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We introduce a new concept of solution for the Dirichlet problem for the total
variational flow named entropy solution. Using Kruzhkov’s method of doubling
variables both in space and in time we prove uniqueness and a comparison prin-
ciple in L! for entropy solutions. To prove the existence we use the nonlinear semi-
group theory and we show that when the initial and boundary data are nonnegative
the semigroup solutions are strong solutions.  © 2001 Academic Press

1. INTRODUCTION

Suppose that Q2 is an open bounded domain with a Lipschitz boundary
and g e L™ (0Q). Let 0: 2 - R" be a vector field (whose smoothness will
be made precise below) with |8| < 1. Recently, in [ 7], a variational method
was proposed to extend the data ¢ from 0Q to a function u in Q along the
integral curves of 0+, the vector orthogonal to 0, so that u is constant
along the integral curves of 0*. Formally, we think of 6 as the vector field
made by the normals to the level sets of u, ie., the sets {xeQ:u(x)>1},
A€ R. In that case we would have that - Du=|Dul. In the case that u is
a function of bounded variation, almost all levels sets are of finite perimeter
and, therefore, one can compute the normal along the boundary of the
level sets (modulo a set of HY~! null measure). Moreover, to get ¢ as a
trace of a function u in Q, the right function space is BV(£), the space of
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functions of bounded variation in Q. Thus, to extend ¢ from 0Q to £, it
was proposed in [7] to minimize the functional F(u)={, |Vu|—[,0-Vu
defined in the set of functions of bounded variation BV(Q) whose trace at
the boundary is given by ¢. Formally, if we integrate by parts in the second
term of F(u) we obtain

Flu) = LZ \Vu| + Lz div(0) - u— L 0.

[}

Since u, 6 are known at the boundary, minimizing F amounts to minimizing
E(u) =J |Vu| +J div(0) - u.
(2] Q

Let us comment on the class of admissible functions where E has to be
minimized. We assume that div(0)e L'(2) and ¢ e L*(02). It seems
reasonable to impose that the solution u is a bounded function with an L*
bound given by |¢| .. Then the second integral in the definition of E(u)
is well defined. The first integral requires the use of the space of bounded
variation functions. Thus our admissible class is .7 = {u € BV(Q) : |u(x)| <
@l o ae. ulso=¢}. The final model is [7]

Minimizej |Vu|+J div(0) - u. (L.1)
Q Q

ue o

As is well know [ 16, 19] the solution of this problem has to be understood
in a weak sense as the solution of the problem

Minimizej |Vu|~|—f div(())-u+j lu—o| dH". (1.2)
s e e e

Existence for this variational problem was proved in [19, Theorem 1.4]
when Oe L! (Q)2, div(0)e L'(R?), ¢ € L*(0Q).

loc

This is one of our motivations to study the Dirichlet problem

ou ([ Du .
at:dw<|Du|>+f(t’x) in Q0=(0,0)xQ

u(t, x)=q@(x) on S=(0,00)x0Q (1.3)

u(0, x) =ug(x) in xeQ,
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where u, € L'(2) and ¢ € L*(0Q). This evolution equation is related to
the gradient descent method used to minimize the functional (1.2), if we
forget about the constraint |u| <|¢| .. The constraint would introduce a
further term in (1.3) but will not change the nature of the difficulties related
to the solution of the PDE. We shall even make a further simplification,
since we shall consider f(¢, x) =0. Hence, our aim is to study existence and
uniqueness of solutions of the Dirichlet problem

O _ i <D“> in 0=(0,0)xQ

ot "\ Dy
u(t, x)=@(x) on S=(0,00)x0R (1.4)
u(0, x) =uqy(x) in xeQ,

where Q is an open bounded domain with a Lipschitz boundary, u, €
L'(Q), and ¢ € L™ (0R).

The other motivation for the study of (1.4) comes from [2], [3], and
[8]. The general purpose of the works [8] and [ 3] is the study of elliptic
and parabolic problems in divergence form with initial data in L'. Exist-
ence and uniqueness results of entropy solutions when the associated varia-
tional energy has a growth at infinity of order p with p > 1 are proved (sce
also [4, 11]). In [2], the authors consider the equation

ut=div<|lD)Z|> (1.5)

in an open bounded Lipschitz domain with Neumann boundary condi-
tions, proving existence and uniqueness of entropy (or renormalized) solu-
tions (called weak solutions in [2]). Let us recall that this PDE appears
when one uses the steepest descent method to minimize the total variation,
a method introduced by Rudin and Osher [24, 25] in the context of image
denoising and reconstruction. The main point is that, in the case of
Neumann boundary conditions, this equation generates a nonlinear con-
traction semigroup in L'(£) which is homogeneous of degree 0, a fact
related to the regularity in time of the solutions on (1.5). Indeed, the
homogeneity of the operator permits one to conclude that u,(t) e L'(Q) a.e.
for 1> 0. This was used to prove uniqueness of solutions of (1.5) in the case
of Neumann boundary conditions. This property is loosed when we con-
sider the case of Dirichlet boundary conditions. Thus, a different approach
is needed and we believe it to be helpful with a view to the general case of
energy functionals with linear growth in |Du|. A result about existence and
uniqueness of solutions (named pseudosolutions) for the Dirichlet problem
in the case of energy functionals with linear growth in |Du|, concretely for
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the Dirichlet problem for the time-dependent minimal surface equation, is
studied in [22].

The aim of this paper is to introduce a new concept of solution of the
problem (1.4), for which existence and uniqueness for initial data in L'(Q)
are proved.

The paper is organized as follows: in Section 2 the results we need about
functions of bounded variation are summarized. In the next section we give
the definition of entropy solution and we state the main result. In Sections
4 and 5 we study the problem from the point of view of nonlinear semi-
group theory, showing that for initial data in L?(), the semigroup solu-
tion is a strong solution. The next section is devoted to prove the existence
and uniqueness of entropy solutions. Finally, in the last section we obtain
that the time derivative of the entropy solution is an L, function when the
initial data are nonnegative.

2. DEFINITIONS AND PRELIMINARY FACTS

To make precise our notion of solution let us recall several facts concerning
functions of bounded variation.

A function ue L'(Q) whose partial derivatives in the sense of distribu-
tions are measures with finite total variation in £ is called a function of
bounded variation. The class of such functions will be denoted by BV(Q).
Thus u e BV(Q) if and only if there are Radon measures y;, ..., i defined
in Q with finite total mass in Q and

fg uD,p dx = —L)(Dd,ui (2.1)

for all p e CP(Q2), i=1, .., N. Thus the gradient of u is a vector valued
measure with finite total variation

|| Du|| = sup {L}udiv pdx:peCP(Q,RY, |p(x) <1 forer.)} (2.2)

The space BV(Q) is endowed with the norm
lull gy = lluell 1@y + |1 Due]l. (2.3)
For further information concerning functions of bounded variation we refer
to [1, 17, and 28].
We shall need several results from [5]. Following [5], let

X(Q)={zeL*(Q,R"):div(z) e L'(Q)}. (2.4)
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If ze X(Q) and we BV(Q2)n L*(L2) we define the functional (z, Dw):
Cy(22)— R by the formula

{(z, Dw), @) = —j we div(z) dx —j wz - Vo dx. (2.5)
o) fe)
Then (z, Dw) is a Radon measure in £2,

(z, Dw)=| z-Vwdx (2.6)
J J

Q Q

for all we W1 (Q)n L*(Q), and

[, (= 0w <]tz Dol <21 [ 10w 27)

for any Borel set B< Q. Moreover, (z, Dw) is absolutely continuous with
respect to ||[Dw| with the Radon—Nikodym derivative 6(z, Dw, x) which is
a | Dw| measurable function from Q to R such that

f (z, Dw) = f 0(z, Dw, x) | Dw| (2.8)

for any Borel set B< Q. We also have that
[0(z, Dw, ‘)HLOO(Q, Iowl) < HZHL”(.Q, RN)- (2.9)

In [5], a weak trace on 0Q of the normal component of ze X(Q) is
defined. Concretely, it is proved that there exists a linear operator
y: X(2) - L= (02) such that

17(2) 00 <20l oo
y(z)(x)=z(x)-v(x) forall xedQ if zeC'(Q,RY).
We shall denote p(z)(x) by [z v](x). Moreover, the following Green’s

formula relating the function [z, v] and the measure (z, Dw), for z e X(Q)
and we BV(Q) n L* (L), is established:

j w div(z) dx—}-f (z, Dw)=f [z,v]wdHN . (2.10)
Q Q 00

We also need to introduce, as in [ 5], a weak trace on 022 of the normal
component of certain vector fields in 2. We define the space

Z(Q):={(z, &) e L™ (2, RY) x BU(Q)* : div(z) = & in 7'(Q)}.
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We denote R(Q):=W""(Q2)nL*(Q)n C(Q). For (z,¢)eZ(Q) and
we R(22) we define

Uz €)W ap 1=K E WD sriays swe) + jg 2V,

Then, working as in the proof of Theorem 1.1 of [5], we obtain that if w,
ve R(2) and w=v on 0Q one has

Uz 8 won=K(2,8), 030 V(2,8 €Z(Q). (2.11)

As a consequence of (2.11), we can give the following definition: Given
ue BV(Q)nL*(Q) and (z, &) e Z(Q), we define {(z, &), u) o by setting

<(Za é)’ u>09 = <(Za é)a W>699
where w is any function in R(Q) such that w=u on 0Q2. Again, working
as in the proof of Theorem 1.1. of [5], we can prove that for every
(z, &) e Z(Q) there exists M, >0 such that
I<(z, &) udoal M. ¢ ulpee — Yue BV(Q)nL”(2). (2.12)

Now, taking a fixed (z, &) e Z(Q), we consider the linear functional F:
L*(0Q) - R defined by

Fv) :=<(2,¢), w) o0,

where ve L*(02) and weBV(Q2)nL*(Q2) is such that wj,o,=0v. By
estimate (2.12), there exists y, - € L*(0R) such that

Flv) = LQ e (x) v(x) dHV .

Consequently there exists a linear operator y: Z(Q) - L (0Q), with y(z, &)
=7, ¢, satisfying

(2, E) WD 9 = Lg Vo e(X) W(x)dHY=1  ¥weBV(Q) A L*(Q).

In the case ze C1(Q, RY), we have y,(x)=z(x) - v(x) for all x € Q. Hence,
the function y_ -(x) is the weak trace of the normal component of (z, &).
For simplicity of notation, we shall denote y_ -(x) by [z, v](x).
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We need to consider the space BV(RQ),, defined as BV(Q)n L*(Q)
endowed with the norm

HWHBV(Q)2 = HWHLZ(Q) + [[Dw].
It easy to see that L?(Q) < BV(2)# and
HWHBV(Q)2*< HWHLZ(Q) Vwe LZ(Q)- (2.13)

Now, it is well known (see, for instance, [26]) that the dual space
(LY(0, T; BV(R),))* is isometric to the space L= (0, T; BV(Q)%, BV(R),)
of all weakly* measurable functions f: [0, T] - BV(Q)¥, such that v(f) e
L*([0, T]), where v(f) denotes the supremum of the set {|<{w, f)|:
Wl sy, < 1} in the vector lattice of measurable real functions. Moreover,
the dual paring of the isometric is defined by

o f> =[] uton, fw) de,

for we L'(0, T; BV(R),) and fe L™ (0, T; BV(Q)¥, BV(Q),).

By L1(0, T, BV(R)) we denote the space of weakly measurable functions
w: [0, T] - BV(Q) (ie, te[0, T]— {w(t),$)> is measurable for every
¢ € BV(2)*) such that L{HW(I)H < o0. Observe that, since BV(£2) has a
separable predual (see [1]), it follows easily that the map re[0, T'] —
w(?)] is measurable.

To make precise our notion of solution we need the following definitions.

DEeFINITION 1. Let YeL'(0, T, BV(R)). We say ¥ admits a weak
derivative in L'(0, T, BV(Q2)) n L™ (Q) if there is a function @ € L1(0, T,
BV(Q))n L*(Q7) such that ¥(z) =jf) O(s) ds, the integral being taken as
a Pettis integral.

DEFINITION 2. Let Ee(LY(0, T, BV(R),))*. We say that & is the time
derivative in the space (L'(0, T, BV(),))* of a function ue L' ((0, T) x ) if

["can. oy di=—[" [ ute.x) 0(1.x) d
0 0 “Q

for all test functions ¥e L'(0, T, BV()) which admit a weak derivative
©eLl(0, T, BV(2))n L*(Q7) and have compact support in time.
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Observe that if we L'(0, T, BV(2))nL*(Qr) and ze L*(Q4, RY) is

such that there exists e (L' (0, T, BV(2)))* with div(z) =¢ in 2'(Q5), we
can define, associated to the pair (z, &), the distribution (z, Dw) in Q by

(2 Dw), 9> 1= = [ 0w (1)

—jTj =(2, x) w(t, x) V. (1, x) (2.14)

for all g € 2(Q7).
DEFINTION 3. Let &e(L'(0, T, BV(2),))*, zeL*(0s; RY). We say

that ¢ =div(z) in (L(0, T, BV(R),))* if (z, Dw) is a Radon measure in QO
with normal boundary values [z, v] € L*((0, T') x 022), such that

l

for all we L' (0, T, BV(Q)) n L*(Qy).
We shall denote by

T T
(2. Dw)+ | et wny di= | T(tx). v wiex) Y

T

1 if r>0
signg(r) :=<0 if r=0
—1 if r<0

and by

1 if r>0
sign(r) :=<ae[ —1,1] if r=0
—1 if r<O.

Let Ty (r)=[k—(k—|r|)*] signe(r), k=0, re R. We consider the set
T ={T, T, Ty :k>0}. We need to consider a more general set of
truncature functions, concretely, the set 2 of all nondecreasing continuous
functions p: R — R, such that there exists p’ except a finite set and supp(p’)
is compact. Obviously, I = 2.

3. THE MAIN RESULT

In this section we give the concept of solution for the Dirichlet
problem (1.4) and we state the existence and uniqueness result for this type
of solution.
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DEerFINITION 4. A measurable function u: (0, T)x Q2 — R is an entropy
solution of (1.4) in Q7=(0, T)xQ if ue C([0, T]; L' (2)), p(u(-))e LL(0,
T, BV(.Q)) Vpe J and there exist (z(¢), &(¢)) € Z(Q) with ||z(?)| , <1, and
Ee(L'(0, T, BV(Q),))* such that ¢ is the time derivative of « in (L'(0, T,
BV(Q),))*, E=div(z) in (L'(0, T, BV(2)))* and [z(1), v] esign(p(p) —

p(u(t))) a.e. in te[0, T], satisfying

_LTLz Jlu(t)—1) 17,+£)T L) n(t) |IDp(u(t)—1)|

420 Dy(e) platt) =D <[ [ [0 61 910) platt) 1),
for all /eR, for all neC“’(@) with #>=0, n(t, x)=¢(z) Y(x), being
¢e2(10,T[), y € C*(RQ), and pe 7, where j(r) = [} p(s) ds.

Our main result is:

THEOREM 1. Let uye L'(Q), and ¢ € L' (0RQ). Then there exists a unique
entropy solution of (1.4) in (0, T)x Q2 for every T >0 such that u(0)=u,.
Moreover, if u(t), i(t) are the entropy solutions corresponding to initial data
Uy, iy, respectively, then

Iu(r) =a() ™ 11 < [(ug— o) * |1 and |Ju(t) —d(2) [l < llug — | (3.1)

for all t =0.

4. THE SEMIGROUP SOLUTION

To prove Theorem 1 we shall use the techniques of completely accretive
operators and the Crandall-Liggett semigroup generation theorem [ 14].
Let us recall the notion of completely accretive operators introduces in [9].
Let .#(£2) be the space of measurable functions in Q. Given u, ve.Z (L),
we shall write

u<<v  if and only if jj(u)dxq J(v) dx (4.1)

Q (2]
for all jeJ, where

Jo={jeR— [0, c0], convex, ls.c,, j(0)=0} (4.2)



356 ANDREU ET AL.

(Ls.c. is an abbreviation for lower semicontinuous function). Let 4 be a
operator (possibly multivalued) in .#(Q), ie., A = .#(Q2) x .#(£2). We shall
say that A4 is completely accretive if

u—id<<u—ia+ Mv—1>0) forall 4A>0 andall (uv), (4,0)eAd. (4.3)
Let
Py={peC*(R):0<p’ <1, supp(p')is compact and 0 ¢ supp(p)}.

If A= LY (Q2)x L' (), then 4 is completely accretive if and only if

Jp(u—ﬁ)(v—ﬁ))O for any peP,, (u,v),(d,0)eAd. (44)
Q

A completely accretive operator in L!'(Q) is said to be m-completely
accretive if R(I+A4)=L'(Q) for any 1>0. In that case, by Crandall-
Liggett’s theorem, A generates a contraction semigroup in L' () given by
the exponential formula

[ —n
e "y, = lim <I+A> uy  forany uyelL'(Q).
n— oo n
Let us write u(¢) =e~"“u,. Then ue C([0, T], L'(£)), for any T>0, and
is a mild solution (a solution in the sense of semigroups [10]) of

% + Aus0 (4.5)
such that u(0) = u,.

We shall use a stronger notion of solution of (4.5). We say that ve
C([0, T], L' (RQ)) is a strong solution of (4.5) on [0, T if ve W3 (0, T),
LY(Q)) and v'(t)+Av(t)>0 for almost all te(0,T). If u,eD(A)=
{ue L'(Q): (u,0) e A, for some veL'(2)} (the domain of 4) and A is
m-completely accretive, then ue W} '((0, T), L'()) and u(t) is a strong
solution of (4.5) on (0, T'), for all 7> 0.

To prove Theorem 1 we shall associate a completely accretive operator
o, to the formal differential expression —div(lg—u“l) together with the
Dirichlet boundary condition.

Let us introduce the following operator .7, in L'(Q).

(u,v)e o,  if and only if u, ve L'(Q2), p(u) e BV(Q) for all pe 2
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and there exists z € X(Q) with ||z]| , <1, v= —div(z) in Z'(L2) such that

[ v=pa)ye<| z-vw—1Dpu)) +

lw—p(e)|
Q Q Q2

— [ Iptw) = p(o)l,
o0
Ywe WhH(Q)n L*(2), and Vpe 2.
THEOREM 2. Let ¢ € L'(0Q). The operator <, is m-completely accretive

in L'(Q) with dense domain.

To prove this theorem, we need first to consider the following operator,
which is related with the p-Laplacian operator with Dirichlet boundary
condition. For p>1, let p e W!'=177(9Q), and

W5P(Q):={ue WhP(Q) :ujo=9 HY '-a.e.on 0Q}.
We define the operator 4, , in L'(2) as

(u,v)e A if and only if ue W,?(2)nL*(Q), veL'(Q)and

(2934

J (w—u) véj [Vul?=2Vu-V(w—u)
e

2
for every we W5 7(Q)nL*(Q).

PROPOSITION 1. Let ¢ € L*(0Q) n W' ~VP7(0R). The operator A, , is
completely accretive and L™ (2) = R(I+ 4, ,).

Proof. Let peP, and (u,v),(d,0)€eA, ,. Since (u,v)eA, ,, taking
w=u— p(u—1) as a test function in the definition of the operator 4, , we
get

J plu—1) UZJQ [Vu|?~2Vu-Vp(u—1a).

Q

Similarly, since (i, 6)e 4, ,, taking w=1#+ p(u—ii) as a test function in
the definition of the operator 4,, , we get

j plu— 1) ﬁ<f \Va|?~2 Vi Vp(u—i).
Q Q
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Hence
| (w0=8) plu—a)= | (1Vul?=> Vu—|Va|?=2Va) - Vp(u—a) 0.
Q Q

Therefore, A4, , is completely accretive.
Let us now see that L*(Q)=R(I+ A4, ,). Let ve L™ (2). We need to
prove that there exists u e W;; P(Q)n L*(L2) such that (v, v—u)e A, ,;ie.,

P, P>

[ v—ww—w<| Va2 Vu-Viw—u)

Ywe WL (Q) N L™ (Q). (4.6)

For neN, let y,(s) :=T,(s)+1|s|?~%s, and consider the operators A,:
W},;”(Q) — (W 2(Q))*, defined by

(A u, w) ::Lz |Vu|?—2 Vu-Vw+Lz v, (1) w.

It is easy to see that A4, is monotone, coercive, and continuous on finite
dimensional subspaces. Then, by classical results (see, for instance, [ 20]),
given v there exists u,, € W},; P(£2) such that

(A u,, u,—w) <I v(u,—w) Ywe W(I’;P(Q).
Q
That is

| =)0 = paw)) <[ Vi, 772 Vi, Vw =)

Ywe WLA(Q). (4.7)

Let k>0 be such that |¢| ., <k. If we take w= T (u,) in (4.7), we get

| (Tt =)0 =9, ()< | Vi, 1772 Vut, - VU T(ut,) — )

Q Q
Hence, if

A, (k) :={xeQ:|u,(x)| >k},
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we have that
j |V(un_Tk(un))|P:f |Vun|p_2vun'vun
Q A,(k)
= [ 1Vu, |72V, - Vw, — Tu,)
Q
<[ oo, = Tw,) = [ 90,0, — Tiw,))
Q (2]

<[ o, Tlw,)).
Q

Now, by Young’s inequality

[, ot Tlu,)) < C, 10112 A, (K) +2C [ty = Tl

From here, since u, — T (u,)e W P(2), using Poincarés inequality, we
obtain that

4 — T () |1, p < RAn(A,(K))'2,
from which it follows, applying the classical Stampacchia methods (see
for instance, Appendix B in [20]), that there exists a constant M, =
M, (vl o, llello) such that
lu, ]| o < M, VneN. (4.8)

On the other hand, taking w, as a test function in (4.7) and applying
Young’s inequality, we obtain

L} |Vu,,|‘”<jQ |Vu,|? =2 Vu, ~VWO~I—L2 v(u,, — we)
TR
<eC L) |Vu,|? + C, L} [Vwg|? + L} vu,,

+ ], wolralu,) o)
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From this it follows that there exists a constant M, = M,(Ay(L2), |||,
@l o, lWolly, ) such that

\Vu,|? <M,  VneN. (4.9)
Q

As a consequence of (4.8) and (4.9), {u,},cn is bounded in Wh7(Q).
Hence there exists a subsequence, still denoted u,, such that u, —
ue Wh?(Q) weakly in W' ?(Q). Moreover, by the Rellich-Kondrachov
theorem, u,, —» u in L?(Q), and by Theorem 3.4.5 in [23], u,, » u in L?(0L2).
After passing to a suitable subsequence, we can assume that u,, — u a.e. in
Q. So, by (4.8), ||u]l ,, < M, .Therefore we have that ue W},; P(Q)N L7 (Q).

Proceeding as in the proof of step 3 of Theorem 2.1 in [3], we obtain
that

|Vu, |?~* Vu,, — |Vu|? =2 Vu in measure, and a.e.

Now, by (4.9), we have that {|Vu,|? "% Vu,},.n is bounded in (L7 (Q2)).
Hence

IVu,|?~2Vu, — |Vu|?~2Vu  weakly in (L7 (Q))Y.  (4.10)

Given we W, 7(Q) nL*(Q), by (4.10), we get
f IVunIP*ZVun-Vvv—»f IVu|?~2 Vu - Vi, (4.11)
Q Q

and by Fatou’s lemma, we have

j |Vu|P—2w.Vu<nminfj j \Vu, |?~2Vu, -Vu,.  (4.12)
Q IQ

n— oo

On the other hand, since v, - u in L?(Q) we have

lim J (w—un)(v—yn(un))zL(w—u)(v—u). (4.13)

n— oo JQ

From (4.11), (4.12), and (4.13), passing to the limit in (4.7) we get (4.6),
and the proof concludes. ||

To prove Theorem 2, we need to give the following characterization of
the operator .o7,.
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PrOPOSITION 2. The following assertions are equivalent:

(a) (u,v)eo,

(b) u, ve LY(Q), p(u) e BV(RQ) for all p e P, and there exists z € X(Q),
with ||z||, <1, v= —div(z) in 2'(2) such that

| w=pno<| ow)=1Dpa)+|

lw—p()l
Q Q o

=] 1ptw = pio)] (4.14)

for every we BV(Q) N L* () and p e 2.

(¢) u,veLY(Q), p(u) e BV(RQ) for all p e P, and there exists z € X(Q),
with |z]l o <1, v=—div(z) in 2'(Q) such that

J, v =pw) o< Dw)=IDp(w) =] [z 10w = plo))

~|_1ptw) = p(e) (4.15)

for every we BV(Q)n L*(Q) and p € 2.

(d) u, ve LY(Q), p(u) e BV(R) for all p e P, and there exists z € X(Q),
with ||z|| , <1, v= —div(z) in 2'(2) such that

J, (Do) =1Dptw)l Vpe2 (4.16)
[z v]esign(p(@)—p(u))  HY lae. on o, Vpe?. (4.17)

Proof. Let (u,v) € .o, Then, there exists ze X(Q) with [z]|, <1, v=
—div(z) in 2'(2), such that

J, v=ptune<| z-Dw—1Dp(w)l +| Iw—plp)

— [ Iptw) = plo)| (4.18)
o
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for every we Wh1(Q) N L*(Q) and every pe 2. Let we BV(Q) N L (Q),
pe?. Using Lemmas 5.2 and 1.8 in [5] we know that there exists a
sequence w, € W 1(Q)n L*(Q) such that

W, — W in L1(Q),

| 19w, = 10wl (4.19)
Q

L) z-Vw, = L? (z, Dw,) — L) (z, Dw).

and w, 00 =W a0, W,le <[wl., VneN. Then taking w, as a test func-
tion in (4.18) and letting n— oo we get that (4.18) holds for all
we BV(2)n L*(Q) and all pe 2. Thus (a) and (b) are equivalent.

Since

— [t vIv=pon <] lw=plo)l,
o2 (7]

to prove the equivalence between (b) and (c), it is enough to show that if
(u,v) € .o,, then (4.15) is satisfied. In fact, since (u, v)€.oZ,, there exists
ze X(Q) with ||z|, <1, v= —div(z) in 2'(Q), such that

J, v =pw) s | D)= 1Dpw)l+ [ w—plp)]

—j p(u)— p(o)] (4.20)

for every we BV(Q2)n L*(Q) and every pe #. Now, given we BV(Q)n
L*(Q) and peZ?, by Lemmas 52 and 5.5 of [5], there exists w, €
Wh ()~ L*(Q) such that w, »w in L'(Q), w, 20=p(p), and ||w,]|
< Wl + IPp(@)] &, Y e N. Then taking w,, as a test function in (4.18) and
using Green’s formula, we get

J v ptw) v |z Dw,) = 1Dptw)] = | 1ptw) = plo)]
= [, divtz)w,+ [ 1291 plo) ~1Dpw)]

— [ Ipw) = plo).
o2
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Letting n — oo, it follows that
| w=pw) o< —| divzyw+ | [zv]p(e)— 1Dpw)]
(2] (2] o2

— [ 1p@)=p(o)l
o

Therefore, applying Green’s formula again, we obtain (4.15).
Suppose now that (b) or, equivalent, (c) is satisfied. Taking w = p(u) in
(4.18) we obtain

0<| (= Dp(u)— | Dp(u)]|

Q

Thus,

J, (= Dpw) < Izl 1Dp(w)] < IDp)] < | (= Dp(a),

and (4.16) holds. Let us prove (4.17). Since p(¢) e L= (022), by Lemma 5.5
in [5], there exist w, € Wh1(Q) n L™ (Q) satisfying:

Wn|ag=17((ﬂ) VneN,
1
[ vl <] Ipte)+- vneN,
Q o2 n
1
ol <= Il <lIp(@)w  ¥nEN.

Taking w=w,, in (4.18) and using Green’s formula (2.10), we get
[ Ora=pwy o< = [ dio(z)w,+ [ 1291 plo) = |1Dp(w)]
Q (2] 0

— [ Ipw) = plo). (421)
o2
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Then, letting n —» oo in (4.21), we obtain

=] pwes] (2] plo) = IDp(w)| = [ ()= plo)].

o2

Now, by (4.16), and applying Green’s formula, we have that

1Dp(u)|| = [ (= Dp(u) = wp(u)+ [ [2v] pla),

Hence,

0<[ ([2vI(p(e) = p(w) = |plu) = p(9)])
o2

Since

Lz vI(p(@) = p(u)) — [ p(u) — p(@)] <O,

we have that

[z v](p(@) — p(u) = |p(u)— p(@)]  HY '-ae.  onoQ,

and we obtain (4.17). Finally, to prove that (d) implies (c), we only need
to apply Green’s formula. ||

Remark 1. (1) As a consequence of the proof of the above proposi-
tion we can put equality in the definition of the operator; that is, the
following characterization of the operator .7, holds.

(u,v)e o,  if and only if u, ve L'(R2), p(u) e BV(Q) for all pe 2

and there exists z € X(Q2) with |z| , <1, v= —div(z) in 2'(Q) such that

J v =ptw)v=] (z0w) = IDp(w)l+] v plo)

Q (o]

— | [p(u)—=ple)l,

172}

Ywe BV(Q)n L*(2) and Vpe 2.
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(2) As a consequence of the above proposition, if (u, v)e.oZ,, we
have that 6(z, DT, (u), x) =1 a.e. with respect to the measure |DT,(u)|. In
the case that z e C(£, RY), this implies that

DT (u)
2(x) =L [DTi(u)]-ae.,
| DT (u)] ‘
where DT, (u)/||DT,(u)| denotes the density of DT, (u) with respect to
DT (u)||. Heuristically, this amounts to saying that z=ﬁ. When z is
not continuous we have that
DT, (u)
(X)) ————=1, VT, (u)|-a.e.,
| DT (w)] ‘
where |VT(u)| denotes the absolutely continuous part of |DT,(u)| with

respect to the Lebesgue measure in RY [5]. In particular, if ue Wh1(Q) n
L*(Q) we have that

— =1, Vu|-a.e.
) =1 IVl

(3) Observe that by (d) in the above proposition, if ue L (Q), then
the truncatures are redundant in the definition of .<Z,.

To prove the following result, we need to introduce the function
®: L'(Q)— (— o0, + o] defined by

HDW+LQW—W it ueBV(Q)

D(u) = (4.22)

+ o0 if uel'(Q)\BV(Q).

The functional @ is convex and lower semicontinuous in L!(Q) (see [6] or

[27]).
PrROPOSITION 3. Let ¢ € L'(0Q). Then L () = R(I + <4,) and D(.<Z,,) is
dense in L'(Q).

Proof. Suppose first that ¢ € WY%2(0Q) n L= (0Q). Let ve L*(RQ). We
shall find ue BV(Q2)nL*(L2) such that (u,v—u)e.o,, ie, there is
ze X(Q) with |z||, <1 such that v —u= —div(z) and

f (w—u)(v—u) <LZ-VW dx — || Du|| —I—LQ |w— o] —LQ lu—o| (4.23)

Q

for every we Wh1(Q)n L= (Q).
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Since ¢ € W' ~V7-7(9Q) for all p> 1, by Proposition 1, we know that for
any 1 <p<2 there is u, € W, ?(Q)n L*(Q2) such that (u,,v—u,)eA, ,.
Hence

| w0 —w) <[ 1Vu, 122V, - Vw —u,), (4.24)

(2] Q

for every we W5 7(Q)nL*(Q).
Let M :=sup {[|¢| ., |vll,}. Then, taking w=u,—(u,—M)™* as a test
function in (4.24), we obtain

Hence,

=f (1, — M)™* (1, —v) <O.

Consequently, u, < M a.e. in Q. Analogously, taking w =u,, + (u, + M)~ as
a test function, we get —M <u, a.e. in Q. Therefore,

lu,|o<M  forall 1<p<2. (4.25)

Taking w=wge€ W(I’;P(.Q) N L*(Q2) in (424) and applying Young’s
inequality we obtain

[ 1V 17 <[ Vi, 1772, - Vwo— [ (wo—u,)(0—u,)
Q (2] Q
<e | Vi |74 C, [ 19wol?+ ol Iwoll.o)-
(2] (2]
Thus

j Vu,|?<M, Vl<p<2, (4.26)
Q
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where M, depends on |v]l,, [IWole, and |[lwell; ,. Using Hoélder’s
inequality we also have that

j Vu,| <M, Vl<p<2, (4.27)
Q

where M, does not depend on p. Thus, {u,},., is bounded in W' '(Q)
and we may extract a subsequence such that u, converges in L'(Q) and
almost everywhere to some ue L'(Q) as p— 14. Now, by (4.25) and
(4.27), we have that ue BV(2)n L*(Q).

Let us prove that {|Vu,|? _ZVup} p>1 1s weakly relatively compact in
L'(Q, RY). For that, using (4.26), we observe that

. (p—=1)/p .
[ i< ([ w1 de e <

where M5 does not depend on p. On the other hand, for any measurable
subset £ < Q such that 1,(E)<1, we have

UE Vi, |72 Vu,

<[ 1V, 1P S MR (B) VP < My dpd E)'
E

Thus, {|Vu,|”~?Vu,} ., being bounded and equiintegrable in L'(2, R"),
is weakly relatively compact in L'(Q2, RY). We may assume that

|Vu,|?~2Vu,—~z as p— 1%, weakly in L'(Q, RY). (4.28)
Given Y e C(Q), taking w=u,+y in (4.24) and letting p— 17", we

obtain

J, cmwu=] z-v.

that is, v —u= —div(z) in 2'(Q). Moreover, the same technique that we
use in the proof of Lemma 1 in [2] shows that ||z|| , < 1.

For every we W(ll; 2(Q2)n L*(Q), by (4.24) and Young’s inequality, we
get

p—1 1
J, 1Vl [ = 0l <E =A@ = [ vy )(0 =)

1
— p—2 -V
+ » Lz [Vu, | Vu, - Vw.
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Then, using the lower semicontinuity of the functional @ defined by (4.22),
letting p —» 17, we obtain

| Du +j u—o| < —j (w—u)(v—u)+j ZVw,  (429)
0 Q Q
for every we W;;%(Q) n L™ (Q).

Now, to prove (4.23), we assume first that there exists w, € W"2(Q2) n
L*(Q) such that ¢ =w,, (ie., ¢ is the trace of wy). Let we wh1(Q2)n
L*(Q) and let w, € W,*(Q)n L™ () be such that w, —»w in L'(Q) as
n— oo and |w, ||, <|w| . Using w,, as a test function in (4.29) and apply-
ing Green’s formula (2.10), we may write

| or—ww—wy<| 2V, —Dul = Ju—ol
(o] Q o2

= —f div(z) w, +j

Q2 13}

[z v]¢—Dul [ Ju—ol
2 0

From here, letting n — o0 and applying again the Green’s formula, we get

f (w—u)(v—u)

Q

<[ divzyw+ | [zvo—1Dul = | Ju—ol
=LZ~VW—LQ [z,v] W+Lg [z,v] @ — || Dul _Lg |lu— |

<| zVw—IDul+] =gl lu—ol.

and the proof of (4.23), in this particular case, concludes.

Suppose now we are in the general case, that is, ¢ e L'(0Q). Take
v, € Wh2(Q)n L*(Q) such that ¢, 1=, > ¢ in L'(0Q). From the
above, there exists u, € BV(Q) N L*(Q) and z e X(2) with |z, , <1 such
that v —u,, = —div(z,) and

[ w—uw)o—u)<| z, Vwax—|Du, | +[ w—0,
Q Q (7]

— [ luy—g.] (4.30)
o2
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for every we Wh1(Q) n L= (Q). Moreover, by (4.25), we have |u, |, <
max{ [v] o, [|¢,ll ). We can assume that z, — z weakly* in L= (Q). Now,
taking w=0 in (4.30), we get

—[ w2+ 10w+ [ =l <[ 1ol
(2] Q 02 o2

Hence,
|3+ 100, | <[ o+ [ Npal <Ll I3+3 1013+ 1ol
Q (7] o2

Thus, {u,} is a bounded sequence in BV(Q2) L*(R). Then, since BV(Q)
is compactly embedded in L'(Q) (see [28] or [17]), there is a sub-
sequence, still denoted by {u,} such that u, - u in L'(Q). Finally, taking
limits in (4.30), we obtain that (u, v —u) € .<7,.

To prove the density of D(.,) in L'(Q), we prove that Cy(Q) <
D(A,)H'@. Let ve CE(2). By the above, ve R(I+ Lo/,) for all neN.
Thus, for each ne N there exists u, € D(.Z,) such that (u,,, n(v—u,)) € o,
and, therefore, there exists some z, € X(22) with |z,[, <1, n(v—u,)=
—div(z,) iIn 2'(Q) such that

J, v =Tt no—u,) < | 2, Vw—IDTew)l+ [ v —=Tu(p)]

= | [ Te(u,) = Ti(@)|

o2

for every we Wh1(Q)n L*(Q). Taking w= T,(v) and applying Fatou’s
lemma we have that

L)(u—un)zgi(fg Vil + |(p|>.

Letting n— oo, it follows that u, —»v in L2?(Q). Therefore ve
D(</,)F'@. |

Proof of Theorem 2. Let (u,v), (i, 0)€.</,, peP,. We have to prove
that

f plu—a)(v—a)=0. (4.31)
Q
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Let z, Ze X(Q), |zl o <1, |IZ]| o, <1, be such that v= —div(z), i = — div(Z2)
and

J, v =Tew)e<| (@ Dw) = IDTew) = [ [z v]00=Tilp)
=] 1T =T, (432)

J, v=Tu@) <] (@ Dw) = IDT@) =] T2 vI00=Tulp)

Q

— | |Te(@) = Ti(o)l, (4.33)

172}

for any we BV(Q)n L*(2) and any k>0. As observed in the previous
remark, 0(z, DT, (u), x)=1 |DT(u)|-a.e., and, using Corollary 1.6 in [5],
we obtain that

| (@ DTew)=] 0z DTy, x) IDT,(w)] = | DT, (w),

U (£, DT (u ] | IDT ()]

for any Borel set B < Q. Similarly,

| @ pran=] 1p7. (@),

| (zpT@ ] | IDT. (@)

B

for any Borel set B< Q. It follows that

| (=2 D) = T@)) 20
for any Borel set B< Q. This implies that
0(z =2, D(Ty(u) = T (1)), x) 20, [ D(Ty(u) = Tr(d))]-ae.
Since, according to Proposition 2.8 in [5], we have that

0(z— 2, Dp( Ty (u) — Ty (1)), x) = O(z — 2, D(T (1) — Tx (1)), X)
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a.e. with respect to the measures |D(T,(u)— Tr(2))| and |Dp(T)(u)—
T,(#@))|. We conclude that

0(z—2, Dp(Ty(u) = Tp(4)), x) 20, [[Dp(Ty(u) — Ti(2))|-ace.  (4.34)

Taking w= Ty (u) — p(Ti(u) — Tr(#)) in (4.32) and w= T (&) + p(Ty(u) —
T,(@)) in (4.33), adding both terms, and using (4.17) and (4.34), we obtain

|, P(Telw) = Tu(@)(o—v)
<] (2== Dp(Tiw) = T(@)
(2] = L2 p(Tew) = Te()

= —f 0(z =2, Dp(Ty(u) — Tye(d)), x) | Dp( T (u) — Tpe(d))|

] (2] = [20]) p(Tew) = Te(@) <0

The inequality (4.31) follows by letting k — oo. Therefore .7, is completely
accretive.

In view of Proposition 3, to prove that .o/, satisfies the range condition,
it is enough to prove that .o/, is closed. Let (u,,v,)€.,, such that
(U, v,) = (u,v) in L'(Q)x L'(2). Let us see that (u,v)e.,. Since
(u,, v,) € o4,, there exists z, € X(Q), |z, ., <1 with v, = —div(z,) in Z'(Q)
such that

J, 0v =) v, < | (2 D)= IDp(,) 4| b= plo)

Q

— | Ip(u,) = p(o)| (4.35)

(72}

for every we BV(Q)nL*(R) and all peZ. Since |z,|l, <1 we may
assume that z, —z in the weak* topology of L*(Q, RY) with |z|| , < 1.
Moreover, since v, — v in L'(Q), we have v= —div(z) in 2'(R), and

lim J (z,, Dw) :J (z, Dw).

n— oo JQ Q
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Now, letting n — oo in (4.35), and having in mind the lower semicontinuity
of the function @, defined in (4.22), we obtain that

| v=pwye<|  Dw)—1Dpw) + |

Q (o] 1)

. lw— p(o)]

| Iptw)—p(o)l

Consequently, (u, v)e.oZ,. |

5. STRONG SOLUTIONS FOR DATA IN L*(Q)

In this section we are going to see that when the initial datum is in
L*(Q), then the semigroup solution is a strong solution.

Let {S(7)},50 be the contraction semigroup in L'(L) generated by
the operator .7, via Crandall-Liggett’s exponential formula. Since .<Z, is an
m-completely accretive operator, S(7)(L*(R)) = L*(2). Let ¥,: L*(Q) -
]—o0, + 0], the restriction to L?(Q) of the functional @ defined by
(4.22), ie.,

B HDuH+Lglu—<ﬂl if ueBV(Q)nL*(Q)

u (5.1)

@

+ o0 if ueL*(Q)\BV(Q)n L*(Q).

Since the function ¥, is convex and lower semicontinuous in L2(Q), we
have that 0%, is a maximal monotone operator in L*(£), and conse-
quently (see [12]), if {7(#)},», is the semigroup in L*(L2) generated by
o¥,, for every uy e L*(Q), u(t):=T(t)u, is a strong solution of the
problem

du

— 4+ 0% _u(t)30

dt ot(1) (5.2)
u(0) = 1uq.

Recall that the operator 0¥, is defined by

(u,v)ed¥,  ifandonlyif wu,vel?(Q), and

v, (w)> wq,(u)+f (w—u)v, YweL*Q).

Q
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Lemma 1. Let B, =/, n(L*(2)x L*(R2)). Then B,=0%,,.

Proof. Let (u,v)eB,. Then, u, ve L*(Q), p(u)e BV(Q) for all pe 2,
and there exists z € X(Q2) with |z| , <1, v= —div(z) in 2'(Q) such that

J, v =pw)es |z Dw) = 1Dp)l+ ] w—plg)]

—| [p(u)=ple)l,

(72}

Vwe BV(Q)n L*(2) and Vp € 2. Letting p = T, and k — oo we obtain that
[ w—wos<| o= IDul+[ w—gl=[ Ju—gl,
Q Q o o

Vwe BV(2)n L*(L2). To prove that (u, v)ed¥,, we have to prove that

J, (v—w o< iDwl —1Dul +| =gl =] u—gl  (53)

Q

for every weL?*(2)nBV(2). Now, given welL?(Q)n BV(Q), since
(u, v) € B, by the first observation of the lemma, there exists z € X(£2), with
Izl o <1, v= —div(z) in Z'(2) such that

J, (Tew —wyv< | (@ DT~ 1Dul + [ |Tu(w)— ¢

=] _lu—gl.

for every k> 0. From this, it follows that

J, (7w =) o< IDT 0 = 1Dull + | (Tew) =gl = | ju—pl. (54)

Q
Now, since lim, _, , T, (w)=w in L*(Q),

| Dw| <liminf | DT, (w)].
k— o
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Moreover, since | DT, (w)| < ||w|, we also have that

lim sup | DT, (w)|| < [|[Dw].

k— oo

Thus

Jm [ DT (w)[| = [ Dwl.

Therefore, letting k — oo in (5.4), we obtain (5.3). We have proved that
B,co¥,.

By Proposition 3, we have that L*(Q)cR(I+B,). Hence, 0¥,=
BLA@ 1t follows that 0%, = ./, N (L*(Q) x L*(Q)). |

Using this lemma and having in mind Proposition 2, we have the follow-
ing result.

THEOREM 3. Let @ € L'(0Q). Given uy € L*(RQ), u(t) = S(t) uy is a strong
solution of (5.2). Moreover, u'(t) e L*(Q), p(u(t)) e BV(Q) for all pe P, and
there exists z(t)e X(2), |z(t)l| o <1, and u'(t)=div(z(t)) in 2'(Q2) ae.
te[0, +oo[, satisfying

| v =play)w(

Q2

<[ (=(0). Dw) = | Dp(u()]|

(]

—[ L= 1= pon = [ 1) —p( o)l (55)
o0 00
for every we BV(Q)n L*(Q) and p e 2.

Moreover, u(t) is also characterized as follows: there exists z(t) e X(Q),
|z()]l o <1, and u'(t) =div(z(t)) in 2'(Q2) a.e. te[0, + o[, satisfying

J (2(2), Dp(u(1))) = |1Dp(u(t)||  Vpe? (5.6)

Q

[z(2), v] esign(p(¢) — p(u(t))) HY 'ge. on 0Q,YVpe?. (5.7)

Remark 2. Note that under the assumptions of Theorem 3, since u(¢) €
BV(Q), applying the lower semicontinuity of ¥, if we take p=T, and
take limits when k& — oo, we obtain that (5.5), (5.6), and (5.7) are true when
p is the identity map.
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We have the following weak form of the maximum principle.

THEOREM 4. Let u, and u, be two strong solutions of

du;
L OW, u,(1)30
dt v (5.8)

ui(O)zui,Oa i=1,2,

where u; o € L*(R2) and ¢, € L' (0Q). Suppose that u, o>u, o and ¢ > @,.
Then we have u, = u,.

Proof. By Theorem 3 and the above remark, we have that u;(¢), ui(t) €
L*(Q), and there exist z;(1) € X(Q), ||z;(t)|l . <1, and u(¢) =div(z;(1)) in
2'(Q), satisfying:

L) (z:(2), D(u;(2))) = [ D(u;(2))|| (59)

[z,(2), v] esign(p;—u;(1)) HY 'ge. onoQ. (5.10)

Since  4(u,(t) —uy(t)) =div(z5(t) —z,(1)) in L*(Q), multiplying by
(uy(2) —u,y(t))*, integrating, and using Green’s formula, we get

1 d
S| () —uy (1)1

= |, divtza(1) =21 (0)(wa (1)~ (1) *
=~ (220 =210 D))~ (1))

+LQ [22() — 2, (£), v](us(£) —uy (1)) *. (5.11)
Now, by (5.9) it follows that
0z5() — 2, (), D(uy (1) — 1, (1)), X) 20 [ D(uy (1) — 1, (1)) -ae.
According to Proposition 2.8 in [5], we have

0(z5(1) — 21 (1), D(u5(1) —uy (1)), x)
=0(z5(1) = 2,(2), D(uy (1) —u, (1)) ", x)
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a.e. with respect to || D(u,(t) —u,(2))| and ||D(u, () —u,(¢))"|. Hence we
can conclude that

O0(z5(1) =21 (1), D(uz (1) —uy (1)) 7, %) 20, [ D(uy(t) —uy (1)) " ||-ae.

Consequently, we have

f (22(1) =21 (1), D((uz(1) —uy (1)) 7))

(2]
= L, 0(z5(1) =2, (1), D(uz () —uy (1)) ™, %) [|D(uz (1) —uy (1)) ™|
> 0. (5.12)

On the other hand, since ¢, = ¢,, from (5.10), it is easy to see that

Lg[Zz(t)*zl(t),V](uz(t)*ul(t))+<0- (5.13)

From (5.11), (5.12), and (5.13), we obtain that

lr d
5 | e =) * 1P <0

Hence the initial condition u; o> u,, gives u; > u,, and the proof
concludes. ||

PROPOSITION 4. Let 0<uy € L*(Q2) and 0 < ¢ € L' (0Q). Then, if u is the
strong solution of the problem (5.1), we have

t
u’(l)guT) for t>0.
The opposite inequality holds if uy, ¢ <O0.

Proof.  We shall prove the proposition only when u,, ¢ >0, the other
case being similar. First, let us see that for A >0, we have

27 Nu(0t) = e "o (A ). (5.14)
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By Crandall-Liggett’s exponential formula, it is enough to prove that for
all 4 >0,

T+ puty-1,) =" (2 ug) = A= (T + Apwct,) =" (o). (5.15)

In fact, v, :=(I+pusty-1,) " (A7 up) if and only if (v,, (A7 'ug—v,)/u) €
2,1, which is equivalent to the existence of z, € X(£2), such that

s —1

. AUV,

—dzu(zﬂ) ==
U

|z Do) =1Du,l,
Q

[z,,v]e sign(A "' — v,)-
Then, we have

—A
—div(z,) :%,

L (24 Div,) = | D7v,,

[z,,v]esign(p—iv,),
which is equivalent to saying that (iv,, (4o —4Av,)//u) € <,, that is, v, =
AN+ dpt,) = (27 ug), and (5.15) holds.
Fix t>0. For h>0, if At=1t+ h, applying (5.14), we obtain
u(t+h)—u(t)=u(it) —u(t)=(1—2A"" u(At) + A~ u(it) — u(r)

_ h —tol ;-1 —1
—[+hu(t+h)+e lo(A ug) —u(t).

Now, since A~ 'uy<u, and 2~ 'p < ¢, by Theorem 4, we get
e i1 () ug) <ult).
Consequently,

h

u(l+h)—u(l)<[+h

u(t+h),

and the result follows. ||
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6. EXISTENCE AND UNIQUENESS FOR DATA IN L'(Q)

In this section we are going to prove Theorem 1.

Proof of Theorem 1 (Existence).

Let uoelL'(Q) and {S(7)},-, the contraction semigroup in L'(Q)
generated by .o/,. We shall prove that u(z) := S(7) u, is an entropy solution
of problem (1.4). We divide the proof in different steps.

Step 1. Since Z(<Z,) nL*(2) is dense in L'(Q), given uyeL'(Q)
there exists a sequence u,_, € Z(.4,) " L*(£2) such that u, , — uyin L'(2).
Then, if w,(t) :=S(¢) uy ,, we have that u, > u in C([0, T]; L'(2)) for
every T>0. As a consequence of Theorem 3, u,(t), u, (1) e L*>(RQ), p(u,(1))
€ BV(Q) for all pe 2 and there exists z,(¢) € X(2), ||z,,(¢)|| . <1, and u,,(¢)
=div(z,(t)) in 2'(Q) ae. te[0, + o[, satisfying

< L} (z,(2), Dw) — | Dp(u, (1))

=] L2010 = p(e) = | Iptu,(0)=p(@)l  (6.1)

o2

for every we BV(Q2)n L*(Q) and p e . Moreover,

J, (20 Dp(u (1) = 1Dplu, ()] Vpe (62)

and
[z,(1), v] esign(p(@)— p(u,(1))) HY 'qge.on 0Q,Vpe 2. (6.3)

Since |[[z,(2), V]Il oo <112, (?)]l < 1, we can suppose (up to extraction of
a subsequence, if necessary) that

[2.(:);v]1=p  a(L™(Sy), L'(S))).
Step 2. Convergence of the derivatives and identification of the limit.

Since the map 7> u,(¢) is strongly measurable from [0, T] into L*(Q),
and by (2.13),

[, (2 )”BV(Q)*< ([, (2 )HLz(Q)’
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it follows that this map is strongly measurable from [0, 7] into BV(Q)5.
Moreover, for every we BV(£2),, by Green’s formula we have

jg (1) w= fg div(z, (1)) w= —JQ (2, (1), Dw) + Lg [2,(1),v] w.

Hence

“Q u,(t)w

<IDw|+ [ Wl <M IWlpna, —VneN.
o2

Thus,

(D] priayy< M VneN and re€[0, T].
Consequently, {u,},.n is a bounded sequence in L (0, T BV(L)5). Since
L0, T; BV(Q)¥) is a vector subspace of the dual space (L'(0, T;
BV(£),))*, we can find a net {u,} such that

u, — e (LY (0, T; BV(2),))* weakly *. (6.4)
Since ||z,(t)]lo <1 for all ne N and a.e. 1[0, 7], we can suppose that

z, > zeL®(0Qr, RY) weakly*. (6.5)

Given e 2(Q), since ne L'(0, T; BV(R),), we have
T
<& =lim Gy =lim | < (0.0 di

im [ [ u dx d
- gnjo Lzua(t);y(l)  dt
= lim L L} div(z,(1)) n(1) dx dt
_ —1imej 2, (1) - V(1) dx d

0 YQ

o

= —j z- V= _divy(z),n).
Or

Hence,

E=div(z) in2'(Qy). (6.6)



380 ANDREU ET AL.

On the other hand, if we take #(z, x) =¢(¢) Y(x) with ¢ € 2(]0, T[) and
VY € 2(£2), the same calculation as above shows that

&(t) =div,(2(1)) in 2'(Q)ae. tel[0,T]. (6.7)

Consequently, (z(¢), £(t)) € Z(Q2) for almost all 1[0, T]; therefore we can
consider [ z(7), v] defined as in Section 2.

Lemma 2. & is the time derivative of u in the sense of Definition 2.

Proof. Let YeL'(0, T, BV(Q )) be the weak derivative of @ e L1(0, T,
BV(Q)) " L*(Qy), ie., Y(1) =} O(s) ds, the integral being taken as a Pettis
integral. By (6.4) we have that

[ can. vy dai=tim [ o), w0y,
0 a Y0

Now,

jf@;(z), _hmj [ wo t+h) it h)—ull) 5o g
= lim LT fgw%u) dx dt
~ _lim f:j %jt_h O(s) ds u, (1) dx dt

<1, X) dx dt.

Il

|
;}
%

Passing to the limit in « in the above expression, we obtain

jT@(z), av(:)>dz=—fj ot x) ult, x) dx ds. 11 (6.8)

Step 3. Convergence of the energy. In this step we shall prove that for
any p e 2, we have

T T
tim | IDp(u,()1+ [ [ Ip(un (1) = p(g)]

n— oo Y(Q

= [ UDptaen 1+ [ [ 1ptute) — plo)l. (69)
0 0 Yo
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Taking w=0 in (6.1) we get

1Dp(u (N1 + [ 1p, (1) = plg)]

<= [ pun(0) 0+ [ [2,(0.9] plo).

Q

If we denote J,(r) :=§(’) p(s) ds, it follows that

[ 1Dptuy 0+ joT . 1ptunten = plo)
T g
R AR N

= [ Uplutg, ) =Ty, (TY) + jOT [ into<m,

(]

<

Since the functional @,: L'(Q)— ]—o0, + 0], defined by

0 () - {|Du| ] u-ple)l i weBN@) 610
Yoo it ue LY(Q\BV(Q),
is lower semicontinuous in L'(), we have
@, (plu(1))) <lim inf 2, p(u, (1))
=lirninf<Dp \|+f ((/))|>. (6.11)

On the other hand, by the Fatou’s lemma, it follows that

j lim 1nf< |Dp(u,,(1))] +f (u,(2)) ((P)|>

n— oo

<liminf | <|Dp >)|+fm|p<un<z>>—p(<p>|><M,,. (6.12)

n— oo

As a consequence of (6.11) and (6.12), we obtain that p(u(z)) e BV(£) for
almost all 7€ [0, T].
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LemMMA 3. The map tw p(u(t)) from [0, T] into BV(Q) is weakly
measurable.

Proof. Let E:=C,(2)¥*! and S: BV(Q) — E* be the map defined by

SOv) = <w a2 ow 6w>

ox, T oxy )

Then, [wl gpa) < IS(W)[lgx < N |W| i) If we denote by F the closure in
E of the set

{(¢09 ¢19 (i) ¢N): ¢i € @(Q)’ and ¢0 = dil)(¢1, i) ¢N)}7

in [1] it is shown that S(BV(£)) is isomorphic to (£)*; that is, G :
the predual of the space BV(2). Now, if ¢ = (g, ¢y, ..., Px) € Z(2)Y

=E
_F
+1

)

N 0
CS(ptn)), 65 = [p(ut) do— 3. | plutt) 2

i=1"% i

Hence, the map ¢+ {S(p(u(t))), > is measurable. From here, approxi-
mating the functions of C,(2)V*! by functions of Z2(2)¥*!, we get that
for every ¢ € G, the function 7+ {S(p(u(t))), ¢> is measurable. Thus, since
G is separable, it follows that the map

1= p(u())llpmay= sup  {S(p(u(1))), ¢

PG, ol <1

is measurable.

Given we BV(Q)*, let g(t) :=<{p(u(t)), w). To see that g is measurable,
consider w,eG such that w,—>w with respect to o(G** G*)=
a(BV(Q)*, BV(L2)). From the above, we know that if g, (7) := {S(p(u(t))),
W, &, 18 measurable, and g,(7) - g(¢). Now, since

|2 (D)] < p(u(2)ll By Wl By«
<R |p(u(0)ll gy = F(t) e L'(0, T),

and the order interval [ —F, F] in L'(0, T) is o(L'(0, T), L*(0, T))-
relatively compact, there exists a sequence g, such that

8, 8 ing(L?(0, T), L*(0, T)).

Hence, g is measurable. ||

From the above, if 0<ye2(]0, T[), the map ¢+ p(u(t))n(t) from
[0, T] into BV(Q) is weakly measurable.



TOTAL VARIATION FLOW 383

LemMA 4. For any ©>0, we define the function y* as the Dunford
integral (see [15])

that is,

1 rt
Pr(n), w) =*£ <nls) plu(s)), wy ds,

Tit—=

for any we BV(Q)*. Then Y™ e C([0, T]; BV(R)). Moreover, y*(t) e L*(),
and, thus, Y*(t) e BV(L),.

Proof. Given ¢ € 9(Q),

NAGRIIES J In(s)I [<p(u(s)), > ds

t—1

I o ([ tptatsn 191 ) ds< € 141

TVr—z

Consequently, /°(¢) is a finite Radon measure in . Moreover, a similar

calculation shows that for every i=1, 2, ..., N, a./, (’) is also a finite Radon

measure in Q. Hence, we have y*(¢) e BV(Q) (see Exer01se 32in[1]), and
the Dunford integral of the definition of ®(¢) is a Pettis integral.
Moreover, if a, — 0 (for simplicity suppose that a,, >0), given we BV(Q)*
with ||w| <1, we have

<Y (1 +a,) =y (1), wyl

1 rt+a, 1t
=12 n)ptutn, wy ds—= [ n(s)<puts), w ds
t+a,—7 TYt—
1 rt+a, 1 pt—7+a,
<|Z[ et wy ds—= [ ) <puls), wy ds
Tt Tdr—1

< [ I 1) ey s

1 rt—7+aq,
= [ ) Ip(u()) | s ds
T

t—1
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Since the function s+ [7(s)| [|p(u(s))| pg) 18 in LY([0, TT),

lim [y (1 +a,) = (1)l ey =0

n— oo

Thus, y*e C([0, T]; BV(R2)).
Moreover, °(t) e L*(Q). In fact, given ge L™ (Q), with |g|, <1, since
g€ BV(Q)*, we have

1 rt
[Ur 0. > =| | nls)pluts). g> ds

—7T

1 rt
[ s < |, ptuts)) gdx) ds

t—1

1 rt
<;J [n(s)] [p(u(s))]2 gl < M.

t—1

From the density of L® () in L?(Q), we obtain that y°(z)e L*(2). |

LEMMA 5. For ©>0 small enough, we have

| M=) =0 gy, (6.13)

[ ey as-[

Q —7T

Proof. Since Y™ e C([0, T], BV(R)) admits a weak derivative in L1(0,
T, BV(Q))n L*(Q7), using (6.8) we have for 7> 0 small enough that

[Ty ar={" [ M1 0y,

T
Now, since p is nondecreasing, we have
Jp(u(1)) = J, (u(t 4 7)) < (u(r) —u(t + 7)) p(u(t))

and consequently, for >0 small enough, we obtain

jTJ u(t+7)—u(t) J f u(t+1)) —J,(u(1))

=fo n(s — ) —nis)
0 “Q

T

and we finish the proof of (6.13). |
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Now, we can conclude the proof of Step 3. As a consequence of (6.13),
using Green’s formula, we have

JOTL n(t—1t)—n(1)

-7

T, (u(t))

<= | .y a
T

= —lim [ (Y7 (0), u (1)) de
o 0

T 1 t
= —im | ( [ ns)cputsn. e ds) di

o Tdt—z

= —lim LT C f_r n(s) <Ll pluls)) div za(t)> ds) di
—tim| ["(3[" ) ([ oo Dotutsr) ) s )

t—1

- JOT C J <LQ [za(1).v] p(u(s))> ds> dz}

t—1

T 1 t
<[ ( [ n(s) 1Dptut ds) di

Tdr—z

- LT C ft 7(s) (Lg p(t) p(u(S))> ds> dt.

t—1

Then, taking the limit as 7 — 0%, we get

[ 1w gpwon <[ nter ipptaeni =" ao [ pto) pluto)

Now, since this is true for all 0 <y e 2(]0, T[), it follows that

d

- Lz J,(u(t)) < | Dp(u(t))| — Lg p(1) plu(1)),
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and consequently

j(J (1t0) —J, <j | Dp(u(1)) H—j f W), (6.14)

Finally, using (6.14), we obtain

[ ipton+ ] 1ptuton -

<timinf [ 1Dp(a, (01 + [ [ 1pGu, (00~ plo)

n— o0

<timint ([ [ ptuy() 00+ jOT [EXCRSY)

n— oo

_J uo)— u(T)—i—j J (@)
<[ uppao)+ [ [ pnp(e)— platon)

<[ uppaon i+ ipton—piol,

0
which concludes the proof of (6.9). Moreover, we get that
p(t)esign(p(ep) — p(u(t))) HV lae. onoQ, ae te[0,T]. (6.15)
Step 4. The boundary condition. Let us now see that
p(t)y=1[z(t), v] HY lae. onodQR, ae te[0,T]. (6.16)

In fact, if we BV(Q) n L*(2) and ve R(2) such that v|,o = w50, We have
that

[ <zt wdaa=[ divizao o> + [ [zt

Hence
tim [ <250 w)a0 = [ <003+ [ [ 20)- V0

=f ((s), w>m=fj [2(s), v]dHN 1. (6.17)
0 0 Yo
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On the other hand, since z,(s) € X(£2), if we apply Green’s formula we have
that

jot {div(z,(s)), vy = —Jot L} z,(s)-Vo+ Lt LQ [z.(s), v] w.

Consequently,
t t
J, <zalsrwdea=] | [zals)vIm
0 0 Yo0Q
From here, taking limits in a, we get

fot . psyw= jo' |t v1w

Ywe BV(Q)nL*®(Q), and te[0,T]. (6.18)

Now, if we L'(0Q), we take w, € BV(Q) n L*(R) such that Wiyoo = Ti(W).
By (6.18), we have

t
[ ptoywe=] [2(s), vT e
0 Yo 0
Letting k& — oo, it follows that
t t
j j (s) w:f j [z(s),v]w  VYweL'(dQ), and re[0,T],
0 Yo 0 Yo
and consequently (6.16) holds.
Step 5. Next, we prove that &=div(z) in (L'(0, T, BV(RQ),))* in the
sense of Definition 3. To do that let us first observe that (z, Dw), defined

by (2.14), is a Radon measure in Q for all we LL(0, T, BV(2)) " L™ (Q ).
Let ¢ € 2(Q7), then

(e D), > = = [ e = (o). w0) OPE ICEERR A

+f<(za<r>, Dw(1)) $(1)>.
0
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Then by (6.4), taking limits in a, we get
. T
{(z, Dw), ¢ =110131 L (24 (1), Dw(1)), (1) ). (6.19)

Therefore

<z Dw). 6 <191 | 1Dw(o)]

from which it follows that (z, Dw) is a Radon measure in Q,. Moreover,
from (6.19), applying Green’s formula we obtain that

j (z, Dw) =lim jT (z.(1), Dw(1))

Or a v0

=lim < — JOT L) div(z, (1)) w(t)+ JOT Lg [z.(2), v] w(t)>

= [ camwap [ ] a1

Consequently

f (z,Dw)+jT<g(z),w(t)>=jTj [2(1), v] w(2). (6.20)
Or 0 0 Yo

Step 6. Conclusion. Finally, we are going to prove that u verifies:

[ dwto=na+ [ o 10ptn -1y

Q

T
][ =0 Dn(o) plutny ~1)

<" =0 ) ptutn 1), (6.21)
0 Yo

for all ne C*(0y), with #=0, 5(t, x)=¢(t) Y(x), being ¢ 2(]0, T[),
Yy e C*(Q2), and pe 2, where j(r)= {7 p(s) ds.

Let 7€ C*(Qr), with n=0, n(t, x) = ()lﬁ( ), being ¢eZ(]0,T[),
YyeC*(Q), and pe?, aeR. Let H,(r):=|’, p(s)ds. Since u,(1)=
div(z,(t)), multiplying by p(u,(t)) n(t) and 1ntegrat1ng, we obtain that
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= *LT Lz (1) [|1Dp(u, (1) ffoTL 2,(1) - Vn(t) plu,(1))
][ 0] plan() gt
=—f J ) IDp(u H—f f 2,(2) - V(1) p(u,(1))

—H P(vJIMHH [z.(2), v] p(e) n(2).

Hence, having in mind that #(0) =#(7) =0, we get

[0 o it + [ 1p P (1)
:_joTjgz,,(z). )+ [ [ 120001 o))
-1 %prn(r)) 0
== [ [ 200 )+ [ [ L2091 plo) a0
-1 %(prn(z)) o+ [ [ o,

=_LTLZ,1(:)- )+ff [2,(1), v] p(9) (1)
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Letting n — oo, it follows that

[ 1wt ioptaten i+ [ ] 1pwton=plol o

<mnm“:an|mmmnn+ﬂigmwxm—pwnmq

n— oo

n— oo

. . T
=MuM{LLfAnvmnm%o»

= _LTLZZU)'W(Z) p(u(z))+fT o [z(t), v] p() 5(t)

AT

) — p(u(t))), we have

Z
@]
=
o
éa
=]
aQ
—
=
o
—
S
=
~
Naet
Il
—
A
=
<
L
<
—_
<

[0 e v paen <[]t put) o). (622)

(2]

Finally, given /e R and p e 2, since ¢(r) :=p(r —1) is an element of £, and
taking a =/, we obtain (6.21) as a consequence of (6.22) and the proof of
the existence is finished.

Proof of Theorem 1 (Uniqueness)

To prove uniqueness we shall show that the entropy solutions and semi-
group solutions coincide. As a consequence of the semigroup theory (3.1)
is satisfied. Our technique is inspired by a method introduced by Kruzhkov
[21] to prove L!-contraction for entropy solutions for scalar conservation
laws: the doubling of variables. Carrillo [ 13] probably was the first to
apply Kruzhkov’s method to second order equations (see also [18]).
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Let u(tz) be an entropy solution with initial datum u, e L'(Q2) and

u(t) = S(t) u, the semigroup solution with initial datum u, € L= (). Then,
there exist z(¢), z(¢) € Z(2) with |z(?)] , <1, [|12(?)]|, <1, and

[z(2), v] esign(T (@) — T (u(1))) ae. in €[00, T], (6.23)

[2(t), v] esign(T (@) — T (u(2))) ae in te[0, T], (6.24)

and such that, if r, Fe RY, with |r| <1, ||F| <1, and /,, [, € R, then

T T
—[ [ o —=tyne+ | a0 IDTE @)~ 1)]
0 ‘Q 0 ‘Q
T
+ [ =)Dy T (e~ 1)
0 YQ
[ [ a7~ 1)
<["[ =0 0 T @ -1y, (6.25)
0 YoQ

and

[ [ et =ty [ [ ate 107G~ 1)

][ 0= Do Tt -1

T
<[ [ rzo.vIne T - b, (6.26)
0 Yo0Q

for all ne C*(Qr), with n=0, 5(t, x)=¢(t) Y(x), being ¢pe2(]0, T[),
YeC™(Q), and j,F (r jOTJr ) ds, ji (r)={5 T 7 (s)ds.

We choose two dlfferent pairs of variables (¢, x), (s, y) and consider u,
z as functions in (¢, x), @, Zin (s, y). Let 0<¢ e 2(]0, T[), 0<y e (2
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p, a classical sequence of mollifiers in RY and j, a sequence of mollifiers
in R. Define

(1, X: 8, ) 1= (X = 9) Plt =5) § @) v <x§ y).

Note that for n sufficiently large,

(1, x)—>n,(t,x,5, y)€e2(]0, T[ xQ2)  V(s,y)€e0r,
(s, V)=n,(t,x,s, 1)e2(]0, T[ x Q) Y(t, x)e Q.

Hence, for (s, y) fixed, if we take in (6.25) /;=i(s, y) and r=Z(s, y), we
get

T T

— [ it ) —ats, )i+ [ |, IDLTE e, x)—its, p)
0 Q2 0 Q
RNE 5, ) Va1, T (ult, ) — (s, )

+jj Z(s, y) -V T (ult, x) (s, ) <0, (627)

Similarly, for (z, x) fixed, if we take in (6.26) I, =u(¢, x) and 7 =z(t, x), we
get

—fOT L Jie (s, y) —ult, x))(11,,)5+ fOT L 0, | D, T (s, y) —u(t, x))|
[ () =00y, T s, )=t )

[ =) Vo T (its. ) —u(t, %)) <O0. (6.28)

Now, since T (r)= —T,; (—r) and j, (r) = j;} (—r), we can rewrite (6.28)
as

[t =t 0+ [ g 1D, Tt x) — (s, )]
T
+ [ ] X)) Vo, T (i, ) — s, 7))
0 YQ

_JOTL) z(s, y) - v,n, T ¥ (u(t, x)—u(s, y))<O0. (6.29)
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Integrating (6.27) in (s, y) and (6.29) in (¢, x) and taking their sum yields

=t = s, ) (01)+ (1))
Orx QOr

[ DT (e ) — s, )]
OrxQr
[ DT (e, x) — (s, p))]
OrxQr
+J (Z(ta X) —Z_(S, J/)) . (er/n + Vynn) T]:—(u(ta x) —IZ(S, y))
OrxQr
[ A ) VT () — (s, )
OrxQr

fj 26, x) -V, T (u(t, x) — (s, ¥)) <O, (6.30)
OrxQr
Now, by Green’s formula we have

g g 75 ) Vo T Gt ) = s, 1))

% Or

[ DT e ) — s, )
OrxQr

nnz_(s’ y) 'DxTI:—(u(ta X)—IZ(S, J’))

B J‘QTX Oor

[ DT () — s, )] 20,
OrxQr

and

—[ XV Tl x) s, 1)
QrxQr

[ DT (e, ) — (s, p))]
QTXQ

T

=[x DT (u(r, x) i, )
OrxQr

[ DT e, ) —ts, )] =0,

OrxQr
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Hence, from (6.30), it follows that

— [ ) —ats, ) (01),+ (1))
OrxQ0r

+[ X~ s )
OrxQr
X(Vx”n—i—vy’?n) TI:_(M([’ x)—ﬂ(s, J’))<0 (631)

Since,

)+ (1) = pu(x = p) Pt —5) ¢ (”;) y <x; y)

and

Vot + Vo= ol =) palt =) (57 v (25,
passing to the limit in (6.31), it yields
=, ¢ttt ) (e, 30) 9/(6) p)
+fQT(z(t, x)—z(t, x)) - Vp(x) p(2) T (u(t, x) —u(t, x)) <0.  (6.32)
We have to prove that
lim fQT(z(z, X) = 28, x)) - Vi (x) §(0) T (ult, x) — (1, x)) =0

for any sequence ,11,. Since ¢=div(z), E=div(Z) in (L'(0, T,
BV(Q),))*, the following integration by parts formula holds

f (z—2z, Dw) + JT CE(t)—E(1), w(t)) dt
Or 0

:JTJ [z(t, x)—Z(t, x), v] w(t, x) dHN ' dt,
0 Yo
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for all we L' (0, T, BV(2)) n L®(Q;). Set
w=((=1)¢TF(u—u))" (£, x) = (Y(x) = 1T (u—u))* (1, x),
where

1 pt+=
BT =) (tx)=— [ 9ls) T (uls, x) —a(s. x))

T

in the above formula to obtain
fQ (z(t, x) = 2(t, x)) - V(Y(x) = 1T (u—a))* (¢, x) dx dt

= *fQ (21, x) = 2(1, x)) - (Y(x) = 1) D(PT " (u—u))" (1, x) dx dt

— [ (@0 =& W) - DT @—a) (1, %)

Or
N ECEEE RS T7R Ry
x (¢T & (u—i))* (2, x) dHN = d.

Since

j (z—2)-V(y— 1) §T; (u— 1) dx dt
o

T

— lim jQ (z—2) -V — )(@T (u—a))* dx dt,

70+
and, using that |, =0, also

_JTJ [z— 2 v] §T; (u—i) dHV " dt
0 Yo

— lim jTj [z2—Zv] (Y — )T, (u—i))* dHN =" dt
0Q

>0+ Yo
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we may write
J, G= VT =)

=JQ (z—2) V(= 1) T (u—1)

=1imj (z—2)-(1— ) D(T ; (u—it))* dx dt
T QT
+[ (€= HU—p)@T; u—i))y

Or

_ﬁ [z—2v] ¢T; (u—a) dHY " dt.

Now, since &, & are the time derivatives of u, resp. i, in (L' (0, T, BV(R),))*,
we have that

[ e-an-pers -y
[ e-aa-werw-ar

T 1
=[ [ a=w T - -4 w—a)
0 “Q T
where A4 (u—it) =(u—u)(t) — (u—i)(t—7). Let v=u—1i. Since

T (u())(w(2) = o(t — 7)) 2 T+ (1)) = 7+ (0(2 — 7))

(JTk+ being the primitive of 7" ), and ¢, (1 —y) >0, we have for t small
enough that
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Thus, we have
J, G=veT =)
> lim <f (z—2)-(1— ) DT (u—ii))* dx dt
o7

T

L[] e

T

(=917 )
T
_fj [z—2v] T (u—a) dHY " dt.
0 Yoo
Finally, we observe that

lim

T

J,, =200 DOT = ax

<2 (=) ¢ IDT; (1) dx db,
Or

which enables us to write that

[ =T =iz —2] (1—y)¢ IDT (u—a)| dx dr

Or Or

_j f (e V) I (u—u)
_LTLQ [z—Zv]¢T ¢ (u—u)dHY " dt.

Let y =, where ¥, 11, in the last expression. Using that |DT ;" (u(z) —
i(t))|| is a Radon measure a.e. in ¢ with |[DT " (u(¢)—i(t))| e L' (0, T),
letting n — oo, we obtain

lim jQ (z—2) VU, 6T (u— 1)

>-ij [2—2v] ¢T 7 (u—i) dHY ' d
= > k .
0 YoQ
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Thus

J,, ittt )t (1)

T

T
> —f j [z—Zv] T (u—a) dHY =V de=0.  (6.33)
0 Yo0Q
Since this is true for all 0 < ¢ e Z(]0, T), we get

d
Tl g e (. x)) <.

Hence

| gt )=t ) < [ i (o —11g).
Q (2]

Then, letting k — oo, we obtain

|| Gty = e, ) <[ (o= i)

o Q
From here we deduce that
u(t) — (1)) < [lug — ol 1, Vi=0.

Hence, taking u,, (1) = S(¢) uq_,, o, , € L*(2), and u, , - uy in L' (Q), we
have

le(t) —u, ()1 < Nl —tag, 1, V22=0.

Consequently, letting n — oo, u(t) =S(t) uy, and the proof of the unique-
ness concludes. |

7. REGULARITY FOR POSITIVE INITIAL DATA

In this section we shall see that when the initial data are nonnegative, the
semigroup solutions are strong solution.
We need to consider truncatures T, ,, a <b, defined by

a if r<a
B(1)i=4r if a<r<b
b if r>b.



TOTAL VARIATION FLOW 399

PROPOSITION 5. Let uge L' (Q), ¢ € L'(0Q). Let (S(1)),5¢ be the semi-
group generated by <f,. Then, if u(t) = S(t) ug,

(i
[ ten+ [ epusm <[ [ 1pte)l+ | o)

where p is a truncature (p=T,,), j is the primitive of p, and @ is the
functional defined by (4.22).

(ii) p(u), e L2 (0, 7, L*(8)), for every truncature p as above. Moreover,

loc

we have the estimate

S(pun) +[ [ Ipw,lP<c.

s YQ

where C >0 depends on s, ||ugl 1, |@|l 1, and p.

Proof. (i) First, assume that u, € L%(Q)

Gl =] peyu=] p i)

Q

_J . Dp(u) +f [z v] p(u)
Q 0

=] 1Pptol + [ [ v)(pw) ~ pl) + plo)

— [ 1Dp) = [ 1p) = po)+[ 1291 plo).
Q o o
Integrating this expression, we obtain
J, e+ [ etpwon<| [ ipe)+] iw) (1)

Since j has linear growth at infinity, if u, € L'(Q), the estimate in (i)
follows by approximating u, by functions u,, € L?>(2) and passing to the
limit.
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(ii) Assume first that u, e L?(2). Let >0 and ¢, s>6 such that
(u(t), —u,(1)), (u(s), —u,(s))e.o£,. We know that

J, (P =wy ()< [ (=0, Dw) = 1 Dp()] + | |w = plo)
Q Q

— [ Ip(u(n) = plo)|
o2

for all we BV(Q) n L*(L2). Setting w= p(u(s)) in the above expression we
have

D(p(u())) — P(p(u(s))) < fg u, ()(p(u(s)) — p(u(z))).

Using the estimate for semigroups generated by subdifferentials in L? (see
for instance [ 12, Theorem 3.2]) we have

D(p(u(1))) — D(p(u(s))) < C(9) ol lIp(u(s)) — p(u(?))ll,-

Since a similar estimate holds with s and ¢ interchanged, we have

|D(p(u(1))) — P(p(u(s)))| < C(O) lluoll> Ip(u(s)) — p(u()ll>.  (7.2)

Since ue Wi 1((0, 7), L*(£)), ie., is a locally absolutely continuous func-
tion of time, then p(u) is also, and, from (7.2), we deduce that @(p(u)) is
absolutely continuous in [0, 7] for all t>0. Let 7€[0, c0) be such that u,
pu), @(p(u)) are differentiable at ¢ and (u(t), —u,(t))€of,. Set w=
pu(t+¢)), w= p(u(t —¢)) in the above expression to obtain

L (p(u(1)) = p(u(t £ &) u,(1) < P(p(u(t L&) — P(p(u(1))).

Letting ¢ > 0+ we have

d
PPN + [ p(n) (02 =0.

In particular, since p’ is either 0 or 1, we have

d

o PP+ Ip(), (02 <0.
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In particular @(p(u(t)) is a decreasing function of ¢. If u, € BV(Q) n L*(Q),
integrating from 0 to ¢ we get

D(p(u )+ [ [ 1p(u), 12 < Do)

Observe that by the estimate in (i), if u, € L*(Q), then u(s)e BV(Q)n
L*(Q) for almost all s>0 and we have

D(p(u)(e) + [ [ 1ptu), 1< @(plu)(s),

for almost all 0 <s <t Now, let u, e L'(2) and u,, € L*>(2) be such that
U, = Ug in L1(). Then, if u,(z, x) denotes the solution corresponding to
initial datum u,, we have

Sp(u)0)+ [ [ 10,17 < P(p(a, )5)). (7.3)

s vQ

for almost all 0 <s <t and all n. Now, observe that by the estimate in (i),

[ etpupen<c

for some constant C>0. Let 6 > 0. Then

t J
J, @)= ] @(pu,)(2)) > 2(p(u,)(0)) 0

0

Consequently, @(p(u,)(s)) is a bounded sequence for almost all s> 0.
Thus, for a.e. s >0, the left hand side of (7.3) is bounded. Hence, we may
assume that p(u,(t)) — p(u(t)) in L'(Q) for a.e. t>0. Now, we may pass
to the limit in (7.3) and use the lower semicontinuity of the left hand side
to obtain that

t
o(pu)(0)+] | Ipw),P<C, (74)
s YQ
where C depends on s, [Jug| 1, @, p- |

THEOREM 5. Let upe LY(Q), ¢ € LY(0Q). Suppose that u,+ M >0,
@+ M=0 (or ug— M <0, p — M <0) for some M =0. Let (S()),>¢ be the
semigroup generated by f,. Then, if u(t)=S(t) uy, u, € L}, (0, T, L' (2)).

loc
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Proof. Tt is easy to check via the resolvents that the semigroup solution
corresponding to the data u,+ M, ¢ + M coincides with the semigroup
solution corresponding to the data u,, ¢ plus the constant +M; ie.,
S(t)(ug+ M, o+ M) =S(t)(uy, @)+ M. Thus, without loss of generality we
may assume that M =0. Let us prove the theorem in case u,, ¢ =0, the
other case being analogous. We know, by the homogeneity estimate,
Proposition 4, that u, is a Randon measure in (s, #) x Q, for all 0 <s<1t.
Thus, its mass is bounded; i.e.,

t
H lu,| < 0.
s YQ

Now, taking p =T, ,, the estimate in (ii) of the previous proposition says
that u, is a function in L*(Q,,), for all a<b, where Q,,=
{(t, x)e Q: a<u(t, x) <b}. Thus, this, with the last integral bound, proves
that u, e L} (0,7, L'(Q)). 1|

loc

Remark 3. Under the assumption of the above theorem, since u, €
L; (0, T, L'()), working as in [2] we can prove that u is a strong solu-
tion. Consequently, existence and uniqueness can be obtained in an easier
way than in the general case using the same technique as in [2].
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