = z2 = k.
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Since every weak solution of problem (Sγ,βφ,ψ) is an entropy solution. The same result is true for weak
solutions.

Proof. Let [u1, z1, w1] and [u2, z2, w2] be entropy solutions of problem (Sγ,βφ,ψ). For every h > 0, we
have that ∫

Ω

a(x,Du1) ·DTk(u1 − Th(u2)) +
∫

Ω

z1Tk(u1 − Th(u2))

+
∫
∂Ω

w1Tk(u1 − Th(u2)) ≤
∫
∂Ω

ψTk(u1 − Th(u2)) +
∫

Ω

φTk(u1 − Th(u2))

and ∫
Ω

a(x,Du2) ·DTk(u2 − Th(u1)) +
∫

Ω

z2Tk(u2 − Th(u1))

+
∫
∂Ω

w2Tk(u2 − Th(u1)) ≤
∫
∂Ω

ψTk(u2 − Th(u1)) +
∫

Ω

φTk(u2 − Th(u1))

Adding both inequalities and taking limits when h goes to ∞, on account of the monotonicity of γ and
β, if

Ih,k :=
∫

Ω

a(x,Du1) ·DTk(u1 − Th(u2)) +
∫

Ω

a(x,Du2) ·DTk(u2 − Th(u1)),

we get

lim sup
h→∞

Ih,k ≤ −
∫

Ω

(z1 − z2)Tk(u1 − u2)−
∫
∂Ω

(w1 − w2)Tk(u1 − u2) ≤ 0. (3)

Let us see that
lim inf
h→∞

Ih,k ≥ 0 for any k. (4)

To prove this, we split
Ih,k = I1

h,k + I2
h,k + I3

h,k + I4
h,k,

where
I1
h,k :=

∫
{|u1|<h, |u2|<h}

(a(x,Du1)− a(x,Du2)) ·DTk(u1 − u2),

I2
h,k :=

∫
{|u1|<h, |u2|≥h}

a(x,Du1) ·DTk(u1 − h sign(u2)) +
∫
{|u1|<h, |u2|≥h}

a(x,Du2) ·DTk(u2 − u1)

≥
∫
{|u1|<h, |u2|≥h}

a(x,Du2) ·DTk(u2 − u1),

I3
h,k :=

∫
{|u1|≥h, |u2|<h}

a(x,Du1) ·DTk(u1 − u2) +
∫
{|u1|≥h, |u2|<h}

a(x,Du2) ·DTk(u2 − h sign(u1))

≥
∫
{|u1|≥h, |u2|<h}

a(x,Du1) ·DTk(u1 − u2)

and
I4
h,k :=

∫
{|u1|≥h, |u2|≥h}

a(x,Du1) ·DTk(u1 − h sign(u2))

+
∫
{|u1|≥h, |u2|≥h}

a(x,Du2) ·DTk(u2 − h sign(u1)) ≥ 0.

Combining the above estimates we get

Ih,k ≥ I1
h,k + L1

h,k + L2
h,k, (5)

9



where
L1
h,k :=

∫
{|u1|<h, |u2|≥h}

a(x,Du2) ·DTk(u2 − u1),

L2
h,k :=

∫
{|u1|≥h, |u2|<h}

a(x,Du1) ·DTk(u1 − u2)

and I1
h,k is non negative and non decreasing in h. Now, if we set

C(h, k) := {h < |u1| < k + h} ∩ {h− k < |u2| < h},

we have
|L2
h,k| ≤

∫
{|u1−u2|<k, |u1|≥h, |u2|<h}

|a(x,Du1) · (Du1 −Du2)|

≤
∫
C(h,k)

|a(x,Du1) ·Du1|+
∫
C(h,k)

|a(x,Du1) ·Du2|.

Then, by Hölder’s inequality, we get

|L2
h,k| ≤

(∫
C(h,k)

|a(x,Du1)|p
′
)1/p′ ((∫

C(h,k)

|Du1|p
)1/p

+
(∫

C(h,k)

|Du2|p
)1/p)

.

Now, by (H2), (∫
C(h,k)

|a(x,Du1)|p
′
)1/p′

≤
(∫

C(h,k)

σp
′
(
g(x) + |Du1|p−1

)p′)1/p′

≤ σ2
1
p

(
‖g‖p

′

p′ +
∫
{h<|u1|<k+h}

|Du1|p
)1/p′

.

On the other hand, by Lemma 4.1, we obtain∫
{h<|u1|<k+h}

|Du1|p ≤
k

λ

(∫
{|u1|≥h}

|ψ|+
∫
{|u1|≥h}

|φ|

)

and ∫
{h−k<|u2|<h}

|Du2|p ≤
k

λ

(∫
{|u2|≥h−k}

|ψ|+
∫
{|u2|≥h−k}

|φ|

)
.

Then, since φ ∈ L1(Ω), ψ ∈ L1(∂Ω) and having in mind that

lim
r→+∞

meas{x ∈ Ω : |ui(x)| ≥ r} = 0

and
lim

r→+∞
meas{x ∈ ∂Ω : |ui(x)| ≥ r} = 0,

since ui ∈ T 1,p
tr (Ω), we obtain that

lim
h→∞

L2
h,k = 0.

Similarly, limh→∞ L1
h,k = 0. Therefore by (5), (4) holds. Now, from (4), (3) and (5), we have that

lim
h→+∞

∫
{|u1|<h, |u2|<h}

(a(x,Du1)− a(x,Du2)) ·DTk(u1 − u2) = 0.
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Therefore, for any h > 0, DTh(u1) = DTh(u2) a.e. in Ω. Consequently, there exists a constant c such
that

u1 − u2 = c a.e. in Ω.

Moreover, by (3) and (4), we have∫
Ω

(z1 − z2)Tk(u1 − u2) +
∫
∂Ω

(w1 − w2)Tk(u1 − u2) = 0 ∀ k > 0, (6)

from where it follows that
(w1 − w2)χ{u1−u2 6=0} = 0 a.e. in ∂Ω,

and
(z1 − z2)χ{u1−u2 6=0} = 0 a.e. in Ω.

Then, if c 6= 0 it follows that w1 = w2, and z1 = z2.

In order to see that z1 = z2 in the case c = 0, we take Th(u1)−ϕ and Th(u1) +ϕ, ϕ ∈ D(Ω), as test
functions in (2) for the solution [u1, z1, w1] and [u1, z2, w2], respectively, adding these inequalities and
letting h go to +∞, if k > ‖ϕ‖∞, we get

lim
h→∞

Jh,k +
∫

Ω

(z1 − z2)ϕ ≤ 0,

where
Jh,k =

∫
Ω

a(x,Du1) · [DTk(u1 − Th(u1) + ϕ) +DTk(u1 − Th(u1)− ϕ)]

=
∫
{|u1|>h}

a(x,Du1) · [DTk(u1 − Th(u1) + ϕ) +DTk(u1 − Th(u1)− ϕ)].

Then, using Hölder’s inequality and Lemma 4.1, we obtain that

lim
h→∞

Jh,k = 0.

Hence ∫
Ω

z1ϕ ≤
∫

Ω

z2ϕ.

Similarly, ∫
Ω

z2ϕ ≤
∫

Ω

z1ϕ.

Therefore z1 = z2.

If c 6= 0, following the arguments of Lemma 3.5 of [6], we have that z1 = z2 is constant. In fact,
let j(r) =

∫ r
0
γ0(s)ds, therefore, γ = ∂j, the subdifferential of j. Now, z1(x) ∈ γ(u1(x)) ∩ γ(u1(x) + c)

a.e. x ∈ Ω, consequently, j(u1(x) + c)− j(u1(x)) = cz1(x) a.e. in Ω. Moreover, if γ(R) is bounded, j is
Lipschitz continuous, j(Tk(u1) + c), j(Tk(u1)) ∈W 1,p(Ω) and ∇ (j(Tk(u1) + c)− j(Tk(u1))) = 0 a.e. in
Ω. The above identity is obvious when |u1| ≥ k, and in the case |u1| < k, we have∇ (j(u1 + c)− j(u1)) =
0. Therefore j(Tk(u1) + c) − j(Tk(u1)) is constant (this constant, in fact, does not depend on k) and
consequently cz1 is constant. As c 6= 0, z1 is constant. In the case γ is not bounded, we work, again as
in Lemma 3.5 of [6], truncating γ.

Finally, in order to see that w1 = w2, we use the fact that we can take as test function in (2), for
the corresponding (Sγ,βφ,ψ), v = Th(ui)± ϕ, for any ϕ ∈ W 1,p(Ω) ∩ L∞(Ω). Then, since u1 = u2 + c and
z1 = z2, we get ∫

∂Ω

w1ϕ =
∫
∂Ω

w2ϕ.

Therefore w1 = w2. �
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5 Existence results

In this section we give the existence results. Let us begin with some approximation results which allow
to get the existence results.

5.1 Approximated problems

For m,n ∈ N, we approximate γ and β by γm,n(r) = γ(r)+ 1
mr

+− 1
nr

− and βm,n(r) = β(r)+ 1
mr

+− 1
nr

−

respectively, so we first consider the problem

(Sγm,n,βm,n

φ,ψ )

 −div a(x,Du) + γm,n(u) 3 φ in Ω

a(x,Du) · η + βm,n(u) 3 ψ on ∂Ω.

For (Sγm,n,βm,n

φ,ψ ), we have the following existence and uniqueness results.

Proposition 5.1 Assume D(γ) = D(β) = R. Let m,n ∈ N, m ≤ n. Then, the following hold.

(i) For φ ∈ L∞(Ω) and ψ ∈ L∞(∂Ω), there exist u = uφ,ψ,m,n ∈ W 1,p(Ω) ∩ L∞(Ω), z = zφ,ψ,m,n ∈
L∞(Ω), z(x) ∈ γ(u(x)) a.e. in Ω, and w = wφ,ψ,m,n ∈ L∞(∂Ω), w(x) ∈ β(u(x)) a.e. in ∂Ω, such
that [u, z, w] is a weak solution of (Sγm,n,βm,n

φ,ψ ).

Moreover, if M := ‖φ‖∞ + ‖ψ‖∞,
−nM ≤ u ≤ nM,

−γ0 (−nM) ≤ z ≤ γ0 (nM) ,

and there exists c(Ω, N, p) > 0 such that

‖Du‖p−1
Lp(Ω) ≤

c(Ω, N, p)
λ

(
‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
.

(ii) If m1 ≤ m2 ≤ n2 ≤ n1, φ1, φ2 ∈ L∞(Ω), ψ1, ψ2 ∈ L∞(∂Ω) then∫
Ω

(zφ1,ψ1,m1,n1 − zφ2,ψ2,m2,n2)
+ +

∫
∂Ω

(wφ1,ψ1,m1,n1 − wφ2,ψ2,m2,n2)
+

≤
∫
∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.

Proof. Observe that 1
ms

+ − 1
ns

− = 1
ms+

(
1
m − 1

n

)
s− =

(
1
m − 1

n

)
s+ + 1

ns.

Let us take
cr > sup{nM, γr(nM),−γr(−nM), βr(nM),−βr(−nM)},

where γr and βr are the Yosida approximations of γ and β, respectively. For r ∈ N, it is easy to see
that the operator Br : W 1,p(Ω) → (W 1,p(Ω))′ defined by

〈Bru, v〉 =
∫

Ω

a(x,Du) ·Dv +
∫

Ω

Tcr
(γr(u))v +

1
r

∫
Ω

|u|p−2uv

+
1
m

∫
Ω

Tcr (u
+)v − 1

n

∫
Ω

Tcr (u
−)v +

∫
∂Ω

Tcr (βr(u))v

+
1
m

∫
∂Ω

Tcr
(u+)v − 1

n

∫
∂Ω

Tcr
(u−)v −

∫
∂Ω

ψv −
∫

Ω

φv,
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is bounded, coercive, monotone and hemicontinuous. Let K = W 1,p(Ω). Then, by a classical result of
Browder ([21]), there exists ur = uφ,ψ,m,n,r ∈ K, such that∫

Ω

a(x,Dur) ·Dv +
∫

Ω

Tcr (γr(ur))v +
1
r

∫
Ω

|ur|p−2urv

+
1
m

∫
Ω

Tcr
((ur)+)v − 1

n

∫
Ω

Tcr
((ur)−)v

+
∫
∂Ω

Tcr
(βr(ur))v +

1
m

∫
∂Ω

Tcr
((ur)+)v − 1

n

∫
∂Ω

Tcr
((ur)−)v

=
∫
∂Ω

ψv +
∫

Ω

φv,

(7)

for all v ∈ K.

Taking v = Tk((ur−mM)+) in (7), misleading non negative terms, dividing by k, and taking limits
as k goes to 0, we get

1
m

∫
Ω

Tcr (ur)sign+(ur −mM) +
1
m

∫
∂Ω

Tcr (ur)sign+(ur −mM)

≤
∫
∂Ω

ψ sign+(ur −mM) +
∫

Ω

φ sign+(ur −mM).

Consequently∫
Ω

(Tcr
(ur)−mM)sign+(ur −mM) +

∫
∂Ω

(Tcr
(ur)−mM)sign+(ur −mM)

≤
∫
∂Ω

(mψ −mM)sign+(ur −mM) +
∫

Ω

(mφ−mM)sign+(ur −mM) ≤ 0.

Therefore, since m ≤ n,
ur(x) ≤ nM a.e. in Ω.

Similarly, taking v = Tk((ur + nM)−) in (7), we get

ur(x) ≥ −nM a.e. in Ω.

Consequently,
‖ur‖∞ ≤ nM, (8)

and (7) yields∫
Ω

a(x,Dur) ·Dv +
∫

Ω

γr(ur)v +
1
r

∫
Ω

|ur|p−2urv +
1
m

∫
Ω

u+
r v −

1
n

∫
Ω

u−r v

+
∫
∂Ω

βr(ur)v +
1
m

∫
∂Ω

u+
r v −

1
n

∫
∂Ω

u−r v =
∫
∂Ω

ψv +
∫

Ω

φv,

(9)

for all v ∈W 1,p(Ω).

Taking v = Tk((ur)+) in (9), disregarding some positive terms, dividing by k and letting k go to ∞
we get that

13



1
m

∫
Ω

u+
r +

∫
Ω

γr(ur)+ +
∫
∂Ω

βr(ur)+ ≤
∫

Ω

φ+ +
∫
∂Ω

ψ+, (10)

and, similarly, taking Tk((ur)−) we get

1
n

∫
Ω

u−r +
∫

Ω

γr(ur)− +
∫
∂Ω

βr(ur)− ≤
∫

Ω

φ− +
∫
∂Ω

ψ−. (11)

Taking v = ur − 1
meas(∂Ω)

∫
∂Ω
ur as test function in (9) and having in mind that∫
∂Ω

βr(ur)
(
ur −

1
meas(∂Ω)

∫
∂Ω

ur

)
=
∫
∂Ω

(
βr(ur)− βr

(
1

meas(∂Ω)

∫
∂Ω

ur

))(
ur −

1
meas(∂Ω)

∫
∂Ω

ur

)
≥ 0;

∫
Ω

γr(ur)
(
ur −

1
meas(∂Ω)

∫
∂Ω

ur

)
=
∫

Ω

(
γr(ur)− γr

(
1

meas(Ω)

∫
Ω

ur

))(
ur −

1
meas(Ω)

∫
Ω

ur

)

−
∫

Ω

γr(ur)
(

1
meas(∂Ω)

∫
∂Ω

ur −
1

meas(Ω)

∫
Ω

ur

)
≥ −

∫
Ω

γr(ur)
(

1
meas(∂Ω)

∫
∂Ω

ur −
1

meas(Ω)

∫
Ω

ur

)
and working similarly with the other terms, we get

λ

∫
Ω

|Dur|p ≤
∫

Ω

φ

(
ur −

1
meas(∂Ω)

∫
∂Ω

ur

)
+
∫
∂Ω

ψ

(
ur −

1
meas(∂Ω)

∫
∂Ω

ur

)

−
∫

Ω

γr(ur)
(

1
meas(Ω)

∫
Ω

ur −
1

meas(∂Ω)

∫
∂Ω

ur

)

− 1
m

∫
Ω

u+
r

(
1

meas(Ω)

∫
Ω

ur −
1

meas(∂Ω)

∫
∂Ω

ur

)

+
1
n

∫
Ω

u−r

(
1

meas(Ω)

∫
Ω

ur −
1

meas(∂Ω)

∫
∂Ω

ur

)
.

Now, by Poincaré’s inequality and the trace Theorem, there exists c1 = c1(Ω, N, p) > 0 such that∫
Ω

φ

(
ur −

1
meas(∂Ω)

∫
∂Ω

ur

)
≤ c1‖φ‖V 1,p(Ω)‖Dur‖Lp(Ω),

and ∫
∂Ω

ψ

(
ur −

1
meas(∂Ω)

∫
∂Ω

ur

)
≤ c1‖ψ‖V 1,p(∂Ω)‖Dur‖Lp(Ω).

On the other hand, by (10) and (11),

−
∫

Ω

γr(ur)
(

1
meas(Ω)

∫
Ω

ur −
1

meas(∂Ω)

∫
∂Ω

ur

)
− 1
m

∫
Ω

u+
r

(
1

meas(Ω)

∫
Ω

ur −
1

meas(∂Ω)

∫
∂Ω

ur

)
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+
1
n

∫
Ω

u−r

(
1

meas(Ω)

∫
Ω

ur −
1

meas(∂Ω)

∫
∂Ω

ur

)
≤ 2

(∫
∂Ω

|ψ|+
∫

Ω

|φ|
) ∣∣∣∣ 1

meas(Ω)

∫
Ω

ur −
1

meas(∂Ω)

∫
∂Ω

ur

∣∣∣∣ .
Moreover, applying again the generalized Poincaré inequality, there exists c2 = c2(Ω, N, p) > 0 such
that ∣∣∣∣ 1

meas(Ω)

∫
Ω

ur −
1

meas(∂Ω)

∫
∂Ω

ur

∣∣∣∣ ≤
1

meas(Ω)
1
p

(∥∥∥∥ur − 1
meas(Ω)

∫
Ω

ur

∥∥∥∥
Lp(Ω)

+
∥∥∥∥ur − 1

meas(∂Ω)

∫
∂Ω

ur

∥∥∥∥
Lp(Ω)

)
≤ c2‖Dur‖Lp(Ω).

Therefore, there exists c3 = c3(Ω, N, p) > 0, such that

‖Dur‖p−1
Lp(Ω) ≤

c3
λ

(
‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
. (12)

As a consequence of (8) and (12) we can suppose that there exists a subsequence, still denoted ur,
such that

ur converges weakly in W 1,p(Ω) to u ∈W 1,p(Ω),

ur converges in Lq(Ω) and a.e. in Ω to u, for any q ≥ 1,

ur converges in Lp(∂Ω) and a.e. to u,

with
−nM ≤ u ≤ nM. (13)

Taking into account (13), we get that |γr(ur)| is uniformly bounded. Consequently, we can assume
that γr(ur) → z ∈ L∞(Ω) weakly∗, moreover

−γ0 (−nM) ≤ z ≤ γ0 (nM) .

Since ur → u in L1(Ω), applying [9, Lemma G], it follows that z(x) ∈ γ(u(x)) a.e. on Ω.

On the other hand, since βr(ur) is also uniformly bounded, we can assume that βr(ur) → w ∈
L∞(∂Ω) weakly∗. Again, applying [9, Lemma G], it follows that w(x) ∈ β(u(x)) a.e. in ∂Ω.

Let us see now that {Dur} converges in measure to Du. We follow the technique used in [10] (see
also [3]). Since Dur converges to Du weakly in Lp(Ω), it is enough to show that {Dur} is a Cauchy
sequence in measure. Let t and ε > 0. For some A > 1, we set

C(x,A, t) := inf{(a(x, ξ)− a(x, η)) · (ξ − η) : |ξ| ≤ A, |η| ≤ A, |ξ − η| ≥ t }.

Having in mind that the function ψ → a(x, ψ) is continuous for almost all x ∈ Ω and the set {(ξ, η) :
|ξ| ≤ A, |η| ≤ A, |ξ − η| ≥ t } is compact, the infimum in the definition of C(x,A, t) is a minimum.
Hence, by (H3), it follows that

C(x,A, t) > 0 for almost all x ∈ Ω. (14)

Now, for r, s ∈ N and any k > 0, the following inclusion holds

{|Dur −Dus| > t}

⊂ {|Dur| ≥ A} ∪ {|Dus| ≥ A} ∪ {|ur − us| ≥ k2} ∪ {C(x,A, t) ≤ k} ∪G,
(15)
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where
G = {|ur − us| ≤ k2, C(x,A, t) ≥ k, |Dur| ≤ A, |Dus| ≤ A, |Dur −Dus| > t}.

Since the sequence Dur is bounded in Lp(Ω) we can choose A large enough in order to have

meas({|Dur| ≥ A} ∪ {|Dus| ≥ A}) ≤ ε

4
for all r, s ∈ N. (16)

By (14), we can choose k small enough in order to have

meas({C(x,A, t) ≤ k}) ≤ ε

4
. (17)

On the other hand, if we use Tk(ur−us) and Tk(ur−us) as test functions in (9) for ur and us respectively,
we obtain ∫

Ω

a(x,Dur) ·DTk(ur − us) +
∫

Ω

γr(ur)Tk(ur − us)

+
1
r

∫
Ω

|ur|p−2urTk(ur − us) +
1
m

∫
Ω

u+
r Tk(ur − us)−

1
n

∫
Ω

u−r Tk(ur − us)

+
∫
∂Ω

βr(ur)Tk(ur − us) +
1
m

∫
∂Ω

u+
r Tk(ur − us)−

1
n

∫
∂Ω

u−r Tk(ur − us)

=
∫
∂Ω

ψTk(ur − us) +
∫

Ω

φTk(ur − us),

(18)

and
−
∫

Ω

a(x,Dus) ·DTk(ur − us)−
∫

Ω

γs(us)Tk(ur − us)

−1
s

∫
Ω

|us|p−2usTk(ur − us)−
1
m

∫
Ω

u+
s Tk(ur − us) +

1
n

∫
Ω

u−s Tk(ur − us)

−
∫
∂Ω

βs(us)Tk(ur − us)−
1
m

∫
∂Ω

u+
s Tk(ur − us) +

1
n

∫
∂Ω

u−s Tk(ur − us)

= −
∫
∂Ω

ψTk(ur − us)−
∫

Ω

φTk(ur − us).

(19)

Adding (18) and (19) and disregarding some positive terms, we get∫
Ω

(a(x,Dur)− a(x,Dus)) ·DTk(ur − us) ≤ −
∫

Ω

(γr(ur)− γs(us))Tk(ur − us)

−
∫

Ω

(
1
r
|ur|p−2ur −

1
s
|us|p−2us

)
Tk(ur − us)−

∫
∂Ω

(βr(ur)− βs(us))Tk(ur − us).

Consequently, there exists a constant M̂ independent of r and s such that∫
Ω

(a(x,Dur)− a(x,Dus)) ·DTk(ur − us) ≤ kM̂.
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Hence
meas(G)

≤ meas({|ur − us| ≤ k2, (a(x,Dur)− a(x,Dus)) ·D(ur − us) ≥ k})

≤ 1
k

∫
{|ur−us|<k2}

(a(x,Dur)− a(x,Dus)) ·D(ur − us)

=
1
k

∫
Ω

(a(x,Dur)− a(x,Dus)) ·DTk2(ur − us) ≤
1
k
k2M̂ ≤ ε

4

(20)

for k small enough.

Since A and k have been already chosen, if r0 is large enough we have for r, s ≥ r0 the estimate
meas({|ur − us| ≥ k2}) ≤ ε

4 . From here, using (15), (16), (17) and (20), we can conclude that

meas({|Dur −Dus| ≥ t}) ≤ ε for r, s ≥ r0.

From here, up to extraction of a subsequence, we also have a(., Dur) converges in measure and a.e.
to a(., Du). Now, by (H2) and (12),

a(., Dur) converges weakly in Lp
′
(Ω)N to a(., Du).

Finally, letting r → +∞ in (9), we prove (i).

In order to prove (ii), we write u1,r = uφ1,ψ1,m1,n1,r and u2,r = uφ2,ψ2,m2,n2,r. Taking Tk((u1,r −
u2,r)+), with r large enough, as test function in (9) for u1,r, m = m1 and n = n1, we get∫

Ω

a(x,Du1,r) ·DTk((u1,r − u2,r)+) +
∫

Ω

γr(u1,r)Tk((u1,r − u2,r)+)

+
1
r

∫
Ω

|u1,r|p−2u1,rTk((u1,r − u2,r)+) +
1
m1

∫
Ω

u+
1,rTk((u1,r − u2,r)+)− 1

n1

∫
Ω

u−1,rTk((u1,r − u2,r)+)

+
∫
∂Ω

βr(u1,r)Tk((u1,r − u2,r)+) +
1
m1

∫
∂Ω

u+
1,rTk((u1,r − u2,r)+)− 1

n1

∫
∂Ω

u−1,rTk((u1,r − u2,r)+)

=
∫
∂Ω

ψ1Tk((u1,r − u2,r)+) +
∫

Ω

φ1Tk((u1,r − u2,r)+),

and taking Tk(u1,r − u2,r)+ as test function in (9) for u2,r, m = m2 and n = n2, we get

−
∫

Ω

a(x,Du2,r) ·DTk((u1,r − u2,r)+)−
∫

Ω

γr(u2,r)Tk((u1,r − u2,r)+)

−1
r

∫
Ω

|u2,r|p−2u2,rTk((u1,r − u2,r)+)− 1
m2

∫
Ω

u+
2,rTk((u1,r − u2,r)+) +

1
n2

∫
Ω

u−2,rTk((u1,r − u2,r)+)

−
∫
∂Ω

βr(u2,r)Tk((u1,r − u2,r)+)− 1
m2

∫
∂Ω

u+
2,rTk((u1,r − u2,r)+) +

1
n2

∫
∂Ω

u−2,rTk((u1,r − u2,r)+)

= −
∫
∂Ω

ψ2Tk((u1,r − u2,r)+)−
∫

Ω

φ2Tk((u1,r − u2,r)+).
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Adding these two inequalities, misleading some non negative terms, dividing by k, and letting k → 0,
we get ∫

Ω

(γr(u1,r)− γr(u2,r))+ +
∫
∂Ω

(βr(u1,r)− βr(u2,r))+

≤
∫
∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.

(21)

Therefore, taking into account the above convergence, (ii) is obtained. �

In the case ψ = 0, we have the following result.

Proposition 5.2 Assume D(β) = R. Let m,n ∈ N, m ≤ n. Then, the following hold.

(i) For φ ∈ L∞(Ω), there exist u = uφ,m,n ∈W 1,p(Ω) ∩ L∞(Ω), z = zφ,m,n ∈ L∞(Ω), z(x) ∈ γ(u(x))
a.e. in Ω, and w = wφ,m,n ∈ L∞(∂Ω), w(x) ∈ β(u(x)) a.e. in ∂Ω, such that [u, z, w] is a weak
solution of problem (Sγm,n,βm,n

φ,0 ), and z << φ.

(ii) If m1 ≤ m2 ≤ n2 ≤ n1, φ1, φ2 ∈ L∞(Ω), then∫
Ω

(zφ1,m1,n1 − zφ2,m2,n2)
+ +

∫
∂Ω

(wφ1,m1,n1 − wφ2,m2,n2)
+ ≤

∫
Ω

(φ1 − φ2)+.

Proof. Following the proof of Proposition 5.1 there exists ur = uφ,m,n,r ∈ K = W 1,p(Ω), such that

‖ur‖∞ ≤ n‖φ‖∞,

and ∫
Ω

a(x,Dur) ·Dv +
1
r

∫
Ω

|ur|p−2urv

+
∫

Ω

γr(ur)v +
1
m

∫
Ω

u+
r (ur − v)− 1

n

∫
Ω

u−r v

+
∫
∂Ω

βr(ur)v +
1
m

∫
∂Ω

u+
r v −

1
n

∫
∂Ω

u−r v =
∫

Ω

φv,

(22)

for all v ∈ K.

We can finish the proof as in Propositions 5.1 if we prove that γr(ur) is weakly convergent in L1(Ω).
Taking v = p(γr(ur)), p ∈ P0, as test function in (22) we have that, after misleading non negative terms,∫

Ω

γr(ur)p(γr(ur)) ≤
∫

Ω

φp(γr(ur)),

which implies, γr(ur) << φ. In particular, see Proposition 2.1, ‖γr(ur)‖∞ ≤ ‖φ‖∞ and γr(ur) → z ∈
L∞(Ω) weakly in L1(Ω), with z << φ. �

Remark 5.3 Observe that if D(β) = {0} and γ is anyone, rewriting the proof of Proposition 5.2, with
K = W 1,p

0 (Ω), we find u = uφ,m,n ∈ W 1,p
0 (Ω) ∩ L∞(Ω), z = zφ,m,n ∈ L∞(Ω), z(x) ∈ γ(u(x)) a.e. in Ω,

such that ∫
Ω

a(x,Du) ·Dv +
∫

Ω

zv +
1
m

∫
Ω

u+v − 1
n

∫
Ω

u−v =
∫

Ω

φv,

for all v ∈W 1,p
0 (Ω). Moreover, if m1 ≤ m2 ≤ n2 ≤ n1, φ1, φ2 ∈ L∞(Ω), then∫

Ω

(zφ1,ψ1,m1,n1 − zφ2,ψ2,m2,n2)
+ ≤

∫
Ω

(φ1 − φ2)+.
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Proposition 5.4 Assume D(γ) = R and a smooth. Let m,n ∈ N, m ≤ n. Then, the following hold.

(i) For φ ∈ L∞(Ω) and ψ ∈ L∞(∂Ω), there exist u = uφ,ψ,m,n ∈ W 1,p(Ω) ∩ L∞(Ω), z = zφ,ψ,m,n ∈
L∞(Ω), z(x) ∈ γ(u(x)) a.e. in Ω, and w = wφ,ψ,m,n ∈ L1(∂Ω), w(x) ∈ β(u(x)) a.e. in ∂Ω, such
that [u, z, w] is a weak solution of (Sγm,n,βm,n

φ,ψ ).

Moreover, there exists c(Ω, p, λ) > 0 such that

‖Du‖Lp(Ω) ≤ c(Ω, p, λ)
(
‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

) 1
p−1 .

(ii) If m1 ≤ m2 ≤ n2 ≤ n1, φ1, φ2 ∈ L∞(Ω), ψ1, ψ2 ∈ L∞(∂Ω) then∫
Ω

(zφ1,ψ1,m1,n1 − zφ2,ψ2,m2,n2)
+ +

∫
∂Ω

(wφ1,ψ1,m1,n1 − wφ2,ψ2,m2,n2)
+

≤
∫
∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.

Proof. Applying Proposition 5.1 to βr, the Yosida approximation of β, there exists ur = uφ,ψ,m,n,r ∈
W 1,p(Ω) ∩ L∞(Ω) and zr = zφ,ψ,m,n,r ∈ L∞(Ω), zr ∈ γ(ur) a.e. in Ω, such that∫

Ω

a(x,Dur) ·Dv +
∫

Ω

zrv +
∫
∂Ω

βr(ur)v

+
1
m

∫
Ω

u+
r v −

1
n

∫
Ω

u−r v +
1
m

∫
∂Ω

u+
r v −

1
n

∫
∂Ω

u−r v

=
∫
∂Ω

ψv +
∫

Ω

φv,

(23)

for all v ∈W 1,p(Ω). Moreover, |ur| is uniformly bounded by nM , M := ‖φ‖∞ + ‖ψ‖∞,

−γ0 (−nM) ≤ zr ≤ γ0 (nM) ,

and ∫
Ω

z±r +
∫
∂Ω

w±r ≤
∫
∂Ω

ψ± +
∫

Ω

φ±.

Let now û ∈ L∞(Ω) and ẑ ∈ γ(û), ẑ ∈ L∞(Ω), be such that û is solution of the Dirichlet problem
(see Remark 5.3) 

−div a(x,Dû) + ẑ +
1
m
û+ − 1

n
û− = φ in Ω

û = 0 on ∂Ω.

Since a is smooth, there exists ψ̂ ∈ L1(∂Ω) such that∫
Ω

a(x,Dû) ·Dv +
∫

Ω

ẑv +
1
m

∫
Ω

û+v − 1
n

∫
Ω

û−v =
∫
∂Ω

ψ̂v +
∫

Ω

φv, (24)

for any v ∈W 1,p(Ω) ∩ L∞(Ω).

Taking v = p(βr(ur− û)), p ∈ P0, as test function in (23), and p(βr(ur− û)) as test function in (24),
and adding both equalities we get, after misleading non negative terms, that∫

∂Ω

βr(ur)p(βr(ur)) ≤
∫
∂Ω

(ψ − ψ̂)p(βr(ur)),
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which implies (see Proposition 2.1) that

βr(ur) → w ∈ L1(∂Ω) weakly in L1(∂Ω).

Now, arguing as in the proof of Proposition 5.1, we obtain (i).

To prove (ii), Proposition 5.1 implies, denoting ui,r = uφi,ψi,mi,ni,r and zi,r = zφi,ψi,mi,ni,r, i = 1, 2,∫
Ω

(z1,r − z2,r)+ +
∫
∂Ω

(βr(u1,r)− βr(u2,r))+

≤
∫
∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.

(25)

Taking limits in (25) when r goes to +∞, (ii) holds. �

In the case ψ = 0, we have the following result.

Proposition 5.5 Assume a smooth. Let m,n ∈ N, m ≤ n. Then, the following hold.

(i) For φ ∈ L∞(Ω), there exist u = uφ,m,n ∈W 1,p(Ω) ∩ L∞(Ω), z = zφ,m,n ∈ L∞(Ω), z(x) ∈ γ(u(x))
a.e. in Ω, and w = wφ,m,n ∈ L1(∂Ω), w(x) ∈ β(u(x)) a.e. in ∂Ω, such that [u, z, w] is a weak
solution of problem (Sγm,n,βm,n

φ,0 ), with z << φ.

(ii) If m1 ≤ m2 ≤ n2 ≤ n1, φ1, φ2 ∈ L∞(Ω), then∫
Ω

(zφ1,m1,n1 − zφ2,m2,n2)
+ +

∫
∂Ω

(wφ1,m1,n1 − wφ2,m2,n2)
+ ≤

∫
Ω

(φ1 − φ2)+.

From the above results we can obtain existence of entropy solutions for data in L1 and also existence
of weak solutions when the data are more regular. We start with the existence of weak solutions.

5.2 Existence of weak solutions

Theorem 5.6 Assume D(γ) = R and R−
γ,β < R+

γ,β. Let D(β) = R or a smooth.

(i) For any φ ∈ V 1,p(Ω) and ψ ∈ V 1,p(∂Ω) with∫
Ω

φ+
∫
∂Ω

ψ ∈ Rγ,β , (26)

there exists a weak solution [u, z, w] of problem (Sγ,βφ,ψ).

(ii) For any [u1, z1, w1] weak solution of problem (Sγ,βφ1,ψ1
), φ1 ∈ V 1,p(Ω) and ψ1 ∈ V 1,p(∂Ω) satisfying

(26), and any [u2, z2, w2] weak solution of problem (Sγ,βφ2,ψ2
), φ2 ∈ V 1,p(Ω) and ψ2 ∈ V 1,p(∂Ω) satisfying

(26), we have that∫
Ω

(z1 − z2)+ +
∫
∂Ω

(w1 − w2)+ ≤
∫
∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.

Proof. We approximate φ and ψ by

φm,n = sup{inf{m,φ},−n}
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and
ψm,n = sup{inf{m,ψ},−n},

respectively. We have, φm,n ∈ L∞(Ω), ψm,n ∈ L∞(∂Ω), are non decreasing in m, non increasing in
n, ‖φm,n‖Lp′ (Ω) ≤ ‖φ‖Lp′ (Ω) and ‖ψm,n‖Lp′ (∂Ω) ≤ ‖ψ‖Lp′ (∂Ω). Then, if m ≤ n, by Propositions 5.1
or 5.4, there exist um,n ∈ W 1,p(Ω) ∩ L∞(Ω), zm,n ∈ L∞(Ω), zm,n(x) ∈ γ(um,n(x)) a.e. in Ω and
wm,n ∈ L1(∂Ω), wm,n(x) ∈ β(um,n(x)) a.e. on ∂Ω, such that∫

Ω

a(x,Dum,n) ·Dv +
∫

Ω

zm,nv +
∫
∂Ω

wm,nv

+
1
m

∫
Ω

u+
m,nv −

1
n

∫
Ω

u−m,nv +
1
m

∫
∂Ω

u+
m,nv −

1
n

∫
∂Ω

u−m,nv

=
∫
∂Ω

ψm,nv +
∫

Ω

φm,nv,

(27)

for any v ∈W 1,p(Ω). Moreover,∫
Ω

z±m,n +
∫
∂Ω

w±m,n ≤
∫

Ω

φ± +
∫
∂Ω

ψ± (28)

and

‖Dum,n‖p−1
Lp(Ω) ≤

c(Ω, N, p)
λ

(
‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
. (29)

Fixed m ∈ N, by Propositions 5.1 or 5.4 (ii), {zm,n}∞n=m and {wm,n}∞n=m are monotone non increas-
ing. Then, by (28) and the Monotone Convergence Theorem, there exists ẑm ∈ L1(Ω), ŵm ∈ L1(∂Ω)
and a subsequence n(m), such that

‖zm,n(m) − ẑm‖1 ≤
1
m

and
‖wm,n(m) − ŵm‖1 ≤

1
m
.

Thanks again to Proposition 5.1 or 5.4 (ii), ẑm and ŵm are non decreasing in m. Now, by (28), we have
that

∫
Ω
|ẑm| and

∫
∂Ω
|ŵm| are bounded. Using again the Monotone Convergence Theorem, there exist

z ∈ L1(Ω) and w ∈ L1(∂Ω) such that

ẑm converges a.e. and in L1(Ω) to z

and
ŵm converges a.e. and in L1(∂Ω) to w.

Consequently,
zm := zm,n(m) converges to z a.e. and in L1(Ω) (30)

and
wm := wm,n(m) converges to w a.e. and in L1(∂Ω). (31)

If we set um := um,n(m), φm := φm,n(m) and ψm := ψm,n(m), then we have∫
Ω

a(x,Dum) ·Dv +
∫

Ω

zmv +
∫
∂Ω

wmv

+
1
m

∫
Ω

u+
mv −

1
n(m)

∫
Ω

u−mv +
1
m

∫
∂Ω

u+
mv −

1
n(m)

∫
∂Ω

u−mv

=
∫
∂Ω

ψmv +
∫

Ω

φmv,

(32)
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for any v ∈W 1,p(Ω).

As a consequence of (29),{
um − 1

meas(∂Ω)

∫
∂Ω

um

}
m

is bounded in W 1,p(Ω). (33)

Let us see that {
1

meas(∂Ω)

∫
∂Ω

um : m ∈ N
}

is a bounded sequence. (34)

If (34) does not hold, then, extracting a subsequence if necessary, we can suppose that
∫
∂Ω
um

converges to +∞ (or −∞, respectively). Suppose first that
∫
∂Ω
um converges to +∞. Hence, by (33)

we have
um converges to +∞ a.e. in Ω, and a.e. in ∂Ω.

Moreover, since for m large enough

u−m ≤
(
um − 1

meas(∂Ω)

∫
∂Ω

um

)−
+
(

1
meas(∂Ω)

∫
∂Ω

um

)−
=
(
um − 1

meas(∂Ω)

∫
∂Ω

um

)−
,

by (33), we get {∫
∂Ω

u−m

}
m∈N

is bounded

and, similarly, {∫
Ω

u−m

}
m∈N

is bounded.

In the case
∫
∂Ω
um converges to −∞, we similarly obtain that

um converges to −∞ a.e. in Ω, and a.e. in ∂Ω,

and {∫
∂Ω

u+
m

}
m∈N

and
{∫

Ω

u+
m

}
m∈N

are bounded.

Therefore, we have z = sup{Ran(γ)} (z = inf{Ran(γ)}, respectively) and w = sup{Ran(β)} (w =
inf{Ran(β)}, respectively). Now, taking v = 1 as test function in (32), we get

1
m

∫
Ω

u+
m − 1

n(m)

∫
Ω

u−m +
1
m

∫
∂Ω

u+
m − 1

n(m)

∫
∂Ω

u−m

=
∫

Ω

φm +
∫
∂Ω

ψm −
∫

Ω

zm −
∫
∂Ω

wm,

and we get a contradiction with (26). Hence, (34) is true. By (33) and (34), we have {‖um‖W 1,p(Ω)}m
is bounded. Therefore, there exists a subsequence, that we denote equal, such that

um → u weakly in W 1,p(Ω),

um → u in Lp(Ω) and a.e. in Ω,

um → u in Lp(∂Ω) and a.e. in ∂Ω.
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Moreover, arguing as in Proposition 5.1, it is not difficult to see that {Dum} is a Cauchy sequence in
measure. Then, up to extraction of a subsequence, Dum converges to Du a.e. in Ω. Consequently, we
obtain that

a(., Dum) converges weakly in Lp
′
(Ω)N and a.e. in Ω to a(., Du).

From these convergences, we finish the proof of existence.

The proof of (ii) is a consequence of the existence result, Propositions 5.1 or 5.4 (ii), and the
uniqueness result. �

Remark 5.7 For positive data φ and ψ, it is not necessary the assumption D(γ) = D(β) = R, that
is, we can improve the above result in the following way. Assume [0,+∞[⊂ D(γ) and R+

γ,β > 0. Let
[0,+∞[⊂ D(β) or a smooth. For any 0 ≤ φ ∈ V 1,pΩ) and 0 ≤ ψ ∈ V 1,p(∂Ω) with

∫
Ω
φ+

∫
∂Ω
ψ < R+

γ,β ,
there exists a weak solution of problem (Sγ,βφ,ψ). A similar result holds for non positive data.

We also have existence and uniqueness of weak solutions ifR−
γ,β = R+

γ,β , that is when γ(r) = β(r) = 0
for any r ∈ R.

Theorem 5.8 For any φ ∈ V 1,p(Ω) and ψ ∈ V 1,p(∂Ω) with∫
Ω

φ+
∫
∂Ω

ψ = 0, (35)

there exists a unique (up to a constant) weak solution u ∈W 1,p(Ω) of the problem −div a(x,Du) = φ in Ω

a(x,Du) · η = ψ on ∂Ω

in the sense that ∫
Ω

a(x,Du) ·Dv =
∫
∂Ω

ψv +
∫

Ω

φv,

for all v ∈W 1,p(Ω).

Proof. Let us approximate φ by φm = Tm(φ) − 1
meas(Ω)αm and ψ by ψm = Tm(ψ), where αm =∫

Ω
Tm(φ) +

∫
∂Ω
Tm(ψ). Observe that

lim
m→+∞

αm = 0 (36)

and ∫
Ω

φm +
∫
∂Ω

ψm = 0. (37)

By Proposition 5.1, there exist um ∈W 1,p(Ω) ∩ L∞(Ω) such that∫
Ω

a(x,Dum) ·Dv +
1
m

∫
Ω

umv +
1
m

∫
∂Ω

umv =
∫
∂Ω

ψmv +
∫

Ω

φmv, (38)

for any v ∈W 1,p(Ω).

Taking v = um as test function in (38), using (36) and the Poincaré inequality, it is easy to see that{
um − 1

meas(∂Ω)

∫
∂Ω

um

}
m

is bounded in W 1,p(Ω). (39)
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Let us also see that {
1

meas(∂Ω)

∫
∂Ω

um : m ∈ N
}

is a bounded sequence. (40)

If (40) does not hold, then, extracting a subsequence if necessary, we can suppose that
∫
∂Ω
um converges

to +∞ (or −∞, respectively). Suppose first that
∫
∂Ω
um converges to +∞. Hence, as in the proof of

Theorem 5.6, we have {∫
Ω

u−m

}
m∈N

is bounded.

Now, taking v = m in (38) and using (37), it follows that

lim
m→+∞

∫
Ω

u−m = +∞,

which is a contradiction. Similarly, we get a contradiction in the case
∫
∂Ω
um converging to −∞. Hence,

(40) is true. By (39) and (40), we have {‖um‖W 1,p(Ω)}m is bounded, and we can finish as in the proof
of Theorem 5.6. �

Remark 5.9 Taking into account the arguments used in Remark 3.4, we get that [u, z, w] in the above
results (including also the case β = D) satisfies∫

Ω

|zv|+
∫
∂Ω

|wv| ≤
∫

Ω

|φv|+
∫
∂Ω

|ψv|+ σ
(
‖g‖Lp′ (Ω) + ‖Du‖p−1

Lp(Ω)

)
‖Dv‖Lp(Ω)

for all v ∈W 1,p(Ω), and

‖Du‖p−1
Lp(Ω) ≤

c(Ω, N, p)
λ

(
‖φ‖V 1,p(Ω) + ‖ψ‖V 1,p(∂Ω)

)
,

for some c(Ω, N, p) > 0.

Taking β = D and γ(r) = 0 for all r ∈ R in Theorem 5.6 for a smooth, and taking into account
Remark 5.9, we have the following result in the line of Proposition C (iv) of [9].

Corollary 5.10 a is smooth if and only if for any φ ∈ V 1,p(Ω) there exists T (φ) ∈ V 1,p(∂Ω) such that
the weak solution u of  −div a(x,Du) = φ in Ω

u = 0 on ∂Ω,

is a weak solution of  −div a(x,Du) = φ in Ω

a(x,Du) · η = T (φ) on ∂Ω.

Moreover, the map T : V 1,p(Ω) → V 1.p(∂Ω) satisfies∫
Ω

(T (φ1)− T (φ2))+ ≤
∫

Ω

(φ1 − φ2)+,

for all φ1, φ2 ∈ V 1,p(Ω).
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In the case ψ = 0 we have the following result, which is similar to the one obtained by Bénilan,
Crandall and Sack in [9] for the Laplacian operator and L1(Ω)-data.

Theorem 5.11 Assume D(β) = R or a smooth. Let R−
γ,β < R+

γ,β.

(i) For any φ ∈ V 1,p(Ω) such that
∫
Ω
φ ∈ Rγ,β, there exists a weak solution [u, z, w] of problem (Sγ,βφ,0 ),

with z << φ.

(ii) For any [u1, z1, w1] weak solution of problem (Sγ,βφ1,0
), φ1 ∈ V 1,p(Ω),

∫
Ω
φ1 ∈ Rγ,β, and any

[u2, z2, w2] weak solution of problem (Sγ,βφ2,0
), φ2 ∈ V 1,p(Ω),

∫
Ω
φ2 ∈ Rγ,β, we have that∫

Ω

(z1 − z2)+ +
∫
∂Ω

(w1 − w2)+ ≤
∫

Ω

(φ1 − φ2)+.

Taking into account Remark 5.3, we obtain the following existence theorem for Dirichlet boundary
condition.

Theorem 5.12 Assume D(β) = {0}. For any φ ∈ V 1,p(Ω), there exists a unique [u, z] = [uφ,ψ, zφ,ψ] ∈
W 1,p

0 (Ω)× V 1,p(Ω), z ∈ γ(u) a.e. in Ω, such that∫
Ω

a(x,Du) ·Dv +
∫

Ω

zv =
∫

Ω

φv,

for all v ∈W 1,p
0 (Ω).

Moreover, if φ1, φ2 ∈ V 1,p(Ω), then∫
Ω

(zφ1,ψ1 − zφ2,ψ2)
+ ≤

∫
Ω

(φ1 − φ2)+. (41)

5.3 Existence of entropy solutions

Let us see the existence results of entropy solutions for data in L1.

Theorem 5.13 Assume D(γ) = R, and D(β) = R or a smooth. Let also assume that, if [0,+∞[⊂
D(β),

lim
k→+∞

γ0(k) = +∞ and lim
k→+∞

β0(k) = +∞, (42)

and if ]−∞, 0] ⊂ D(β),
lim

k→−∞
γ0(k) = −∞ and lim

k→−∞
β0(k) = −∞. (43)

Then,

(i) for any φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), there exists an entropy solution [u, z, w] of problem (Sγ,βφ,ψ).

(ii) For any [u1, z1, w1] entropy solution of problem (Sγ,βφ1,ψ1
), φ1 ∈ L1(Ω), ψ1 ∈ L1(∂Ω), and any

[u2, z2, w2] entropy solution of problem (Sγ,βφ2,ψ2
), φ2 ∈ L1(Ω), ψ2 ∈ L1(∂Ω), we have that∫

Ω

(z1 − z2)+ +
∫
∂Ω

(w1 − w2)+ ≤
∫
∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.
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Proof. Observe that, under the assumptions of the theorem, we have Rγ,β = R.

We divide the proof in several steps.

Step 1. Let us approximate φ by φm := Tm(φ) and ψ by ψm := Tm(ψ). Then, by Theorem 5.6, there
exist um ∈W 1,p(Ω), zm ∈ V 1,p(Ω), zm(x) ∈ γ(um(x)) a.e. in Ω, and wm ∈ V 1,p(∂Ω), wm(x) ∈ β(um(x))
a.e. on ∂Ω, such that∫

Ω

a(x,Dum) ·Dv +
∫

Ω

zmv +
∫
∂Ω

wmv =
∫
∂Ω

ψmv +
∫

Ω

φmv, (44)

for any v ∈W 1,p(Ω).

Moreover, ∫
Ω

z±m +
∫
∂Ω

w±m ≤
∫
∂Ω

ψ±m +
∫

Ω

φ±m (45)

and ∫
Ω

|zn − zm|+
∫
∂Ω

|wn − wm| ≤
∫
∂Ω

|ψn − ψm|+
∫

Ω

|φn − φm|.

Consequently
zm → z in L1(Ω)

wm → w in L1(∂Ω).
(46)

Taking v = Tk(um) in (44), we obtain

λ

∫
Ω

|DTk(um)|p ≤ k (‖φ‖1 + ‖ψ‖1) , ∀k ∈ N. (47)

By (47), we have {Tk(um)} is bounded inW 1,p(Ω). Then, we can suppose that there exists σk ∈W 1,p(Ω)
such that

Tk(um) converges to σk weakly in W 1,p(Ω),

Tk(um) converges to σk in Lp(Ω) and a.e. in Ω

and
Tk(um) converges to σk in Lp(∂Ω) and a.e. in ∂Ω.

Step 2. Let us see that um converges almost every where in Ω.

If D(β) is bounded from above by r1, using the Poincaré inequality and (47),

meas{x ∈ Ω : σ+
k (x) = k} ≤

∫
Ω

(σ+
k )p

∗

kp∗
≤ lim inf

m

∫
Ω

(Tk((um)+))p
∗

kp∗

≤ C1

kp∗
lim inf
m

(∫
∂Ω

Tk((um)+) +
(∫

Ω

|DTk((um)+)|p
)1/p

)p∗

≤ C1

kp∗

(
r1meas(∂Ω) +

(
‖φ‖1 + ‖ψ‖1

λ
k

)1/p
)p∗

∀k > 0,

where p∗ = Np
N−p and C1 is independent of k and m.
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If D(β) is unbounded from above, then, we are supposing limk→+∞ γ0(k) = +∞. Therefore, for
k > 0 large enough (in order to have γ0(k) > 0), by (45) we have

meas{x ∈ Ω : σ+
k (x) = k} =

∫
{x∈Ω : σ+

k (x)=k}}

γ0(σ+
k (x))

γ0(k)

≤ 1
γ0(k)

lim inf
m

∫
Ω

γ0(Tk((um)+)) ≤ 1
γ0(k)

(‖φ‖1 + ‖ψ‖1).

Consequently, in any case, there exists g(k) > 0, limk→+∞ g(k) = 0, such that

meas{x ∈ Ω : σ+
k (x) = k} ≤ g(k) ∀k > 0. (48)

Similarly, if D(β) is bounded from below or assumption (43) holds, we can prove that there exists
g(k) as above such that

meas{x ∈ Ω : σ−k (x) = k} ≤ g(k) ∀k > 0. (49)

Note that we have proved (48) and (49) in any case. Consequently, there exists g(k) > 0 with
limk→+∞ g(k) = 0, such that

meas{x ∈ Ω : |σk(x)| = k} ≤ g(k) ∀k > 0.

Therefore, if we define u(x) = σk(x) on {x ∈ Ω : |σk(x)| < k}, then

um converges to u a.e. in Ω, (50)

and we have that
Tk(um) converges weakly in W 1,p(Ω) to Tk(u),

Tk(um) converges in Lp(Ω) and a.e. in Ω to Tk(u)

and
Tk(um) converges in Lp(∂Ω) and a.e. in ∂Ω to Tk(u).

Consequently, u ∈ T 1,p(Ω).

Arguing as in Proposition 5.1, it is not difficult to see that {Dum} is a Cauchy sequence in measure.
Similarly, we can prove that DTk(um) converges in measure to DTk(u). Then, up to extraction of a
subsequence, Dum converges to Du a.e. in Ω. Consequently, we obtain that

a(., DTk(um)) converges weakly in Lp
′
(Ω)N and a.e. in Ω to a(., DTk(u)). (51)

Step 3. Let us see now that u ∈ T 1,p
tr (Ω). On the one hand we have that um → u a.e. in Ω. On the

other hand, since DTk(um) is bounded in Lp(Ω) and DTk(um) → DTk(u) in measure, it follows from
[5, Lemma 6.1] that DTk(um) → DTk(u) in L1(Ω). Next, let us see that um converges a.e. in ∂Ω. Let
suppose first that D(β) is bounded from above by r1, then, by (47), there exists a constant C3 such
that

meas{x ∈ ∂Ω : σ+
k (x) = k} ≤

∫
∂Ω

σ+
k

k

≤ lim inf
m

∫
∂Ω

Tk((um)+)
k

≤ r1meas(∂Ω)
k

∀k > 0.
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If D(β) is unbounded from above, then, we are supposing limk→+∞ β0(k) = +∞. Therefore, for
k > 0 large enough (in order to have β0(k) > 0), by (45) we have

meas{x ∈ ∂Ω : σ+
k (x) = k} =

∫
{x∈∂Ω : σ+

k (x)=k}}

β0(σ+
k (x))

β0(k)

≤ 1
β0(k)

lim inf
m

∫
∂Ω

β0(Tk((um)+)) ≤ 1
β0(k)

(‖φ‖1 + ‖ψ‖1).

We work similarly if D(β) is bounded from below or assumption (43) holds, and, in any case, there
exists ĝ(k) > 0, limk→+∞ ĝ(k) = 0, such that

meas{x ∈ ∂Ω : |σk(x)| = k} ≤ ĝ(k) ∀k > 0.

Hence, if we define v(x) = Tk(u)(x) on {x ∈ ∂Ω : |Tk(u)(x)| < k}, then

um converges to v a.e. in ∂Ω. (52)

Consequently, u ∈ T 1,p
tr (Ω).

Since zm(x) ∈ γ(um(x)) a.e. in Ω and wm(x) ∈ β(um(x)) a.e. in ∂Ω, from (46), (50), (52) and from
the maximal monotonicity of γ and β, we deduce that z(x) ∈ γ(u(x)) a.e. in Ω and w(x) ∈ β(u(x)) a.e.
in ∂Ω.

Step 4. Finally, let us prove that [u, z, w] is an entropy solution relative to D(β) of (Sγ,βφ,ψ). To do that,
we introduce the class F of functions S ∈ C2(R) ∩ L∞(R) satisfying

S(0) = 0, 0 ≤ S′ ≤ 1, S′(s) = 0 for s large enough,

S(−s) = −S(s), and S′′(s) ≤ 0 for s ≥ 0.

Let v ∈ W 1,p(Ω) ∩ L∞(Ω), v(x) ∈ D(β) a.e. in ∂Ω, and S ∈ F . Taking S(um − v) as test function in
(44), we get ∫

Ω

a(x,Dum) ·DS(um − v) +
∫

Ω

zmS(um − v) +
∫
∂Ω

wmS(um − v)

=
∫
∂Ω

ψmS(um − v) +
∫

Ω

φmS(um − v).

(53)

We can write the first term of (53) as∫
Ω

a(x,Dum) ·DumS′(um − v)−
∫

Ω

a(x,Dum) ·DvS′(um − v). (54)

Since um → u and Dum → Du a.e., Fatou’s Lemma yields∫
Ω

a(x,Du) ·DuS′(u− v) ≤ lim inf
m→∞

∫
Ω

a(x,Dum) ·DumS′(um − v).

The second term of (54) is estimated as follows. Let r := ‖v‖∞ + ‖S‖∞. By (51)

a(x,DTrum) → a(x,DTru) weakly in Lp
′
(Ω). (55)

On the other hand,
|DvS′(um − v)| ≤ |Dv| ∈ Lp(Ω).
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Then, by the Dominated Convergence Theorem, we have

DvS′(um − v) → DvS′(u− v) in Lp(Ω)N . (56)

Hence, by (55) and (56), it follows that

lim
m→∞

∫
Ω

a(x,Dum) ·DvS′(um − v) =
∫

Ω

a(x,Du) ·DvS′(u− v).

Therefore, applying again the Dominated Convergence Theorem in the other terms of (53), we obtain∫
Ω

a(x,Du) ·DS(u− v) +
∫

Ω

zS(u− v) +
∫
∂Ω

wS(u− v)

≤
∫
∂Ω

ψS(u− v) +
∫

Ω

φS(u− v).

From here, to conclude, we only need to apply the technique used in the proof of [5, Lemma 3.2].

The proof of (ii) is a consequence of the existence result, Theorem 5.6 (ii), and the uniqueness result.
�

Remark 5.14 In Theorem 5.13, if the data φ and ψ are non negative (non positive, respectively),
then assumption (43) ((42), respectively) is not necessary. That is, only assuming [0,+∞[⊂ D(γ),
[0,+∞[⊂ D(β) or a smooth, and assumption (42) if [0,+∞[⊂ D(β), for any 0 ≤ φ ∈ L1(Ω) and
0 ≤ ψ ∈ L1(∂Ω), there exists an entropy solution of problem (Sγ,βφ,ψ). A similar result holds for non
positive data.

Taking into account Theorem 5.13 and Corollay 5.10, we have the following result.

Corollary 5.15 a is smooth if and only if for any φ ∈ L1(Ω) there exists T (φ) ∈ L1(∂Ω) such that the
entropy solution u of  −div a(x,Du) = φ in Ω

u = 0 on ∂Ω,

is an entropy solution of  −div a(x,Du) = φ in Ω

a(x,Du) · η = T (φ) on ∂Ω.

Moreover, the map T : L1(Ω) → L1(∂Ω) satisfies∫
Ω

(T (φ1)− T (φ2))+ ≤
∫

Ω

(φ1 − φ2)+,

for all φ1, φ2 ∈ L1(Ω), and T
(
V 1,p(Ω)

)
⊂ V 1,p(∂Ω).

In the case ψ = 0 we have the following result.
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Theorem 5.16 Assume D(β) = R or a is smooth. Let also assume that, if [0,+∞[⊂ D(γ)∩D(β), the
assumption (42) holds, and, if ]−∞, 0] ⊂ D(γ) ∩D(β) the assumption (43) holds. Then,

(i) for any φ ∈ L1(Ω), there exists an entropy solution [u, z, w] of problem (Sγ,βφ,0 ), with z << φ.

(ii) For any [u1, z1, w1] entropy solution of problem (Sγ,βφ1,0
), φ1 ∈ L1(Ω), and any [u2, z2, w2] entropy

solution of problem (Sγ,βφ2,0
), φ2 ∈ L1(Ω), we have that∫

Ω

(z1 − z2)+ +
∫
∂Ω

(w1 − w2)+ ≤
∫

Ω

(φ1 − φ2)+.

Remark 5.17 In Theorems 5.13 and 5.16, it is not difficult to see that (42) can be substituted by one
of the following assumptions,

(42′) ∃0 < α ≤ 1, r0 > 0 : γ0(r) ≥ rα ∀r ≥ r0,

(42′′) ∃0 < α ≤ 1, r0 > 0 : β0(r) ≥ rα ∀r ≥ r0;

and (43) can be substituted by one of the following assumptions,

(43′) ∃0 < α ≤ 1, r0 > 0 : γ0(r) ≤ −(−r)α ∀r ≤ −r0,
(43′′) ∃0 < α ≤ 1, r0 > 0 : β0(r) ≤ −(−r)α ∀r ≤ −r0.

If D(β) = {0}, taking into account Theorem 5.12, it can be proved the following result given by
Bénilan et al. in [5] for Dirichlet boundary condition.

Theorem 5.18 Assume D(β) = {0}. For any φ ∈ L1(Ω), there exists a unique entropy solution [u, z]
of  −div a(x,Du) + γ(u) 3 φ in Ω

u = 0 on ∂Ω,

in the sense given by Bénilan et al. in [5].

Remark 5.19 Observe that in all the above existence results, we have that if [u1, z1, w1] and [u2, z2, w2]
are entropy solutions of problems (Sγ,βφ1,ψ1

) and (Sγ,βφ2,ψ2
) respectively, with φ1 ≤ φ2 and ψ1 ≤ ψ2, then

there exists a constance C such that u1 ≤ u2 + C.

Some extensions

Following the ideas developed in this work, it is possible to find a larger class of entropy solutions when
β is only assumed to have closed domain.

Definition 5.20 Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z, w] ∈ T 1,p
tr (Ω) × L1(Ω) ×

L1(∂Ω) is an entropy solution relative to D(β) of problem (Sγ,βφ,ψ) if z(x) ∈ γ(u(x)) a.e. in Ω, w(x) ∈
β(u(x)) a.e. in ∂Ω and∫

Ω

a(x,Du) ·DTk(u− v) +
∫

Ω

zTk(u− v) +
∫
∂Ω

wTk(u− v)

≤
∫
∂Ω

ψTk(u− v) +
∫

Ω

φTk(u− v) ∀k > 0,

(57)

for all v ∈ L∞(Ω) ∩W 1,p(Ω), v(x) ∈ D(β) a.e. in ∂Ω.
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For this concept of solution we can prove the following result.

Theorem 5.21 Assume D(β) is closed and D(β) ⊂ D(γ). Let also assume that if [0,+∞[⊂ D(β) the
assumption (42) holds, and if ]−∞, 0] ⊂ D(β) the assumption (43) holds. Then,

(i) for any φ ∈ L1(Ω) and ψ ∈ L1(∂Ω) there exists an entropy solution [u, z, w] = [uφ,ψ, zφ,ψ, wφ,ψ]
relative to D(β) of problem (Sγ,βφ,ψ). Moreover,

β0(infD(β)) ≤ w ≤ β0(supD(β))

and ∫
Ω

z± +
∫
∂Ω

w± ≤
∫
∂Ω

ψ± +
∫

Ω

φ±.

(ii) Given φ1, φ2 ∈ L1(Ω) and ψ1, ψ2 ∈ L1(∂Ω),∫
Ω

(zφ1,ψ1 − zφ2,ψ2)
+ +

∫
∂Ω

(wφ1,ψ2 − wφ2,ψ2)
+ ≤

∫
∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.

(iii) For any [u1, z1, w1] entropy solution relative to D(β) of problem (Sγ,βφ1,ψ1
), φ1 ∈ L1(Ω), ψ1 ∈

L1(∂Ω), and any [u2, z2, w2] entropy solution relative to D(β) of problem (Sγ,βφ2,ψ2
), φ2 ∈ L1(Ω),

ψ2 ∈ L1(∂Ω), we have that∫
Ω

(z1 − z2)+ ≤
∫
∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.

Remark 5.22 In general, for this concept of solution we do not have uniqueness of w, as the following
example shows.

Let γ and β be such that γ(0) = [0, 1] and β(0) =]−∞, 0] and let 0 < φ < 1 and ψ ≤ 0. Then, for
any w such that ψ ≤ w ≤ 0, [0, φ, w] is an entropy solution relative to D(β).
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