May 4, 2004 15:2 WSPC/152-CCM 00136

1 Communications in Contemporary Mathematics p
Vol. 6, No. 3 (2004) 1-64 \\ wfv"v'v'gmfg:s::':;ﬁ
3 © World Scientific Publishing Company

THE MINIMIZING TOTAL VARIATION FLOW
5 WITH MEASURE INITIAL CONDITIONS

F. ANDREU,* J. M. MAZONT and J. S. MOLL}

7 Department de Andalisis Matemdtico, Universitat de Valencia,
Dr. Moliner, 50 46100 Burjassot
9 * Fuensanta. Andreu@uu. es
Tmazon@uu.es
11 tj.salvador.moll@uu.es
V. CASELLES
13 Department de Tecnologia, Universitat Pompeu-Fabra,
Passeig de Circumuvalacié 8 08003 Barcelona
15 vicent.caselles@tecn.upf.es

Received 16 December 2002
17 Revised 20 May 2003

In this paper we obtain existence and uniqueness of solutions for the Cauchy problem

19 for the minimizing total variation flow when the initial condition is a Radon measure
in RV, We study limit solutions obtained by weakly approximating the initial measure
21 u by functions in L'(RY). We are able to characterize limit solutions when the initial
condition p = h + ps, where h € LY (RY) N L®(RY), and ps = aHF _ S, a >0, k is an
23 integer and S is a k-dimensional manifold with bounded curvatures. In case k < N — 1
we prove that the singular part of the solution does not move, it remains equal to us for
25 all t > 0. In particular, u(t) = §o when u(0) = dg. In case k = N — 1 we prove that the
singular part of the limit solution is (1 — %t)JruS and we also characterize its absolutely
27 continuous part. This explicit behaviour permits to characterize limit solutions. We also
give an entropy condition characterization of the solution which is more satisfactory
29 when k < N — 1. Finally, we describe some distributional solutions which do not have

the behaviour characteristic of limit solutions.

31 Keywords: Total variation; nonlinear parabolic equations; strong solutions, Radon
measures.
33 1. Introduction
The purpose of this paper is to prove existence and uniqueness of the minimizing

35 total variation flow in RY
ou Du N
— =div| — ) in Q7 =]0,T[xR 1.1
- Dup) in @ =L TR, (1)
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2 F. Andreu et al.

coupled with the initial condition
u(0) =y, p being a Radon measure in RY (1.2)

This PDE appears (in a bounded domain D) in the steepest descent method for
minimizing the total variation, a method introduced by L. Rudin, S. Osher and
E. Fatemi [25] in the context of image denoising and reconstruction. When dealing
with the denoising problem one minimizes the total variation functional

/D | Dy (1.3)

with the constraint z = u + n where n represents the noise. Then one minimizes
(1.3) under the above constraint [25]. Numerical experiments show that the model
is adapted to restore the discontinuities of the image [12, 16, 19, 25]. Indeed, the
underlying functional model is the space of BV functions, i.e., functions of bounded
variation, which admit a discontinuity set which is countably rectifiable ([2, 17, 26]).

To solve (1.3) (with the specified constraint) one formally computes the
Euler-Lagrange equation and solves it with Neumann boundary conditions, which
amounts to a reflection of the image across the boundary of D. Many numerical
methods have been proposed to solve this equation in practice, see for instance
(12, 16, 19, 25] (see also [24] for an interesting analysis of the features of most nu-
merical methods explaining, in particular, the staircasing effect). This leads to an
iterative process which, in some sense, can be understood as a gradient descent.
This gradient descent flow (1.1) was initially studied in a bounded domain un-
der Neumann boundary conditions in [3] where the authors proved existence and
uniqueness of solutions with initial data in L', and constructed some particular ex-
plicit solutions of the equation. The corresponding results for the Dirichlet problem
where proved in [4]. This study was completed in [5] where the authors proved that
the solution reaches its asymptotic state in finite time and studied its extinction
profile, given in terms of the eigenvalue problem

~aiv (5o ) =v- (1.4

In [8] the authors constructed many explicit solutions of the eigenvalue problem
(1.4) and, as a consequence, they obtained explicit solutions of the evolution prob-
lem (1.1) and of the denoising problem in image processing [8]. All together, this
gives a picture of how the flow (1.1) behaves to minimize the total variation of a
function in L' under Neumann or Dirichlet boundary conditions.

In this paper we continue the study of the flow (1.1) when the initial conditions
are Radon measures in RY. In other words, we study the well-posedness of the
1-Laplacian diffusion equation when the initial data are measures. Recall that, as it
is mentioned in [13], the existence for the p-Laplacian heat equation can be proved
as in [13], while uniqueness is mentioned as an open question.

Let us explain the plan of the paper and its main results. In Sec. 2 we recall
some definitions concerning measures, functions of bounded variation, a generalized
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The Minimizing Total Variation Flow with Measure Initial Conditions 3

Green’s formula and the concept of strong solution of the Dirichlet problem for equa-
tion (1.1). Section 3 is devoted to the construction of limit solutions for equation
(1.1) when the initial condition is a bounded Radon measure p. Indeed, since (1.1)
is well posed in L'(RY) we can approximate u by functions in u,(0) € L*(RY),
compute the corresponding solutions u, (t) and pass to the limit to obtain a function
u(t) taking values in the space of Radon measures. For later purpose let us denote
u(t) = u(t)ae + u(t)s, where u(t)q. and u(t)s denote the absolutely continuous and
singular parts of u(t) with respect to Lebesgue measure in RY. In this paper we
shall not consider general measures, instead we shall restrict ourselves to the case
of measures

p=h+aH" S (1.5)

where h € LY(RY) N L>®(RY), a > 0, and H* being the k-dimensional Hausdorff
measure in RY and S is a k-manifold in R™ of class W3:°°. We also note that we may
use many different approximations u,,(0) to the measure p. In the following sections
we shall first stress the role of one of them, the one in which we approximate the
singular part of u, i.e., the measure o H*| S by constant functions. Indeed, using
essentially the ideas of Minkowski’s content we know that

H*(S)

a—SXIn(S) — aH* S weakly* as measures as n — 0o, (1.6)

1 (5)]

where I,(S) = {z € RY : d(z,S5) < 1}. This result is essentially contained in [2]
and we recall the proof in the Appendix. In Sec. 4 we compute some explicit limit
solutions for initial measures which have some radial symmetry, in particular for
sums of Dirac measures concentrated at points or circles. These explicit solutions
exhibit some curious behaviour, namely, Dirac measures concentrated at a finite
number of points do not move, while the measure aHV =11 9B(0, R) has a more
complex evolution described in (4.1). In particular, we note that there is no regu-
larizing effect for (1.1) when the initial condition is a measure. On the other hand,
this makes explicit that solutions have a very different behaviour according to the
Hausdorff dimension of the support of the measure. If this dimension is k < N — 1
it seems that the singular part of the measure does not move, while it moves when
k = N — 1. Our purpose will be to explore this behaviour. Indeed, we shall be able
to prove it for the particular case of measures of the form (1.5). In Sec. 5 we charac-
terize the behaviour of limit solutions. Let us consider first the case k = N —1. Let
Cs denote the unbounded connected component of RV \ S and C; its complement
in RV\ S. When k = N —1, in the time interval [0, %] we have u(t) = u(t)qc +u(t)s
with u(t)s = (1 — 2¢)p, and u(t)aclc,, i = 1, 2, is the strong solution of the Dirich-
let problem (5.26). Note that u(§)s = 0. In the time interval [§,00), u(t) = u(t)ac
is the strong solution of (1.1) with initial condition u(§)ac. In case k < N — 1,
we prove that u(t)s = ps for all ¢ > 0, and u(t), is the strong solution of (1.1)
with initial condition p,.. Furthermore, we observe that u(t) satisfies some entropy
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4 F. Andreu et al.

condition which characterizes in some way the solution of (1.1). In Sec. 6 we study
limit solutions when the initial measure p is approximated by functions

unOZUac+pn*Hs;

where p,,(z) = n¥ p(nz) and p is a radial, smooth, positive convolution kernel with
compact support and p, = oH* S with & < N — 1. We prove that the limit
solution obtained in this case coincides with the limit solution obtained for the
approximation (1.6) and studied in Sec. 5. At this moment we do not know if the
analogous result holds when k£ = N — 1. Related to the behaviour of limit solutions
when k = N — 1, we remark in Sec. 7 that, if y is a measure in BV (R™)*, then u(t)
is also a measure in BV (R¥)*. Finally, in Sec. 8 we construct some distributional
solutions of (1.1) which do not coincide with the limit solutions constructed in
previous sections. Finally, for the sake of completeness, the Appendix contains the
proof of (1.6). We s

2. Preliminaries
2.1. Measures, functions of a measure

We denote by C.(RY) the space of all real continuous functions in RY with compact
support and by Co(RY) its completion with respect to the sup-norm. If we denote
by M(RY) (resp. My(RY)) the space of the scalar Radon (resp. finite scalar Radon)
measures on R, by Riesz Theorem, M(RY) (resp. My(RY)) can be identified with
the dual of C.(R”") endowed with its natural l.c. topology (resp. with the dual of
the Banach space Cp(RY)).

Let u, pi, € M(RY), we say that (u,,) locally weakly* converges to u if

i [ fdu, = / fdu ¥ f € Co(RY);
N RN

n—oo R

if p, € Myp(RY), we say that (u,) weakly* converges to p if

lim fdpn, = / fdu Y f € Co(RY).
N RN

n—oo R

We will denote this type of convergence by
ln — p weakly™ as measures.

Given a measure p € M(RY) we denote by jiq. and p its absolutely continuous
part and its singular part with respect to the Lebesgue measure £V, respectively.
We denote by piec(x) the density of the measure p,. with respect to £V and by
ddlﬁzl (x) the density of us with respect to |us].

We denote by C, ([0, T], Mp(RY)) the space of all weakly* continuous functions
from [0, 7] to My(RY). In this space we consider the weakly* uniform convergence

topology, that is, the topology defined by the family of seminorms
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The Minimizing Total Variation Flow with Measure Initial Conditions 5
[ully == sup

/ pdult)
te[0,T] |JRN

for each u € Oy, ([0, T], Mp(RY)), o € Co(RY).
Recall the concept of function of a measure [14]. Given a continuous function
f : R* — R which has at most a linear growth at infinity, i.e.,

IFEOI<MA+El), VEERF,

)

and such that f possesses an asymptotic function, i.e., such that the following limit
exists

foo(€) := lim @ V¢ e RF,

t—o0

for every u € My(RY,RF), we may define the measure f(u) by writing

1) = | Fae)dz+ oo (2 )} dipesl(@)
/B /B /B <d|us|

for every Borel set B C RV.

2.2. BV functions, measures in BV™*

The natural energy space to study problem (1.1) is the space of functions of bounded
variation. Recall that if 2 is an open subset of RY, a function u € L'(Q2) whose
gradient Du in the sense of distributions is a vector valued Radon measure with
finite total variation in  is called a function of bounded variation. The class of
such functions will be denoted by BV (€2). The total variation of Du in Q is defined
by the formula

Dul() =sup { [ waivie) s € @R, ol <1}
The space BV (Q) is endowed with norm
lullBvie) = llullLr @) + [Dul() .
If @ = RY, we consider BV (R") endowed with norm
[ull gy vy = | Dul(RY).

Recall that an £~-measurable subset E of RY has finite perimeter if Xg €
BV (RY). The perimeter of E is defined by Per(E) = |DXg|(RY).

If E C RV is £V-measurable and 2 € R", the upper and lower densities of x in
E are defined by

_ ENnB
D(E,z) := limsup [EQBy(@)| ,
p—0t |BP($)|
B0 By()|

D(FE,x) := liminf
D) = B 1B, )
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In case that the upper and lower limits are equal, we denote their common value
by D(E,x) and we call it the density of E at z. We denote by E? := {x € RV :
D(E,z) = 1} the measure theoretic interior of E, by E¢ := {x € RN : D(E,z) =0}
the measure theoretic exterior of £ and by dy E := RV \ (E? U E€) the measure
theoretic boundary of E. We also use the notation EM := E? U d)/E. Recall that,
by definition,

ut(z) = inf{t : D([u > t],z) =0},
u”(x) =sup{t: D(ju < t],x) =0}.

If t <u"(x) then D([u > t],z) > 0 and it follows that z € [u > t]M. In that case,

X—[u>t]M(aj) = 1. Since XWM (z) = (X[u>t])+(3:) we have

N /u+(z) ut () ( )
u'(x) = dt :/ X—wm (x)dt
( ) 0 o [u>t]

_ /O — /O Xpusig)*(@)dt
Now, since
u(z) =inf{t:zcu>t'},
observing that X[,~: (%) = (X[y>4)~ (), we have

u” () u” (z)
u” (x) :/0 dt:/o Xjus4i (z)dt

= / X[u>t]i(x)dt = /0 (X[u>t])7(x)dt.
0
The above equalities imply that

u*(z) = uf(@)+u(x) _ /OO Xus) (@) + Kuse) ™ (2)
0

dt
2 2

_ /OOO(X[u>t])*(a:)dt. (2.1)

The symbol H* denotes the k-dimensional Hausdorff measure in RN, k €
{0,1,..., N}, and wy, denotes the Lebesgue measure of the unit ball of R¥. For
a LN -measurable subset of RY | we will use frecuently the notation |A| := LV (A).

The following characterization of the positive Radon measures belonging to
BV (RM)* is given by N. G. Meyer and W. P. Ziemer in [23] (see also [22, 26]).

Theorem 2.1. Let i € M (RYN). The following statements are equivalent.

(i) HN=Y(A) = 0 implies that u(A) = 0 for all Borel sets A C RN and there is a
constant M, such that

/ u*du‘ < Mi|Du|(RY)  forall u € BV(RY).
RN
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The Minimizing Total Variation Flow with Measure Initial Conditions 7

(ii) There is a constant Mo such that u(A) < MyPer(A) for all Borel sets A ¢ RN
with LN (A) < oco.

(iii) There is a constant M3z such that u(B,(z)) < Msr™N~1 whenever x € RN and
reR.

A positive Radon measure p satisfying one of the conditions of the above the-
orem can be identified with an element of BV (RY)*. Y. Meyer in [22] called these
measures Guy David measures. Let us note that if p is a Guy David measure,
we have

(U, u)pv= By = / u*dp, Vué€e BV(RN).
RN

2.3. A generalized Green’s formula

Let © be an open bounded set in RY with Lipschitz boundary. Following [6], for
1<p<oolet

X,(Q) = {z € L>=(Q,RY) : div(z) € LP(Q)} . (2.2)
If z € X,(Q) and w € BV(Q)NLP (Q) we define the functional (z, Dw) : C§°(Q) —
R by the formula

(2, Dw), p) = — / we div(z)dz — / we - Vipdz | (2.3)
Then (z, Dw) is a Radon measufe in Q, ’
/(z,Dw) = / z-Vuwdr YweWH(Q)n LY (Q), (2.4)
and ’ !
J | < [ |cw) < el [ 10, (25)

for any Borel set B C Q. Moreover, when z € X,(Q) and w € BV(Q) N L¥ (Q), we
have the following integration by parts formula

/w div(z)dx—!—/(z,Dw) z/ [z, VJwdHN 1 (2.6)
Q Q o9
where [z, ] is the weak trace on 0 of the normal component of z (see [6])

2.4. Strong solutions of the Dirichlet problem

Let © be an open bounded set in RV with Lipschitz boundary. We need to recall
the concept of strong solution introduced in [4] for the Dirichlet problem

@:div(D“>, in Q = (0,00) x 0,

ot | D
u(t,z) = ¢(x), on S = (0,00) x 99, (2.7)
u(0,x) = uo(x), inxeQ,

where ug € L*(Q) and ¢ € L>(99).
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By LL(0,7,BV(€)) we denote the space of weakly measurable functions w :

[0,T] — BV(Q) (i.e., t € [0,T] — (w(t),d) is measurable for every ¢ € BV (Q)*)
T

such that / |lw(®)|| < co. Observe that, since BV (£2) has a separable predual [2],

0
it follows easily that the map ¢t € [0, 7] — |Jw(¢)| is measurable.
We shall denote by

1, ifr>0,
signg(r) == ¢ 0, ifr=0,
-1, ifr<0,
and by
1, ifr>0,
sign(r) :=¢ a€[-1,1], ifr=0
1, ifr<0.

Let Ti(r) = [k — (k — |r])T]signg(r), & > 0, r € R. We consider the set
T = {Tk,TkJr T, : k> 0}. We need to consider a more general set of truncature
functions, concretely, the set P of all nondecreasing continuous fuctions p : R — R,
such that p’(r) exists with the possible exception of a finite set of values of r € R
and supp(p’) is compact. Obviously, 7 C P.

Definition 2.1. Let ug € L%(Q), ¢ € L'(99). A measurable function u : (0,T) x
Q — R is a strong solution of problem (2.7) in (0,7) x Q if u € C([0,T], L3(Q)) N
W20, T; L2(Q)), w € LL(0,T; BV(R)) and there exists z € L®((0,T) x Q) with

I2llco <1, uy = div(z) in D'((0,T) x ) such that

/ (ult) — wyur(t)
Q

< /Q (=(t), Duw) - /Q |Dut)| + /6 =gl - /8 )=l (28
for every w € BV (Q) N L?*(Q) and a.e. on [0, 7).

The following result was proved in [4].

Theorem 2.2. Let ug € L*(Q), ¢ € LY (). Then for every T > 0 there ex-
ists a unique strong solution of (2.7) in (0,T) x . Moreover, the solution u(t)
of (2.7) is also characterized as follows: u € C(|0,T], L*(Q)) N WL2(0,T; L*()),

u € LL(0,T;BV(Q2) and there exists z(t) € X2(Q), such that ||2(t)||ec < 1,
u'(t) = div(z2(t)) in D'(Q) a.e. t € [0,+00[ and

/Q (2(t), Du(t)) = / Dut)], (2.9)

[2(t),v] € sign(p —u(t)) HN"'-ae. on Q. (2.10)
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The Minimizing Total Variation Flow with Measure Initial Conditions 9

Finally, we have the following comparison principle: if u(t), 4(t) are solutions of
(2.7) corresponding to initial data ug, 4o € L*(Q) N LP(Q), respectively, p > 1, and
the same boundary data v, then

l(u(t) = a(t) " lp < (w0 — o) *ll, and  [Ju(t) —a(t)llp < luo —dollp, (2-11)
for allt > 0.

Let us make some comments on the proof which shall be useful in the sequel.
Let W, : L?(Q) —] — o0, +00] be defined by

U (u) = /Q|Du| + /6Q lu—¢| if ue BV ()N L*Q)
o0 if ue L2(Q)\ BV(Q) N L(9).

(2.12)

Since the functional W, is convex and lower semicontinuous in L?(Q2), we have
that OV, is a maximal monotone operator in L?(f2), and consequently (see [11]),
if {T'(t)}+>0 is the semigroup in L?*(Q) generated by 9V, for every ug € L*(Q),
u(t) := T(t)ug is strong solution of the problem

du

— + 0V, u(t) 30,

ar T I%eu® (2.13)
u(0) = ug .

Recall that the operator 0V, is defined by
(u,v) € OV, if and only if u,v € L*(Q), and

U, (w) lelw(u)—F/Q(w—u)v, YV we L3(Q).

Theorem 2.2 follows from a “distributional” characterization of O¥,. For that
we define the operator B, in L?(Q) associated with problem (2.7) by

u,v) € By, if and only if u,v € L?(Q) and
@

there exists z € X3(Q) with ||z]|c < 1,v = —div(z) in D'(Q) such that

Jw=wo< [ow- [1pa+ [ e[ -l

for all w € BV(2) N L*(Q).

The following result was proved in [4]. Theorem 2.2 is a consequence of it and
the fact that w(t) = T'(t)ug is strong solution of (2.13).

Proposition 2.3. The operator B, is mazimal monotone with dense domain in
L2(Q). Moreover B, = 0V,,.

We also note that B, is completely accretive, i.e., the semigroup solution is in
Lr(Q) if u(0) € LP(Q2) and we have the contraction estimates described in Theo-
rem 2.2.
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Let us finally recall the following estimate on u; which holds in general for strong
solutions of equations like [11, (2.13)].

Proposition 2.4. Let ug € L*(Q), ¢ € LY (Q). Let u(t) be the strong solution of
(2.7). Then u(t) is a Lipschitz function on [§,00) for any 6 > 0. More precisely,
giwen § > 0, there is a constant C depending on wuo, ¢ and § such that

/ lua(t,2)2dz < € ae. t € [5,00). (2.14)
Q

Remark 2.5. Theorem 2.2 and Proposition 2.4 also hold when €2 is an exterior
domain, i.e., when Q = RV \ U, U being an open bounded set in R with Lipschitz
boundary. The proof of Theorem 2.2 for exterior domains follows as a consequence
of Proposition 2.3 for the same domains. Let us make some remarks about the
proof. The proof of the monotonicity and the closedness of B, follows as in [4] or
[8]. Now, if A > 0, for any f € L?(f2) there is a solution u of

u+ABou=f. (2.15)

Indeed, if f € L2(2) N L>=(Q) has compact support, supp(f) cC B(0, R), the
solution of

Du
—div| — | = in QNB
u — div (|Du|> f, mQNB(,R),

U=, on 082, (2.16)
u=0, on 9B(0,R),

is also a solution of (2.15). The closedness of B, implies that (2.15) can be solved
for any f € L?(Q2). It follows that the range of I + AB,, is L*(Q2), and therefore B,
is maximal monotone. The density of the domain of B, can be proved as in [3].
The proof of B = 0V, is similar to the proof of Lemma 1 in [4]. The estimate of
Proposition 2.4 holds for any semigroup evolution generated by the subdifferential
of a convex, lower semicontinuous and proper functional [11].

2.5. Strong solutions of the Cauchy problem in L?(RN)

Definition 2.6. A function u € C([0,T]; L>(RY)) is called a strong solution of
(1.1) if
w € Wil (0,75 LARY)) 1 L, (0, T[; BV(RY)),
and there exists z € L>(]0, T[xRY;RY) with ||z]|o < 1 such that
uy = div(z) in D'(J0, T[xRY),

and

[ w0 =wu = [ 000~ [ put). o
Vwe LARY)NBV(RY)ae t€0,7T].

We collect some results in the following theorem in [8].
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Theorem 2.7. Let ug € L?>(RN). Then there exists a unique strong solution u
of (1.1) with u(0) = wug in [0,T] x RN for every T > 0. The solution u(t) of
(1.1) is also characterized as follows: u € C([0,T], L*(RN)) 0 W,L2(0,T; L*(RN)),
u € LL(0,T; BV(RY)) and there exists z(t) € Xa(RY), such that ||2(t)||c < 1,
W' (t) = div(z(t)) in D'(RY) a.e. t €[0,T] and

/(z(t),Du(t)) :/ |Du(t)] a.e.in (0,T). (2.18)
Q

RN

Moreover, if ug € L2(RN)NLP(RYN), then also u(t) € LP(RYN) for allt > 0. Finally,
the contractivity estimates of Theorem 2.2 also hold in this case.

More general results concerning existence and uniqueness of entropy solutions
of (1.1) for general data in Ll (RY) were proved in [8].

loc

3. Limit Solutions for Measure Initial Data with Singular Part
Supported in Compact k-Manifold of RYY

In this section we consider measure initial data whose singular part is supported
in a set S which is an orientable compact k-manifold (k being the dimension) in
RY without boundary satisfying (A.4). From now on, to simplify, by a compact
k-manifold we mean an orientable compact k-manifold in R without boundary. It
is known that (A.4) holds if the compact k-manifold S is of class W3°°.

Given S C RV, we denote by I,,(S) := {z € RV : dist(z, S) < 1}. We approxi-
mate the initial datum g = pree + aH*1 S in the following way: for every n € N,
let ug (1) be the L'-function defined by

o aHk(
uOm(N) = Hac + mxln(S) . (31)

Lemma 3.1. Let u= oH*| S where S is a compact k-manifold satisfying (A.4),
k
and o € R. Then, if ugn(p) = %Xln(s), we have that up, — p weakly” as

measures.

Proof. Working as in the proof of [2, Theorem 2.106] (see appendix), it is possible
to prove that

. f]n(S) o(x)dx
lim T {\N—k
n—oo 1
wy-k ()

- /ssf)(x)cmk(m) . Ve CuRY), (3.2)

Then, applying [2, Theorem 2.104] and (3.2), for every ¢ € C.(RY) we get
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) ) aHk(S)/
lim (ugp, ) = lim x)dx

— o /ﬂ (@)dH" () = ()

O
Given pu € My(RY) with s = aH* S, where S is a compact k-manifold
satisfying (A.4), and « € R, by the above lemma we have
uogn(p) = p weakly™ as measures.

Now, since ug (1) € LY (RY), we know [8] there exists a unique strong solution u,,
of the problem (1.1) with initial datum wg(p), that is

un € C([0,T], L' RN)) N W2 (0, T L'RY)),  p(un) € L}, (0,T; BV(RY)),

loc

for all p € P and there exists z, € L*>(]0, T[xRY; RY) with ||z, ||ec < 1 such that
(tn)¢ = div(z,) in D' (J0, T[xRY),
and

[ ot@ =@ < [ @000 - [ ool 63

for all w € L®°(RY)N BV (RY), a.e. t € [0,T] and p € P.
Moreover, from the homogeneity of the operator we have the following estimates:

|un ()] << fuon(p)l, (34)

[un(t +h) — un(t)]
h

2
<< Jluon(ml, (3-5)

where © << v means
[ s < [ s e,
RN RN

with Jy := {convex l.s.c. maps j : R — [0, +00] satisfying j(0) = 0} ([10]).
We have u,, € C([0,T], LY(RY)) C C([0,T], Mp(RY)). Now, from (3.4) we get

[ un@ide < [ juon(olde < [W®Y) YneNo<t<T,  (36)
RN RN
and from (3.5), it follows that

2h
/RN [t (t 4+ h) — up(t)|dr < T|u|(RN) VneN0<t<T. (3.7)
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From the estimates (3.6) and (3.7), using the standard technique to prove Ascoli-
Arzela’s Theorem, we deduce that, by extracting a subsequence, if necessary, there
exists u € C,, ([0, T], Mp(RYN)) such that

t, — u in Cy ([0, T], Mp(RM)) .

Moreover, from (3.7) and Reshetnyak’s semicontinuity Theorem [2], we have
/RN lu(t + h) —u(t)|dr < %M(RN) 0<t<T, (3.8)
and we obtain that
ue C(r, T], Mp(RY)) forall0<7<T. (3.9)

Remark 3.2. Taking p =T} and w = 0 in (3.3), we get

/ nwmm%mw+/Lmuw@nsu
]RN

RN
If we denote Ji(r) := [, Ti(s)ds, it follows that

/OT /RN | DTy (un (1)) +/RN Jio(n (T))dz

< [ Iiwon()do < Milal®). (3.10)
RN

for some constant M} > 0. Then, having in mind (3.7), we obtain that
{Tx(uy,) : n € N} is a bounded sequence in BV ([7,T] x RY), (3.11)
forall 0 <7< T and k > 0.
We shall say that u(t) is a limit solution of (1.1) corresponding to the initial

condition p.

Remark 3.3. The above estimates for u,(t) and wu(t) also hold for any approxi-
mation u, (0) converging to u weakly* in M, (RY).

4. Some Explicit Limit Solutions

By the results in [8] we know the evolution of some step functions by the total
variation flow. Let us recall the evolution of balls and annulus in R¥.

Lemma 4.1. For 0 <r < R and zo € RY, take Qg (o) := Br(zo) \ B(xo). Let
a>0 and B > 0. Then we have

(i) If uo = aXp, (ay), the strong solution of (1.1) for the initial datum ug is given
by
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1) Let ug = aXp (z0) + BXar .(z,) and u(t) be the strong solution of (1. or the
i) L r(20) B r,r(z0) d be th luti f (1.1) for th
initial datum wg. Then, if a < 3, u(t) is given by

B Per(Qg.,(z0)) \ " N
“(t)_<5 Que() ) om0 TG0

fort € 10,T,], where T, is such that
T (Per(QR,T(xO)) n N)

0. (o) r
For times t > Ty, the solution u(t) is given by the evolution of u(T}) according
to the solution model described in (i).
In the case B < a, u(t) is given by
u(t) = ( g _ Per(Br(zo)) - Per(Br(xo))t)Jr
|2, (o)

N +
+ (a - 775) XB,(z0) -

for t € [0,T,], where T, is such that

N Per(Br(xo)) — Per(B,(x)) —a—
T ( r 1R, (z0)] > .

and, for later times, it evolves as the solution given in (i) until its extinction.

=0—-a.

XQR,’V‘(IO)

Using Lemma 4.1 we may compute some explicit limit solutions:

. . Xp,,. ©
(i) Let u(0) = &p. Then, if ug,, = =7, we have ug, — dy. Now, by

[B1/n (0)]
Lemma 4.1, the strong solution of (1.1) for the initial datum wug, is given
by
1 Per(By/,(0)) \*
un(t)=< _ PerlBy ))f> XBy,(0) -
[ B1/x(0)] |B1/n(0)]

Hence, for every ¢t > 0,
un(t) = do locally weakly™ as measures.

Therefore, u(t) = dp for all ¢ > 0 is the limit solution of (1.1) for the initial
datum dg.

(ii) The above example can be extended to u(0) = Zle dp, where {p1,...,pi} are
a finite set of points of RY. Then again by approximating explicit solutions
and passing to the limit we get u(t) = u(0) for every ¢ > 0.

(iii) For 0 < r < R, we denote Qg, := Br(0) \ B,(0) and I'r = 0Bg(0). We
are going to compute the limit solution of (1.1) for the initial datum p =
aHN=1 T'g, with a > 0. For every n € N, let

OzHNil(PR) . OZHNil(PR)

L) T T L TR

o, (1) = XQRJrL,R,;
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1 Let u,, (t) be the unique strong solution of (1.1) for the initial datum g, (@).
Then, if
. oMYV )| By (0)
3 " |Br—1(0)|Per(I(T'r)) + [1n(I'r)[Per(Br_1(0)) ’

we know by Lemma 4.1, that u, () is given by

<aHN1 (Tr) Per(I,(Tx)) t) * N
- I.(Tr
LOR (s e
Per(Br_1(0))
_ — T x : 0<t<T,,
Un (t) + |BR7% (0] Bp_1(0) <
Per(Bp,1) \ *
R+2
n— T gt ] X ) t>T,,
5 (“ [Bry 2 0) ) Fard ©
with
_ (Per(Ba_(0)) | Per(Br.:(0)
Qp = 1Ip 7 7 .
7 |BR—% (0)] |BR+% (0)]
Since
: . Per(Bg(0))
lim T,,=—, and lim o, =a————"-,
9 s 2 oo 1Br(0)]
by Lemma 3.1, we have that
11 un(t) = u(t) locally weakly* as measures when n — oo,
where u(t) is the Radon measure in RY defined by
2 N o
u(t) = 4.1
N NN\ a
13 QE—Et XBR(O)a tZE
In the particular case a = m, the initial datum coincides with the delta
15 of unit mass supported on I'r = 0BRr(0), that is, the distrubution dr,, defined
by
Grns ) = sy [ PR
17 " Per(Br(0)) Jry, '

Then, if we denote by T'(t) the solution flow, we have

1

T(t)(0r,) = (1 — 2Per(Br(0))t)dr, + %tXBRm) - 0SS S BR)

(1 Per(Br(0)) \* 1
T(t)(éFR) - ('BR(0)| - |BR(0)| t) XBR(O) , b2 m
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(iv) Consider now the case where the initial datum is the measure = 6o +Xp,(0)-

Take % < R, and consider

XByu(0) < 1

) = X 14— )X X
Uo, (M) Br(0) + | + |Bl/n(0)|> Bl/n(o) + QR,

Bl/n(0)| a

Let uy, () be the unique strong solution of (1.1) for the initial datum wg, ().
Then, if

3=

B €2p, 1|
Qg 1 [Per(B1(0)) — [B1(0)|(Per(Br(0)) — Pex(B

I )’

1
n

by Lemma 4.1, we know that, for 0 < ¢t < T, u,(t) is given by

1 Pe(Bx(0) \"
“"(”:<|B¢L<o>|‘ B, 0) t) X240

< Per(Br(0)) — Per(B1 (0)) >+
+(1- —t

Xo
2R, 1| "

3=

At t = Ty, the two evolving sets reach the same height and u,(T,.) = anX gy (0)
with

1 Pe(Ba0)
SO 1BLo] ™

O

Hence, for t > T, the solution wu, () is equal to the solution starting from
anXpp(0) (at time T},), i.e.,

_(, _Pe(Br(0)
u”(t) - < n |BR(0)| (t Tn)) XBR(O)
B 1 Per(Br(0)) Per(B1(0))
- <|B%<o>| *T”< Ba©) 1B (0)] )
Per(Br(0))
_Wt> a0

Since T,, — 400 as n — 0o, we have that
un(t) = u(t) locally weakly” as measures when n — oo,

where u(t) is the Radon measure in RY defined by

N +
Observe that, in this particular case, if T'(¢) is the solution flow, we have

u(t) = T(t)(d0 + Xpg(0)) = T(t)(d0) +T(t)(XBg(0)) -
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Lemma 4.2. For 0 < Ry < Ry < Rs, we denote B; := Bg,(0) (i = 1,2,3),
Oy = BR2 \BR1 and Qg = BR3 \BRQ. Let ug := aXBRl + bXQl + cXq,, with a, b,
¢ > 0. Then, if u(t) is the strong solution of (1.1) for the initial datum wug, we have:

(i) Ifb=0<a < ¢, u(t) is given by

where

Per(Bg,) Per(€2;)
Tl X tX
(o F ) vom e
Per(Q2
(oo Perl@2), Xo, | 0<t<Ty,
€2
Per(Bg,) Per(f22)
(a1+|37]%2|2t XBR2+ c—= 1] t) Xa,, Ti<t<5n,
Per(Br,)
(o= Far ) o 125,
a|Br, || |

T = 9
' Per(Bg, )| | + Per(01)|Bg, |

o =T, (Per(Ql) B Per(BRz))
€] | B, |
€2 B, |
Per(Bg,)|Qs| + Per(22)|Br, |’

Per(Br,) Per(Qg)) '
| Brs| Q| /)7

S1=(c—a1)

01=C+Sl<

if we assume that T1 < S;.
(i) If a < ¢ < b, u(t) is given by

Per(Bg,) Per(Q4)
il Sl WA IV b— t) X
(a+ B Br, T 0] o
Per(Bpr,) — Per(B
N (C_ er( Rg)m | er( Rg)t) Xa, , 0<t< Ty,
O N Per()
er(Bp, er({2s
)y b +) x T, <t<
( " |BR, | ) BR1+<1 €23 ) o .
Per(Bg,)
(al |BR3.|3 t) XBRS , t=51,
where
Y]
Ty =(b—c) Rl @ = Br \ B

Per(1)[Qs| — [Qu[(Per(Br,) — Per(Br,)) ’

b= bt (PGY(Q3) B Per(Ql)) T

€23 €24 |
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|Br, ||€23]
PeI‘(BRl)|Qg| + PeI‘(Qg)|BR1| '
Per(Bg,) N Per(BRS)) '
|BR1| |BR3| ’
1 if we assume that T1 < S7.
(iii) If a =c < b, u(t) is given by

S1 = (b1 —a)

CL1=0;+51<

Per(Bg,) > ( Per(Q) >
( |BR, | P €] ”
. (c_ Per(Bgr,) — Per(BRz)t Xo 0<t<T
[y g S
u(t) =
(t) ( +Per(BRl)t>X . (b Per(Q1)t>X T <t<S§
a+ ——" - ’ -
Bl )P ) EEE
Per(BRQ)
; (o0 - F ) o 281,
where
T — a|QQ|
' Per(Bg,) — Per(Bg,) ’
|Ql||BR1|
S = b—a, 9
L= O O B )I60 + Per(2)) B
Per(Br,) Per(Bgr ))
a1 = CI,—'—S ! : ’
1 1< |BR1| |BR2|

if we assume that T1 < S7.

Proof. (i) We look for a solution of the form u(t) = a(t)Xp,, + b(t)Xq, +c(t)Xa,,
with b(¢) < a(t) < c(t) on some time interval (0,77). Then, we shall look for some
2(t) € X1(RY), with |z(t)||c < 1, such that

u/(t) = div(z(t)) in D' (RY), (4.2)
/ (2(t), Du(t)) = / IDu(t)|(RY). (4.3)

Now, by the coarea formula, if E; = {z € RY : u(t)(z) > s}, we have

/ Du()|(RY)
R

N
00 b(t)
:/ / DX, ds:/ / DX, |ds
0 RN 0 RN
a(t) c(t)
+/ / |D><BR1UQQ|ds+/ / DXo, |ds
b(t) JRN a(t) JRN
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= b(t)Per(Br,) + (a(t) — b(t))(Per(Bg,) + Per({:)) + (c(t) — a(t))Per(Q22)
= b(t)Per(Bg,) + a(t)Per(Bg,) — b(t)(Per(Bg, ) + Per(Qy)) + c(t)Per(Qy)
= a(t)Per(Bg,) — b(t)Per(Qy) + c(t)Per(s) .
1 On the other hand,
u'(t) = ' (t)Xpg, +b'(t)Xa, + ¢ (t)Xq, .
Then, by Green formula, in order to have (4.2) and (4.3), we need

a(t)Per(Bgr,) — b(t)Per(21) + c(t)Per(Q2)

- / Du()|®Y)
RN

- / (2(t), Du(t)) = — [ div(=(t))u(t) = - / o (t)ut)
RN RN

RN

= —d'(t)a(t)|Br, | = V' ()b(t) || — ¢ (t)e() ||

Therefore, we must have

Per(Bg,) ( Per(Bg,) )*
dit)=———""" al0)=a=alt)=|(a—- ——t] ,
© |Br, | ) 2 |Br, |
Per(Ql) Per(Ql)
b(t) = , b(0)=0=b(t) = ———=~t,
() = ZG 2. b0 =0 b = T
+
c(t :_Per(Qg) c(0)=c=c(t) = c—Per(QQ)t .
Q2] 7 |22
If we consider the vector field z(t) defined by
z(t)(x)
—R%, if z € Bp,
B B RN—lRN—l T )
(RY~' 4+ RN"YY — (Ry + Ry) 2H$||A} Py ifxe
- RN-1pN-1 "
(Rs3+ Ry)—=2—3  _(RYT'+ RN ———5, ifzec
ER I o
- ohs it 2 € RN\ Br, ,
]
we have
Per(Brg, T
div(z(t)) = 2B Gy g @) 0, ,
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) Per(€;) . x T
div(z(t)) = inQ, z({t) (@) = — , z2(t)(®)9Br. = T,
H =", o8 = ] 985 = o]
) Per(Q2) . T T
div(z(t)) = — inQo,  2()(@)oBr, = 77, 2B)(@)on ;
2] 1258 = al] 058 = a]
. . N\ 5 — X
div(z(t)) = 0 in R™ \ Bpg, , z(t)(a:)|3BR3 = —m
1 Hence, u(t) = (a — Pigfﬁl)t) XBg, + Pelg?ll)tXQl + (c - Pe‘é?f)t) Xq, is a strong
solution of (1.1) in [0, 73], with 77 such that
Per(Bg,) Per(£4)
a— T = T,
3 Br,] 'l
i.e.,
T — a|Br, || | .
5 Per(Br, )| + Per(01)[ B,
Now,
a|Bg, |Per(Q1) Per(€29)
Ty) = L X — T | Xq, -
7 UT) = BBl + Per(@)| By B T\ TR 1) X
Then, for ¢t > T3 the solution u(t) is equal to the solution starting from w(7}) (at
9 time T7) as it is described in (ii) of Lemma 4.1.
The proofs of cases (ii) and (iii) are similar and we shall omit the details. O
11 Theorem 4.3. Let p1 be the measure 1 = Xpp () + aHN=1 T, a >0, and let

u(t) be the limit solution of (1.1) constructed using the approzimations (3.1) for the
13 initial datum p. Then, we have

(i) If R <r, u(t) is given by

Per(Bgr(0)) > Per(Q, r)
1- t)x + 11X,
( [Br(0)] BrO Qg R
+(1—zt)aHN1LI‘T, <t<T,
«
Per(B,(0))
u(t) = (ﬂ‘f’ |Br( )| t XBT(O)
+<1—3t)aHN—1 r,, T<t<2,
« 2
a Per(B,(0))  Per(B,(0)) \* o
- - t] x > =
15 (ﬁ+2 B0 1B.0)] o)y 25
where
- |Br||% &| g1 (Per(QT,R) ~ Per(BT)> '
17 Per(BR)|QT,R| + Per(Qr,R)|BR| ’ |QT‘7R| |BT| ’
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1 if we assume that T < 5.
(ii) If R =, u(t) is given by

P 2
1 PBI N (12 e T, 0<t< @)
(t) = | B, | e 2
u(t
1+aPer _Per(Br)t +X i @
3 BB " "2
(iii) If R > 7, u(t) is given by
Per(B,) 2 N—1
1+ t)Xg, 4+ (1-=t)aHN-1_T,
| B, | !
Per(Br) — Per(B,
+(1— er(Br) — Per( )t)xgm, 0<t<T,
0 e |
u =
Per(B, 2
4 Per(Br), Xg, +(1-=t)aH¥' T,, T<t<2,
|Br| « 2
«a (Per(B,) Per(B,) Per(B,) \ " !
14— — t X t> —
: (+5 (5 + 5 Bl ) e TR
where
_ |QR,T|
7 Per(Br) — Per(B,)’
if we assume that T < %
9 Proof. (i) For every n € N, let ug (1) = Xpy(0) + W()\)XI (r,)- If n is large
enough, we have
1, in Br(0)
Uo,n(p1) = N-1
' Ly .
o™ (Iy) , in L,(T,).
1 [T (T

Then, applying Lemma 4.2 (i), with Ry = R, Ry =1 — %, Ry =r+ %, a =1 and

13 c= %, we have that if u,(¢) is the unique strong solution of (1.1) for the
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1 initial datum ug ,(u), then
Per(Bg) Per(, 1 )
(1 - Wt XBa + WWQW%,R ;
aHNYT,)  Per(I,(T,)) >
i B t) Xy, 0St< Ty,
< | 1n (T 11,(T,)] ()
Per(BT_L)
wn® =\ BT ) e

N=HD,)  Per(1,(Ty
+ <O[H ( ) er( ( ))t> XIH(FT), Tn S t S Sn,

LI ()]
Per(B, 1)
n_in X , >Sn7
(C Broal ) P vz
where
|BR||Q7‘7%7R|

Tn = )
Per(BR)|Qr7%,R| + Per(Qrf%,R)|BR|

Per(Qr—i.R) Per(Br—i)
an =T, L — = ,
|Qr—%,R| |Br—i|

n

s, = (M_ ) L (D) ||B, 1|
n |In(Fr)| n Per(Br_%)|In(l—‘r)| + Per([n(I‘T))|BT_%| )

anm) (Perw”;) ) perun(rr)))

Cn =
(L (I 1Byl [ (L)
Now
. |BR||QT R|
T:= lim T, = : ,
n—00 Per(BR)|QT,R| + Per(QT,R)|BR|
) Per(Q, r) Per(B,)
0= hman:T( s — ,
n—oo 192, R| | By |
lim S,
~ im aHNHT,) L [ (L)1 B, 1| _«a
o \ L@ ") Per(B,_ a0 + Per( I (T))IB, 2] 2
lim ¢,

AN IT) Per(B, 1) Per(I,(I'y) | _ ot a Per(B;)
B |In(FT)| " |Br+71L| |In(FT)| 2 |Br| .

3 The proofs of cases (ii) and (iii) are similar and we shall omit the details. O
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Remark 4.4. (i) Limit solutions corresponding to initial conditions given by a
measure are, in general, measures. There is no regularizing effect.

(i)

(iii)

Not all measures are treated in the same way. The solutions u(¢) corresponding
to measures p for which the dimension of the support of its singular part pus
is estrictly less than N — 1 satisfy that the singular part of u(t) does not move
(examples (i) and (ii) of Theorem 4.3). If the support of us has dimension
N — 1, the singular part of u(¢) evolves (example (iii) of Theorem 4.3). We
shall prove in Sec. 5 that this corresponds to the behaviour of limit solutions.
It is interesting to compare example (i) with what happens with the p-
Laplacian operator

A,(u) = div(|DulP~2Du), p>1.

Di Benedetto and Herrero [15] introduce the concept of local weak solution for
the Cauchy problem

uy = Apu in Qr =]0, T[xRY (4.4)

and prove that a nonnegative local weak solution of (4.4) in Q7 admits a unique
initial trace uo which is a o-finite Borel measure. Moreover, for p > ]\2]—11, they
prove the solvability of the Cauchy problem (4.4) when the initial datum is a
o-Borel positive measure in RY. Now, if p > 2, Kamin and Vazquez [20] (see

also [21]) prove that the Barenblatt selfsimilar solution
w(t,z) = (O = gllgP/ "),

where

_ t/(p—1)
E=uat , kK (p 2+ N) , q » i :

is the unique nonnegative weak solution of the Cauchy problem (4.4) satisfying

u(0,2) =0 forx#0, lim u(t,x)de = M .
t=0JB,.(0)
Therefore, in this case, dy evolves. Nevertheless, in the limit case p = 1, g
does not evolve. To our knowledge it is not known if §y does not evolve in the

2N
case 1 <p < T

5. Characterization of Limit Solutions

Let 0 < € M(RY) and 0 < k < N. Recall that the upper and lower k-dimensional
densities of u at x are respectively defined by

O (p, ) := limsup B, (@) ; Ouk(p, x) := lim inf M(L(:)) :

poot WP p—0t  WEp

If ©F (1, ) = Our(p, ) their common value is denoted by O (u, x).
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Theorem 5.1. Let 0 < pu € My(RY) be such that pa. € L=RY) N LYRY).
Suppose that s = aH* S, where S is a compact k-manifold in RN of class W3,
Let un(t) be the strong solution of problem (1.1) with initial datum wo ,(p) and let
u(t) be the corresponding limit solution. Then, for any T > 0 there is a constant
Kr = K(N,T,||pacl]), independent of n, such that

un(t,z) < Kp ¥z e RV\I,(8), Vte(0,T). (5.1)
Moreover, up to extraction of a subsequence if necessary, we have
Un(t) = u(t)ae, LN-ae. forallt>0, (5.2)
Un (L) XN\ 1, (5) — U(t)ac in LfOC(RN) , Vpell, o), (5.3)
un(t)X1, (s) — u(t)s weakly™ as measures, (5.4)
forallt >0, if k<N-1,
WP =N o< i< © k=N 1 )
< N’ )
and
u(t)s < s for all t > 0. (5.6)
Moreover,
if k<N —1, we have that u(t)s > ps, forallt>0. (5.7)
Therefore,
if k<N —1, we have that u(t)s = ps, forallt>0. (5.8)

Proof. Let us prove (5.1). Since S has bounded curvatures, there exists r > 0
such that, for every € RN \ I,,(S) one can find y, € RY and 7, > r such that
r € By, (y:) and B, (yz) N I,(S) = 0. Then, given & € RV \ I,,(S), and

U(gf,n =|| uo,n (1) lloo XRN\m + ||/La0||ooXBrz(ym) )
we have that 0 < g ,(p) < v§ ,,. Note that the solution vy (¢) of (1.1) with initial

datum vf ,, is

Vi (t)

. Nt
1 09 o Xy + i { el + 520 0 0) o X, 0

x

Using the comparison principle for solutions in L. (R™) [8], we obtain that u, (t) <
v¥(t), Therefore, we have

Nt Nt .
0 < un(t) < ||ttacllo + . < taelloo + o in By, (yz) (5.9)

for any t > 0, x € RV \ I,,(S) and (5.1) follows.
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Let v (t) := un(t)Xgn\ 1, (s)- Using (3.6), (3.7), (3.11), and the compact embed-
ding of BV ([r,T] x Br(0)) in Ll([T T)] x Bgr(0)) for any 7 > 0 and R > 0, by
extracting a subsequence, if necessary, we may assume that

v, — v a.e. in |0, T[xRY (5.10)
and
vy, — v in LL ([0,T] x RY) and w,(t) — v(t) in LL . (RY)Vte[0,T]. (5.11)
Thus, using (5.1) we also have
vp(t) — v(t) in LP (RN) V¢ €[0,7] andin L}

loc loc
for all p € [1,00). Now, by estimates (3.6) and (3.7), as in Sec. 3, we may assume
that v, (t) converges in Cy, ([0, 7], My(RY)) to some measure #(t). According to
(3.6) and (5.11), we have that ©(¢) = v(t) for all ¢ € [0,T]. On the other hand, we
may also assume that

([0,7] x R, (5.12)

un(t)X1,(s) — w(t) weakly™ as measures.

Hence, w(t) is singular respect to the Lebesgue measure £V. Since uy,(t) = v, (t) +
un(t)X1, (s), we have u(t) = v(t) + w(t), for all t € [0,T], with v(t) absolutely
continuos respect to £V and w(t) singular respect to LV. It follows that v(t) =
u(t)qe and w(t) = u(t)s, and we conclude the proof of (5.2) and (5.3).

From (5.3) is is easy to deduce that supp(u(t)s) C S for all ¢ > 0. Let us prove
the opposite inclusion. Given p € S, we have

HE(S)
> P = L .
U07n(/14) Z Wy n |In(S)| XB%(ZD)

Using the comparison principle and having in mind Lemma 4.1, we have

oaHE(S) *
wnlt) 2 (7 03] V1) ey

Since the above inequality is true for all p € S, we deduce that

aHk(S) )*
un (t) > < —nNt| Xp (s)- (5.13)
[.(S)] e
As a consequence, for all z € S and all m > n we have
1
B @ Jo, """

|Im(S)ﬂB%(x)| O/Hk(S) _M +
S( B2 ()] ><|1Tm(5)|><1 aHF(S) ) - (614)

Now, by [2, Theorem 2.104], we have

NIL ()]t 0, ifk<N—1,

im ————~2 —
m—oo  a’HF(S) Nov  r— N1,

)
«
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1 Then, taking limits in (5.14), and applying Lemma 3.1, we obtain
Hs Bi(x
( ”()), ifk<N—1,

) . 0yl P

1Imsup —=—— Um =

m—o |B1(2)| /B, (@) pis(Bu (z)) Ntw \t .

n 2 1-— , ifk=N-1.
B2 (@) a
3 Hence, since u,, (t) — u(t) weakly* as measures, we have
s B; X
pa "()), ifk<N—1,
u(t)(B1 (x)) |B1 ()|
B2 (2)] wBi() [ N \®
n 1- , ifk=N-1.
By ()| a
5 Since = € supp(us), from the above inequalities we deduce that
u(t)(B1 (7)) 0, fort>— ifk=N—1,
lim sup Bin = 2N
nooo  |Bi(z)] +o00, otherwise,

7 which implies, using Besicovitch derivation Theorem (see [2]), that = € supp(u(t)s)

forallt > 0if k < N —1, and for 0 < ¢ < 5% in case k = N — 1. This concludes
9 the proof of (5.5).

Let us prove (5.6). Let vg,, = % Observe that vg n, > ugn(p) for n large
11 enough. Hence, using the comparison principle, we have
k(S
< oM (S) forallt>0.

Un(t) <
1 ()]
Then, if z € S, using (5.1), we have

u(t)(By(x))

O5(u(t), z) = limsup - < lim sup lim sup
p—0+ Wi p p—0+ n—oo WEg P

I3, @) ®)
k

B, @)n1a(s) W) + S5, @)\ 1,(5) U (D)

= lim sup lim sup -
p—0+ n—oo WEpP
aH(8) f X
TS 1.(s) T Kt| By(@)|
< lim sup lim sup 1 (S)] 7 Bp(2) (k ) s
p—0+ n—oo Wk P

. aH¥(S)
limsup,, 77577 JB, (@) X1 (9)

< limsup -
p—0+ Wgp
< limsup pal pix)) = O (s, )

p4>0+ wk?p
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Using [2, Theorem 2.83], it follows that
Or(u(t)s, ) < Of(ps,v) =a H" ae.in S.

Then, by (5.5), it follows that u(t)s < ps.
Finally, let us prove (5.7). Let ¢ € C°(RY), ¢ > 0. Then, using (5.4), (5.13)
and Lemma 3.1, we have

aHF n n *
(U(t)er ) = i, (X, (5),) > lim S0 /1 . (1—M) o ()da

n ()] aHk(S)

= imiaHk(S) r)dr =
=tim T [ P = ).

Note that in the above derivation we have used that
nNt / H ® ||<>o nNt|In(S)|

_ p(z)dz| <

aH*(S) J1, )

G <COnfF N 50 asn— oo,
since k < N — 1. We conclude that u(t)s > ps. O

5.1. Singular part of p of dimension N — 1

We assume that pu = pige + aHNY "1 S, with @ > 0, pee € LYRY) N L2(RY),
and S is a compact (N — 1)-manifold of class W3>. We want to describe the
precise behaviour of u(t) and, in particular, compute u(t),. For that we need precise
estimates for the evolution of u,(t)Xz, ).

Our first purpose will be to prove the following result.

Theorem 5.2. In the time interval [0, §] we have

u(t)s = (= 20)THN T S = (1 — %t)+ Lhs - (5.15)

Let RN\ S = €1 UCy, where C; is the open bounded component of RY \ S. Let
QL == (RN \ L,(S)) N Cy and Q2 = (RN \ I,(9)) N Cs. Let v}, v2, v, denote the
outer unit normals to Q% 902 and 91,,(S), respectively.

Lemma 5.3. Let 0 < T < 5% . For n large enough and almost all t € [0,T], we
have that

/Q (zn(t),Dun(t)):/Q |Du, ()], i=1,2,

i
n

/, PRCICR OIS / PG

i
n

(5.16)

and

(20 (1), V1] = [z (1), V2] = 1 HN "-ace. (5.17)
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1 Proof. Since wu, are strong solutions of (1.1), by Theorem 2.7, we know that
(20 (t), Dun(t)) = |Duy(t)| as measures in RY for almost all ¢ > 0. This implies

3 (5.16).

Note that estimates (5.9), (5.13) prove that for n large enough and for any
t € [0,T] there is a jump discontinuity in u,(t) in 01,(S). This implies (5.17).
Indeed, let u,, and u}, be the traces of u, in 9N taken from inside and from
outside the domain, respectively, and let u,, and u}, be the traces of u, in Q2

taken from outside and from inside the domain, respectively. We have

[, 1pu o)

= [ . Dus0) = = [ divten©)en(0)

= /Q ; div(zn (£))un (t) — /Q , div(zn ) (t)un(t) — / div (2 ) () un (t)

In(5)

-/ (alt) Dun(0) + / (a8 D) + [ et D)

In(5)

— Zn 71/1 Un — Zn ,V2 Unp — Zn s Un|Unp
/8%[ (1), v Jun(t) /89%[ (1), v2]uun (1) /8 IINCICRATAD

- / |Dun(t)] + / (o (£), V2 () (i (1) — i, (1)
RN\OI,,(S5)

QL

+ /6 0210500~ 0).

Since for any t € [0,T] we have

[, Ipuo)

- / | Du ()] + / it (8) — usy (1)) + / ity () — u (1)
RN\OI,,(S) 0L 902

and by (5.9), (5.13), we know that for n large enough and any ¢ € [0, T, |u.}, —u;,| >
5 OHN =1 a.e. in OQF , comparing the previous two formulas we deduce (5.17). O
To obtain a more precise estimate, we observe that
Per(I,(5))
———" =N+ 0n,
! [ (5)]
with 2 = 0 as n — oco. We denote by d the signed distance function d(z) :=
9 dist(z, Cy) — dist(z, C2). It is well known that if S is of class CP, then there exists

no € N such that d € CP(I,,(9)) for all n > ng (see [18]).

11 Lemma 5.4. Let 0 <T < 3.
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(1) Let a, = n + |on] + Vv, wp(t) = (a% — ant)TXy, (3), with nn(z) =
—nd(x)Vd(x), t € [0,T]. Then, for n large enough we have

(wn)e < div(n,) on I,(S),

and My, - v, = —1 where v, is the outer unit normal to I,,(S).
N-—-1
(i) Let B =n— |on| = v, Wa(t) = (b+ a2 = B,t)* X1, (), t € [0, T), with
b > pac(x) for almost all x € I,(S) and n,(x) = —nd(x)Vd(z). Then, for n
large enough we have

(W)t > div(ny,) on I,,(S),

and ny, - v, = —1 where v, is the outer unit normal to I,,(S).

Proof. We only prove (i) since the proof of (ii) is similar. Observe that by our
N—-1
choice of T', for n large enough we have that (O‘H\ITS()? — o, T) > 0. Observe that
(wn)t = —au, and
div(n,)(z) = —n(Vd(z) - Vd(x)) — nd(z)Ad(z) = —n — nd(x)Ad(z) .
Then (w,,): < div(n,,) if and only if
—a, < —n — nd(z)Ad(x),
on I,(S5), i.e., if and only if
1

1+ d(z)Ad(z) < a"ﬁ =14 (lon| + \/ﬁ)% )

on I,(S5), i.e., if and only if

A(w)Ad(z) < (jon] + V) -

Now,
Nolo g
Adlz) = S° "
d(w) ; 1— kid(z)’

where k; are the principal curvatures of S at y(z) € S, such that d(z) = ||z —y(z)||.
Hence, having in mind that S has bounded curvatures, for n large enough we have

N-1 N-1
|Fi
(D) < o) 3 g <) 3 1+ 20kl
< C(d(z) +d(z)?), Yxel,(S),
where C' is a constant bounding Zfi}l |k;| and Zfi}l |k;|?. Then by choosing n
large enough we have that

d(2)Ad(z) < (Jon] + \/ﬁ)% L Vael(s).

The condition 7, - v, = —1 follows immediately from the definition of 7,. |
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1 Lemma 5.5. For any t € [0, §[ we have
Wn(t) < up(t) < Wy(t) on I,(S). (5.18)
3 Proof. First we consider a time interval [0, 7] with 7 < 5%. Now, by Lemma 5.3, we

have that wuy, (t)Xin(r, (s)), for n large enough, is the strong solution of the problem

. Dw . .
wy = div <m) , in (0,7) X int(1,(9)),
[z,vn] = -1, on (0,7) x 0I,(5), (5.19)
B aHF(S) .
5 w(0) = fgc + ) in int (I,(S5)).

Then, by the above lemma we have
7 (un)t — (W) < div(z,(t)) — div(n,) on I,,(S).

Hence, applying Green’s formula we get

/ ((un)e — (Wi )e) ot (£) — Wi ()
I,(S)
< / (div (2 (8)) — div(mn))(tn (£) — Wa(D))*
I,(S)

. / (2n(t), Dluun (£) — Wa())*) + / (o (1), v (an () — W (1))
I,(S)

0L, (S)

" / g D) = Wa0)) ~ / [ o) (n (£) — Wi (£))F)

0L, (S)

. / (2n(t), Dluun(t) — Wa())*) + / (1 D(un(t) — W (£))*).
I, (S) I

n(S)

Now, by the chain rule in BV (see [2]), there exists 0 < £(t), such that

9 Dlun(t) ~ W 6))" = EOD(un(t) ~ Wa(t)) = E(1)Dun ().
Then, since
Znl), Unp — Wn 1) = Unp — Wn * )
. [, o O D@ = W) = [ D) = W)
and
U - + Unp - n + 9
5 | D) =W))< [ D) = W)
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it follows that

i 1 U _ +3\2
T GRS

- / ((un)e — (Wi)o)ttn(t) — Wa())* < 0.
I, (S)

Thus, since u,(0) < W, (0), we obtain that u,(t) < W, (t) on L,(S). In a similar
way, we obtain that wu,(t) > wy(t) on I,(S). Therefore, we conclude that (5.18)
holds for any ¢ € [0, 7]. Since this holds for any 7 < 5%, having in mind (3.7), we
have that (5.18) holds in [0, 5%]. Observe that, for any ¢ > 0

Nt
un(t) <[ pac lloo "’7 on RN\In(S)-

On the other hand we have

U, (%) > wy (%) on I,(5).

Thus, using the above estimate and working as in (5.13) which is obtained by
comparison with balls, for n large enough, we have still a jump in the solution
un(t) during the time interval [5%,25% — s5=)- This means that Lemma 5.3 still
holds in this time interval. Thus we may proceed as above in the proof to conclude
that (5.18) holds in [0, 25% — sx=]. Thus, since in the k-iteration the time interval
obtained is [0, 4 (1—(&L)*1)], iteratively we prove that, for n large enough, (5.18)
holds in [0, §. O

Remark 5.6. The estimates of Lemma 5.5 permit us to prove that [z, (t), v,

’;LL] =1,
i=1,2, for any t € [0,T] (where T' < §) and n large enough.

Proof of Theorem 5.2. We observe that

wp(t) = (a—2t)THN1 S,
and also

Wo(t) = (a—2t)THN 1L S,

weakly* as measures. This and Lemma 5.5 imply that (5.15) holds in [0, §). Now,
using (3.8) we have

[l (G) w5 < [ (5)-u(5-n)]

hlul(RY),

4
<
~— a—2h

and letting h — 0+ we deduce that us(5) = 0. Thus, (5.15) holds in [0, §]. |
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By (5.1), for each T' > 0 there exists a constant K7 = ||ftac|loc + 2L > 0 such
that

0<up(t,z) <KpVaoeRV\I,(S), 0<t<T. (5.20)

hence sign(Kr +1—wu,(t,z)) =1 for all z € Q¢ , i = 1, 2. Let Cr = K1 +1. Using
Remark 5.6 we have that for n large enough

[z (1), V8] = sign(Cr — uy(t)) (5.21)

when ¢ € [0,7] and 7' < §. Thus, according to Theorem 2.2, for n large enough

un(t)|q: is the strong solution of the Dirichlet problem

. Dv . ;
vy = div (W) , in (0,T) x Q,

v==Cr, on 99 x (0,T), (5.22)

v(0) = pae in Q.
Now, for any 7' < § and n large enough we have that
Cr+1<w,(T).
Hence sign(Cr — up(t,z)) = —1 for all z € 9L,(5). Again, using Remark 5.6 we

have that [z,(t),vn] = —1 on 0I,(S) when t € [0,7] and T < §. According to
Theorem 2.2, u,(t)|, (s) is the strong solution of the Dirichlet problem
we = div (é—m) , in (0,7) x int(1,,(S)),
w=Cr, on 0I,(S) x (0,T), (5.23)
aHF(S) Lo
w(0) = plge + ———, inint (I,(S)).
[1n(9)]

We summarize the above discussion in the following Lemma.

Lemma 5.7. Let T < §. For n large enough, we have that u,(t)
is the strong solution of problem (5.22) in [0,T]; and wn(t)|ing(1,(s)) 5 the strong
solution of problem (5.23) in [0,T].

Q:“z: ]-u 27

Lemma 5.8. The sequence u,, is bounded in C([0,T)], L*(Q%)). More precisely, for
any § > 0 we have

/ |(un)e?de < CO) YV t€[5,T], i=1,2. (5.24)
Q
Moreover, we have that

un ()| — u(t)|c, in L*(C;), i=1,2. (5.25)

Proof. The assertion (5.24) is a consequence of Lemma 5.7, Theorem 2.2 and
Proposition 2.4. Since C; is bounded, the convergence of u,(t)|qr — u(t)|c, in
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L?(C4) is a consequence of Theorem 5.1. To prove the corresponding asertion in Co,
let us prove the equiintegrability of u2 at infinity. For that, let M > 0 be such that
C) is contained in B(0, M/4). Let ¢ € C(RY) be such that ¢ = 0 on B(0, M/2),
¢ = 1 outside B(0, M) and it increases linearly from 0 to 1 in B(0, M)\ B(0, M/2).
Since uy(t)|qz is the strong solution of (5.22) (i = 2) by Lemma 5.7, multiplying
the equation in (5.22) (i = 2) by u,®? and integrating by parts, we obtain

1d 2 2 2 w (£)2 v, 2
un(1)20% + / D (1) 6? = /Q RACSICRLS

2dt Q2 Q2
Hence
57 | un(®)7e” <2 [ un()el Vel <2 un()e [yl Ve llp,
where p > N and p' is its conjugate exponent. Since |Vi| < 2, we have
2 C
I Ve llp< 37 (CMM)YP <~

Since || un(t) || is bounded independently of n by the complete accretivity of the
operator underlying (5.22) (i = 2) we have that || u,(¢)¢ ||p» is bounded indepen-
dently of n and M, and we may write

1d ) s
a 1. nt S .
2dt Jo» " 7" < 3w

Thus, integrating in [0, ¢], given € > 0 we find M large enough so that
/ un(t)?9? < / Hac® + € < 2e,
Q7 Q3

for all n. Now, using this and (5.3) we conclude that u, (t)|oz — u(t)|c, in L2(Cy).

O
Consider the following Dirichlet problems, i = 1, 2,
D
v; = div <ﬁ) , i (0,T) x O,
v=_Cr, on (0,T) xS, (5.26)
v(0) = pac , in C; .

[0

Theorem 5.9. u(t)ac|c; is the strong solution of problem (5.26) in [0,5), i = 1,
2.

Proof. Let T" < §. We shall prove in detail only the case v(t) := u(t)ac|c,, the

other case being similar. We divide the proof in three steps.

Step 1. By Lemma 5.8 we know that
v (t) 1= un(t)|r — v(t) in L3(CY). (5.27)
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and

Ut — v weakly in L2 ((0,T), L3(Cy)) . (5.28)
Since ||zp]|oo < 1 for all n € N, we may assume that

2y — z € L=(]0, T[xCy, RY) weakly™ . (5.29)
Passing to the limit we deduce that

vy = div,(z) in D'(]0, T[xCy). (5.30)

On the other hand, if we take n(t,z) = ¢(¢)y(z) with ¢ € D(]0,T[) and ¢ € D(C4),
the same calculation as above shows that

v (t) = div,(2(t)) in D'(Cy) a.e. t € [0,T]. (5.31)
Step 2. Consider the functions 9, (t) defined by

va(t)(x), ifzeQl,

{)n(t)(m) = {CTa 1fl’€In(S)mcl

Let @ : L2(C1) —] — oo, +00] the functional defined by

/ | Dw| +/ |Cr —w|dHN ™Y, if we L2(Cy) N BV (Cy),
O(w) := C1 lel)
+ 00, if weg BV(Ch).

Since the functional ® is lower semicontinuous [4] and we have (5.27), we may write

|Du(t)] +/ |Cp — w(t)|dHN

C1 aC,
= ®(v(t)) < liminf ®(3,(t))
= liminf/ | Doy, (t)| = lim inf </ | Dvy, (t)] +/ (Cr — v}l(t))dHN‘1>
nmee Jaoy nee QL o

= liminf <—/ (Un)t’Un(t) + OTdHN_1>
n—oeo QL o,

d 1
= liminf | —— —|vn (t)]? CrdHN-1 | .
17{11111( dt/%?h}()' + - TdH

Hence, using Fatou’s Lemma, we have



May 4, 2004 15:2 WSPC/152-CCM 00136

The Mintmizing Total Variation Flow with Measure Initial Conditions 35

T T
/ / |Dv(t)|+/ / Cr — v(t)|dHN !
0 Cq 0 o0C
T
< liminf / (1|Un(o)|2 - 1|vn(T)|2’> +/ CrdHN
n— oo Q}z 2 2 0 89}1

T
:/ (lv(0)2 - 1U(T)2) +/ CrdHN-1 .
Cq 2 2 0 aC,

1 Therefore, v(t) € BV(C1) for almost all ¢ € [0, 7.
Let v! be the outer unit normal to dC;. Then, since ||[2,(t), V1]]|c0 < [[20 ()]0 <
3 1, up to extraction of a subsequence, if necessary, we may assume that

[2,(), V'] = p o[L=((0,T) x 8Cy), L*((0,T) x dC})] .
5 Now, working as in the proof of Step 4 of [4, Theorem 1], we get
p(t) = [2(t), v THN "t-ae. on 9Cy,a.e. t €[0,T].

Let us prove that p(t) = 1. For that, let w(t) := n(t)X¢c, where n(t) € D(0,T).
Using Lemma 5.8, we have

T
/ / vl (t, z)w(t, z)dxdt
o Jar

. /O ! /c et o, 2)dedt = /O ! /C ilt (e

T T
/ / v wdxdt :/ 77(15)/ div(z,)dxdt
o Jay 0 Q

1
n

Now

T
= Zn ,I/i N-1
- / n(t) /m[ (1), vhlaH™ Lt

T
= HN’l(aQ}l)/ n(t)dt .
0
On the other hand,

T T
/ / vendxdt = / n(t) div(z)dzdt
0 C1 0 Cy

T
= z 1/1 N-1 .
- / n(t) /801[@)7 JaHN

7 Thus, we have
T T
/ n(t) [2(t), v ]dHN " dt = HN—l(Cl)/ n(t)dt.
0 oC, 0

9 It follows that [z(t), '] = THY "l-a.e. on C; and a.e. t € [0, 7).
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Step 3. Finally, we are going to prove that v verifies the inequalities (3.3). Let
w € C1(Cy) and n € D(0,T). Then, working as in Step 2 and using (5.21) we have

T
/ / ¢(t)n ()dmdt+/ | Du(t)|n(t)dt
Cl 0 Cl
+/ / O — ()| dHY ~Ldt
0 a9Cy
< lim mf/ / (un(t) — w)une ()n(t)dzdt
Ql
T
+/ / |Dun(t)|n(t)dt+/ / |O7 — wy, () |dHN Lt
o Jai 0 Joqak
T
—hmmf/ / (un(t) — w)div(zn(t) )n(t)dmdt—l—/ / | Dy, (t)|n(t)dt
QL o Jay
/ / — upn (t)|dHN " Ldt
QL
< hm mf ( / / zn(t) - D(un(t) — w)n(t)dzdt
Ql
T T
[ lealtr () — ot [ [ Du@lntear
o Joaoy o Jay
/ / — () [dHN ™ 1dt>
QL
—hmlnf/ / 2n(t) - Dwn(t)dzdt
QL
T
—|—/ / |Cr — w|ndHN 1at
o Joaqoy
/ / n(t)dzdt

C1
T
+/ / |Cr — w|ndHN1dt .
0o Joacy

1 Observe that in the last limit we have used the fact that
HNH 00 — HY"Y 90, in the distributional sense,

3 which is true because dC7 has bounded curvatures. Now, approximating a function
w € L2(Cy)NW1(Cy) by functions in C*(C}) we obtain that the above inequality
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also holds for all w € L?(C,)NW11(C1). This implies that the inequalities (3.3) hold
for all w € L?(C1)NWHL(CY) and a.e. in [0, T]. Finally, approximating functions in
L?(C)NBV(Cy) by functions in L?(C1)NWH1(Cy) we obtain that the inequalities
(3.3) hold for all w € L?(C1) N BV (C}) and a.e. in [0, T]. O

From Theorem 5.9, we have the following characterization of limit solutions.

Theorem 5.10. Assume that = pge +aHN 1S, with a > 0, pae € LYRY) N
L>®(RN), and S is a compact (N — 1)-manifold in RN of class W3°. If u(t) is the
limit solution of problem (1.1) corresponding to the initial condition u, then in the
time interval [0, 5] we have that u(t)ac|c, is the strong solution of problem (5.26),
i =1, 2, and we have

9 \*
u(t)s = <1 — —t> s - (5.32)
«
Fort > §, u(t)s = 0 and u(t) = u(t)ac is the entropy (or equivalently, strong)
solution of (1.1) in [§,00) x RN with initial condition u($).

Proof. The behaviour of u(t) in [0, §) was described in Theorems 5.2 and 5.9.
According to (5.4) and (5.15), for t = § we deduce

@ L T1mN
Up, (5) Xr,(s) — 0in L*(R™).

Now, by (5.1), there is a positive constant C' such that

(6% (0% (0% (6%
Up (5) = Unp (5) XRN\1,(5) T Un (5) X1, 5) < C+up (5) X1,.(8) -

(1 (3)0)' <o (E) e

Now, by estimate (3.4) we have

Hence,

« «
— > _ .
un(t) << un(2) for any ¢ > 5 (5.33)
consequently
+
-0t < A > @
/RN(U’TL(t) O) = /]RN (un (2) O) for t =3 R
and we have that
/ (un(t) — C)F = 0fort > <.
RN 2

Thus, having in mind that |1, (S)| — 0 and u, (t) < (u,(t) — C)* + C, we deduce
that

un ()X, (s) — 0 in L'(RY) for ¢ > % .
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Since u, (t)Xr,(s) — u(t)s weakly” as measures we conclude that u(t), = 0 for
t> 3.
Hence
un(t) = un(t)X]RN\In(S) =+ un(t)xln(S) — u(t)ac in Llloc(RN) .

By the equintegrability in time given by estimate (3.7), the above convergence can

be taken locally uniformly in (0, 7). Since u, () is an entropy solution of (1.1) and

converges in L ((%,00) x RY) to u(t) = u(t)qc, then u(t) is an entropy solution of

(1.1) in [§,00) x RY [8]. Since u(t) € L*(RY) and entropy solutions coincide with

strong solutions, we have that w(t) is also a strong solution of (1.1) for t > § [8].
O

We could write an entropy condition for the solutions described in Theorem 5.10,
similar to the one considered in Sec. 5.1, but not being satisfactory for a flexible
treatment of uniqueness in the general case, we shall not pursue this here.

Remark 5.11. As it was observed to us by the referee, Theorem 5.10 can be
extended to more irregular (N — 1)-manifolds. Indeed, it can be extended to the
case where S is a closed and Lipschitz (N — 1)-manifold which can be approximated
by closed (N — 1)-manifolds S, of class W3> in the sense that

(1) JHNTT S —HYT Sl @y) — 0 as n— oo,

and (ii) if @, denotes the set inside S,,, and @ denotes the set inside S, then QNQ,,
is an increasing sequence whose union is . To justify this assertion, let u, (t) be the
strong solution of (1.1) such that u,(0) = pe.+aHN~1 S, given by Theorem 5.10.
Since up(t)s = (1 — 2t)*HN=1 S, we have that u,(t)s —>= (1 — 2t)THN -1 S
in the norm of measures. On the other hand, we know that w,(t)ac|q, is the strong
solution of the problem

. [ Dv .
v = div <W) , in (0,7) x Qp,
] =1, on (0,T) x dQy | (5.34)
'U(O) = Hac in Qn .

Then, after some standard calculations and using that
A(QNQ,) C[SNS, NS USAS,U[S,AS],

we prove that

d
G @ un@l [ e ]
QNQn (RNQm)

<2AHNTY(SAS,) + HN (S, AS,)),

for every n > 1, and every m > n. In particular, since u,,(0) = u,(0), we have

/ ln(t) — 1w (8)] < 2T(HN(SAS,) + HN1(S, ASm))
QNQn
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for any t € [0,T], every n > 1, and every m > n. Thus
/ lun(t) =t (8)] < 2T(HN"L(SAS,) + HY " (S)AS)) |
QNQyp

for any ¢ € [0, T, and for all m > n > p. We deduce that {u,,} is a Cauchy sequence
in C([0,T], LY(QNQ,)) for any p > 1. Since uy,(t) is bounded in L>([0, 7], LY(Qy)),
there is a function u € L*([0,T], L'(Q)) such that, passing to a subsequence, if
necessary, u, converges to u(t) in C([0,7], LY(Q N Q,)) for any p > 1. Moreover,
we may assume that z, — z weakly* in L>°(]0,7[xQ), and we obtain that

= div(z) in D'(]0, T[xQ .

To prove that [z(t),v] = 1THN "1 a.e. in S, let p(t, ) = ¢(z)n(t) where ¢ € C5°(Q)
and n € C§°(]0,T[). Since for p large enough, and n > p, we have

/ / ':/ / Zn-V(p+/ / [zn(t), V],
QﬁQp 0 JQRNQ, 0 Jo(QNQyp)

letting n — oo and p — oo in this order, we get

/OT/QW/:/OT/QZ'W“L/OT/S@

Consequently, [z(t),v] = THY "1 a.e. in S and for almost all ¢ €]0, T'[. Now, working
in a similar way as in [4], it can be proved that u(t)|g is an entropy solution of
problem

= div (|g”|> in (0,7) x Q,

[z,v] =1, on (0,7) x 0Q,
v(0) = pac , in Q.

In a similar way we can prove that there is a subsequence of u,|g~\ g, converging
to an entropy solution u(t)[g~n\¢q of

= div (|g”|) in (0,7) x (RN \ Q),
[z,v] =1, on (0,7) x ORN\ Q),
v(0) = pige in RN\ Q.

We conclude with this our sketch of the proof. A complete discussion of this problem
will be detailed elsewhere.

(5.35)

(5.36)

5.2. Singular part of p of dimension k < N — 1

In the case k < N — 1, we assume S to be a compact k-manifold of class W3>°. We
have C; = ). Thus, Q! = 0 and Q2 = RV \ I,(S). Let us rename €2, := RV \ 1,,(9).
Let T'> 0. Since |I,,(S)| behaves as —y— as n — 0o, we note that estimates (5.9),
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(5.13) prove that, for n large enough, there is a jump discontinuity in w,(t) in
0I,(S) for any ¢t € [0,T]. As in Lemma 5.3 we have

Lemma 5.12. Let T > 0. For n large enough we have that
[20(1), V2] = —[2a(t),vn) =1 HN'-ae. and a.e. in [0,7]. (5.37)

With the same notation for C'r as in the previous section we have the following
result.

Lemma 5.13. Let T' > 0. For n large enough, “n(t)bn is the strong solution of
problem

D ~
v = div (ﬁ) . in (0,7) x Q,,
v=Cr, on (0,T) x 0Q,,, (5.38)
v(0) = pac , in Q, .
and wn (t)|int(1,, (s)) 15 the strong solution of problem (5.23).
Consider the Dirichlet problem
D
v = div (—”) . in (0,T) x RN
| Dol (5.39)
v(0) = fqc s in RV,

Working as in the proof of Theorem 5.9, we obtain the following result.

Theorem 5.14. u(t),. is the strong solution of problem (5.39).

By (5.8) we also have that u(t)s = ps for all ¢ > 0. Then, by Theorem 5.14, we
have the following characterization of the limit solutions

Theorem 5.15. Assume that k < N — 1. Let i = piqe + oHF _ S, with o > 0,
pac € LYRY)Y N L°(RY), and S is a compact k-manifold of class W3, If u(t) is
the limit solution of problem (1.1) corresponding to the initial condition u(0) = p,
then u(t)qc is the strong solution of problem (5.39) and we have u(t)s = pus for any
t > 0. In the particular case that jiqc = 0, we have u(t) = p for all t > 0.

Remark 5.16. In a similar way as we noted in Remark 5.11, Theorem 5.15 can be
extended to more irregular k-manifolds (k < N — 1). Indeed, it can be extended to
the case where S is a closed and Lipschitz k-manifold which can be approximated
by closed k-manifolds S,, of class W in the sense that

[HN=H S —HYY Syl vy @yy) — 0 asn— oo

To justify this assertion, let u, (£) be the solution of (1.1) such that u,(0) = piec +
aH¥|_S,, given by Theorem 5.15. Since u,,(t)s = aH*[_S,, we have that w, (t), —
u(t)s := aH¥ S in the norm of measures. Since u,(t)q. is the strong solution of
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Du
[Dul

u(t)ae + aHF LS, where u(t)q. is the strong solution of u; = div(2 [pay) 0 RY with
initial datum %(0)4e = ptac- Thus, Theorem 5.15 also holds in this case.

up = div(8%) in RY with initial datum u,,(0)ac = fac, We conclude that u(t) =

5.2.1. The entropy condition when k < N —1

Since u(t)qc is the strong solution of the Cauchy problem (5.39), there exists z €
L>(]0, T[xRY) with ||2]|s < 1 such that

(tae): = div(z) in D' (J0, T[xRY). (5.40)

Moreover u(t)q. satifies the entropy condition [8]

S U Ty A IO

T
+ /0 /]RN z(t) - Vn(t)p(u(t)ee — 1) <0, (5.41)

foralll e Rand 0 < n(t x) = (b(t)z/J(x), with ¢ € D(]0,T), ¥ € C§(RY) and for
all p € T, being j,(r) = [; p(
Moreover, since u( )s = Us for all t >0, given v = fHF _ S, B € R, we have

/ / )s —v)ne =0.
]RN

Hence, from (5.41) we obtain the following entropy condition for the limit solution

u(t):
//RNJP —l—dum+// u(t)ae — 1)

+ /0 /]RN z(t) - Vn(t)p(u(t)ee — 1) <0, (5.42)

foralll e R, v=pBHFL S, B3R, and 0 < n(t r) = ng(t)w(x), with ¢ € D(]0, ),
¥ € C§°(RY) and for all p € T, being j,(r) = [, p(

Let us prove in which sense limit Solutlons are Characterized by the entropy
condition (5.42). Indeed, let v € Cy, ([0, T], Mp(RY)) be such that v(0) = u, v(t)s =
fHF 8,0 <a < f(t) < A, and satisfies v; = div(£) in D'(]0, T[xRY) and (5.42).
Then, if we take in (5.42) p = T} and 8 > A, we get

[t [ [ 00,0

T
+ / £(t) - V()T (0(t)ae — 1) < 0. (5.43)
0 RN
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Similarly, taking p = T, and 8 < a, we get

[ ek [ a0 e o)

T
+ / @) - V)T, (v(t)ee —1) <0. (5.44)
0 RN

Now, from (5.43) and (5.44), using the doubling variables method of Kruzhkov (see
[8]), it follows that v(t)ae = u(t)ac. On the other hand, since v(t),. € L°(RY),
taking p = T, in (5.42) and [ large enough, we obtain that

_/OTANj;(U(t)S—u)nt <0,

for v = fHF S and 0 < n(t,z) = ¢(t)(x), with ¢ € D(]0,T[), v € C(RN).

Then,
T d .
— — <0.
k/o [RN dt (U(t)s V) =90

Now, taking v = v(0)s, it follows that

v(T)s <v(0)s = s .
Similarlly, working with T}, we get v(T)s > v(0)s = ps. Consequently, we obtain
that

v(t)s =ps, YVt>0.

6. Solutions Obtained by Approximating the Singular Part of u
by Convolution in the Case k < N — 1

Let wg = ftae + ps with ps = aH¥! S with k < N — 1, a > 0, and S being
a compact k-manifold of class W, We assume that p,. € L'(RY) N L2 (RY).
Let p € C5°(RY) be a radial decreasing function such that p > 0, whose support
coincides with B(0,1), and [y p(x)dz = 1. Let p,(x) = n"p(nz). Let us prove
that if we approximate ug by uon = ftac + pn * tts and u, (t) denotes the solution of
(1.1) with initial condition w(0) = wy, then wu,(t) converges to the limit solution
of (1.1) with initial condition u(0) = ug, and consequently, u(t)s = ps for all ¢ > 0.
We fix T > 0. Let v = H* _S. In a first step, we shall need the following
condition on p
(H),:pe C>®(B(0,1)) is a radial decreasing function with p > 0, p(x) = 0 outside
B(0,1), [on p(z)dz = 1, and if we write p = p(||z|) the behavior of p(1 — ) near
r =01is as yr? for some v > 0, 0 < 3 < oo.
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1 Lemma 6.1. Let 0 < € < H¥(S), a; > 0, ap = 0, aj < a1 be such that
a?il > (1—¢) forallj=>1and [, ., <q,(pn*v)(@)dz < e Then
5 D ajllay < poxv < ajiall = (1—€)(HH(S) —e). (6.1)
§=0

As a consequence, if v,(x) = E;io @i X[a; <pprv<asii]> We have
5 / (pn * v —vp)(x)dz < e(1+ (HF(S) —¢)). (6.2)
]RN
Proof.

o0
> ajlley < poxv < il
=0

> (=€) ajillay < poxv < ajp
j=1

o0

>(1-9Y [ (pn + v) (@)

j=1 7l Spnrv<ayia]
=(1-¢) / (pn * v)(z)dr — (1 - 6)/ (pn(z) * v)(x)dz
RN [0<pn*v<an]

>(1—eHF(S) —e(l—€) = (1 —e)(HF(S) — ).

The inequality (6.2) follows from (6.1) and the observation that v, < p, * v. m|

Notice that we always have

posvla) <n¥ [ X 1o~ g)av(y)

RN
1
<n sup v (B (x, —>) < CcnN-F,
z€RN n
7 Lemma 6.2. Assume that p satisfies (H),. Let 0 < ¢ <1, a > 0. Then
/ (pn *xv)(x)der — 0 asn — o0. (6.3)
[0<pn*v<anN—k=q]

Proof. Let p > 0 such that p(8+ %) < ¢. Let z € RN, d(z, S) < L — L. There
is Y € S such that ||z — V|| < £ — —L-. Moreover, we may assume that ¥ — z

is orthogonal to S. Let us consider the k-plane Hj tangent to S at the point Y.
Let H be the N — 1 plane containing Hj and orthogonal to Y — x. By taking n
large enough we may assume that, locally around Y, SN B(z, %) is the graph of a
function (Xg41,...,Xn) =gy (X1,..., Xk), (X1,...,Xk) € H,NB(x, %) Observe
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that, in the (X1,..., Xn) coordinate system, the point Y has coordinates (0, ...,0)
and gy (0) = 0, Dgy(0) = 0. The intersection of H and B(z,2) is a N — 1 ball
By of radius, at least, mp+—12)/2 Indeed, we take the N — 1 plane H' parallel to H
and tangent to B(z, L). We consider the surface of B(z, 1) as a graph over H'.
We compare the surface of B(z, 1) with the paraboloid zy = k(z} + -+ 4+ 23_,).
By rotation invariance in the N — 1 first coordinates we may reduce the situation

to the comparison of the circle y = % — (%)2 — 22 and the parabola y = %

Observe that if k = n, the parabola y = ka? is above the circle y = 2 — /()2 — 22,

Thus, when y = np% the x coordinate of the circle is, at least, m, which is
the corresponding abscissa of the parabola. We conclude that the radius of By
is, at least, n<p+—12>/2 Now, observe that, since gy is smooth and the curvatures
of S are bounded, there is a constant C' > 0 such that, if (Xq,...,Xx) € Hrx N
B(Y, W), then ||(Xgi1,...,Xn)|| < 5. Thus the distance of the graph of
gy over Hy N B(Y, W) (call it S1) to dB(z, L) is greater or equal than the
distance of the point of coordinates (+ — —l+ + nP—%, W) to the boundary of
the ball B(0, 1) in R?. This distance is greater or equal than ;. Thus, if y € 51,
then the distance from ny to the boundary of B(nz, 1) is greater or equal than .
By our choice of p, we have that p(n(z —y)) > 745 for all y € S1. Now,

/ pul — ) (y)
RN

Y /R ol — y))dv(y)

nV

npﬁnk(p+2)/2 )

1
gy(Sl) > ’V/

>n? /S p(n(z —y)dv(y) = "y —

Thus, if # € RY is such that d(z,5) < 2 — —L and p, * v(z) < an™ "4, then

/ nY N—k
< anNFka
v npﬁnk(p+2)/2 - ’

which implies that ¢ < p(8 + %), a contradiction. Thus, if p, * v(z) < an™ =k~

then d(z,S) > 2 — —L+. Hence

n

MR A

/ pn ¥ vdxr < an 0< pp*v<an
[0<pprv<anN—k=d]

1 1 1
<anVFallzeRY - — —— <d(z,5) < —
n nptl n
N—k—q__L i
< alCn nN7k+p=Cocnp+q—>Oabn—>oo,

where C' > 0 is a constant. O
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Lemma 6.3. Assume that p satisfies (H),. Then given ¢ = % > 0, there are

h,n
af_;,n >(1- %) for all 4, h,

j+1

h,n h,n h,n h,n
constants ;" > 0 such that o™ = 0, o < ayiy,

n > 1 and np > 1 such that

[e3

/ (pn *v)(x)dx < € for n > ny, .
[OSPTLSO‘?]

Therefore, if we denote A?’" = [a?’” < pnxv(z) < Oé?fl]a j > 0, and we define

Upn(z) = Zj‘;l a?’"XA?,n, we have

1 1
/ (pn * vV — vpp)dx < — (1 + Hk(S) - —) for all n > ny, . (6.4)
. h h
Proof. Let us choose p, ¢ > 0 such that p(5 + %) < q < 1. Given € = %, there is
my, such that 25 > 1 — 3 for all 7 > my,. We define ozg’" =0, " = mpnN k-,
o™ = (my, + j — 1)nN—F4_ Then, by Lemma 6.2, we have

J

1
/ (pn (@) < 7
[0<pn<al™] h
h,n
for n large enough, say for n > nj,. By our choice of my,, we have that z’]l" >(1—-4)
j+1

for all j > 1. By Lemma 6.1, we have that (6.4) holds for all n > ny. |

In the rest of the section and until we consider the general case we assume that p
satisfies condition (H),. Note that (6.4) holds for n = ny,. Thus, there is a sequence
n; such that pp, * v — v;,,, — 0 in L}(RY). Thus, for simplicity of notation, we
shall denote v, instead of v; 5, o} instead of a;’”'i, and A;-‘ instead of A;’”i. With

this notation and for further reference, we have
/ (pn *x v —vp)de — 0 asn — co. (6.5)
RN

The sets A7 are not far from being level sets of the distance function d(z, S).
To prove that we need the following Lemma.

Lemma 6.4. Let A > 0. Let S be a compact k-manifold of class W*>. Let p be
the radial convolution kernel introduced above with the assumption that p(1 — r)
behaves as yr? near r = 0 for some v > 0. Let

o) = | p()dH" (u) (6.6)
(te+H)NB(0,1)
for t € [0,1], € a unit vector in RN, H a k-hyperplane orthogonal to €. Then ®

depends only on t and, if x is such that p, * v(z) = A\ ~*=9 then we have

d(z, S) = %@‘1 (% + nkF(a:)> (6.7)
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where

1 1
n n
Proof. To avoid any confusion in the formalism and help the intuition let us ob-
serve that the result is obviously true if K = 0 and S is reduced to a finite number
of points. Thus, we may assume that k > 1. Let = be such that

/Spn(x —y)dH"(y) = AN The

Then

[ st = aro) = = (6.9)

Let 29 € S be such that ||z — zg|| = d(z,S) and such that x — z¢ is orthogonal to
S. Let Hj, be the tangent plane to S at zy passing by 0. We assume n to be large
enough so that SN B(z, 1) can be parameterized by a function ¢ : H;, N B(0, ) —
RNk where 1 € W2, Thus we may write S N B(x, %) as the set of points
y = x0+ (2,9(2)) where z € Q := [(wo + Hy,) N B(z, 2)] — . Moreover, we assume
that |¢(2)] < C||2||?. Thus, using that p has compact support, we may write (6.9)
as

/Q (e — w0) (=, Y2V Je() () =~ (6.10)

where Ji (1) denotes the “corresponding” Jacobian [17]. Then, we have
/ p(n(x — x9) — n(z,0))dz
Q

= 0) = n(2,0) = pln(e — ) = (e, () () 2l

A

nk+a

+ F(x)

F(x) = /Q[p(n(l‘ — x0) = n(2,0)) — p(n(z — z0) — n(z,9(2))) Jx(¥)(2)]dz
= /Q[p(n(l‘ —z0) = n(2,0)) — p(n(z — zo) — n(z,9(2)))]Jr () (2)dz

n /Q p(n(z — m0) — n(z,0)[1 — Jp(1h)(2)]dz

=171+ T2
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Let us estimate both terms 7; and 7,

hﬂgcmz;w@uuwmes0¢é|wwmw@mZ

C C
< | e <

(the constant C' denotes a different constant on each line). Now, using that |1 —
Ji(¥)(2)| < CJz||, we have

C
|7'2|<C/ n(z — xo —n(zO))\z\dz<—/dz_W.

Similarly, since p is of class C2, we bound

C
|V7—1| S W?
and
C
|VTQ| S E .
Summarizing, we have
A
/Qp(n(x —1x9) —n(z,0))dz = oy + F(x), (6.11)
with
1 1

Let € be the unit vector in the direction of x — xg, so that x — xy = éd(z, S) and
let w =n(x — z9) — n(z,0). Observe that (z,0) € @ if and only if u € (néd(zx, S) +
Hji) N B(0,1). Then we have

/ p(n(x —xz9) — n(z,0))dz
Q

1 A
=— p(u)du =
1k nza(z,8)+ H)NB(0,1) nk+a

+ Fz). (6.13)

Let @ be the function defined in (6.6). Let us prove that ® only depends on t. Let
R be a rotation in RY such that R'¢ = €, i.e., such that R(H) is orthogonal to €.
Then

O(t,é R(H)) = ®(t, ¢, H).

Thus ®(¢, ¢, H) is independent of H. Let us write it as ®(¢,€). Now, let R be any
rotation in RY. Then, using any k-hyperplane H orthogonal to Ré, we have

o(t.ne) - [ pludu= [ plu)du = (t,2),
(tRE+H)NB(0,1) (té+Rt H)NB(0,1)
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since R*(H) is orthogonal to & Thus, ® = ®(¢) only depends on t. Then ® is
continuous, and strictly decreasing. We may write (6.13) as

®(nd(z,S)) = ®(nd(z, S), & Hy) = % +n*F(x), (6.14)
hence
1 A
dz,8) == ' = +nfF(2)) . 6.15
(0.5) = 267 (2 4 ntF() 619

Remark 6.5. By the properties of ® we may write ®(t) = P (1),

q’k(t) = p(u)du,

/(t8k+1+H]/€)mBk+l(011)

where ej11 = (0,...,1) € RFFL H = {x : 2, = 0}, Bj41(0,1) the unit ball in
RF+1

Let us write o = A7?nN~#~4. By Lemma 6.4, we may write

A
AT = [lcp— < It 4 kR > <d(z,8) < q> <—J +nkF(x)>] :
nd

A7 P
B = Pcb—l ( J“) <d(z,S) < Lo (—J ﬂ
n nd n n4

and let us define

Let

V;Z = Z OZ?XB? . (616)
j=1
Lemma 6.6. We have
/ |vp — V) |de — 0 as n — oo. (6.17)
RN
Proof. Let us prove that
U Br. (6.18)
l7—il<1
and
Brc J 4. (6.19)
li—il<1
With this, since a7, —of =af —aj_; = nN k=4 we may write
Cnt
/RN v — vhlde < a9 ATABY . (6.20)

J=1
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First, observe that, since (6.18) implies that A} N B} = 0 if [i — j[ > 2, (6.19) is a
consequence of (6.18). Now, let us take n large enough so that
1
|nkF(z)| < ¢ < —.
n nd
Then, if x € Aé’?, using the fact that ® ! is a decreasing function, we have
1 A% 1 A 1 1 A%
d(z,S) < —@~! (—J +nkF(x)) < -9t (—J - —) = ¢! <J—1) ,
n nd n nd nd n nd

and

Lo (N
d(z,S) > E<I> (W +nF(x)

> lq)—l ()\;L‘Fl n l) _ lq)—l ()‘?H) .
n nd n n nd

Both inequalities prove the inclusion (6.18).

Let
AP P
)= s [0t (L wutr) e (1),

i=j,j+1 ni nd

en = sup [e(j,n, )|,
Jrx

2 =L )‘_;Z _ ! AJi1

" nd nd ’

and

en = sup(el, e2).
Since ®~! is continuous and n*F(z) = O(L) we have that €, — 0 as n — oco. Let

us prove that
ATAB” C [lcpl (A—J) _ o (2, 8) < Lo (A—J) + 6—”] . (6.21)
7 n nd n n nd n
Indeed, if x € B} \ A7, then either
(i) d(z,8) > L& (X 4 nFF(2)) or (i) d(z, §) < L1&~1 (2t 4 nFF(x)).
In case (i),

1 A7 1 A 1 A7
d(z,8) > @~ <—J) + -0t <—J —|—nkF($)) - =0t (_ﬂ )
n n4 n nd n nd

o ()0 L () e

n nd n n nd n
On the other hand, since z € B}, we have

AR AR
iz, $) < Lo (_) < Lo <_> Y
n

nd n n4 n
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In case (ii),

A AT
d(z,S) < l<I’_1 <L1 —|—nkF(x)) < ltI’_l <L1 - l)
n nd n

:lq)—l )\_;Z <lq>—1 ﬁ _|_€_”
n ni) " n nd n

1 On the other hand, since z € B;?, we have
AT AT 2 AT
d(x,S)>l ( J'H) zlqu <_J>_221¢,1 <_J>_6_”
n nd n nd n n nd n
3 In a similar way we prove that A7\ B} is contained in the right-hand side of (6.21).
Since, by [2, Theorem 2.104],
d(z,S) < 1o-1(2) 4 =
tiy, L0 < G ¥l e
oo 1e-1 (2 €n
5 WN—k (z‘b (m) + 7)
and
AT
o ld(@,S) < 2o (G — 2l
Jimm, ; v = H'(5),
1 €n
7 o (707 () - %)
given § > 0, for n large enough, we have
|ATAB]|

< wn_ ka(S)

AL AL
o (2) -2 iy <t (2) + 2]
n nd n n nd n

1 (AN e \VF 1 (A eV
(1+9) (n@ (nq) + n) (1-9) n(I) nd n

)\n N—k A7 N—k
(o (@) re) (7 () )

nd nd

)\n N—k A7 N—k
(2 (@) ) (7 () -e)

nd nd

A

< CH’“(S);‘Z]]\V,:’; (cpl <_J

nd4

WN—k
Nk

=H"(S)

k WN—k
+ OHE(S) R

N—k—1 WN &
i _
)) en + COHH(8) 37

< CHk(S)n " (€n +0).

Introducing the above estimate in (6.20), we obtain

Cnt
/ lvn — V. |dz < CHF(S ZnN e qN—’“( +6) < Clen +6).
]RN
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Letting n — oo, we obtain

n

1imsup/ |ty — vl lde < 6.
RN
Since this is true for all § > 0, we obtain (6.17). |

Let O = [d(x,S) < %@‘1(2—7}:)]. Let us note that since 2—7}: — 0 as n — oo and
®~1(0+) = 1, we have that @‘1(2—71;) may be taken arbitrarily near to 1. According
to (6.17), if u, () and v, (t) denote the solutions of (1.1) corresponding to the initial

conditions uy,(0) = pae + pn * (av) and v, (0) = von, = pac + av),, then
/ [tn (t) — vy (t)|de — 0 as n — oo
]RN

In particular, both w,(t) and v,(t) converge to the same solution wu(t) of (1.1)

corresponding to the initial condition u(0). Since the value o} grows as n™N—F=¢

as n — oo and k < N — 2, we have that af grows at least as n>~7 as n — oo.
Thus the comparison given by estimates (5.9), (5.13) prove that for all T > 0 and
n large enough, the solution v, (t) has a jump discontinuity at dC}, and, therefore,
if &, (t, 2) denotes the vector field associated to v, (t), i.e., the vector field satisfying

(vn)e = div(&,) in D'((0,T) x RY),
and
[ Do) = [ Do),
RN RN
then we have that [¢,(t),v“T] = —1 a.e. t, and HN ™! in OC}. Moreover we also
obtain, like in Theorem 5.1, that
vn(t)Xen — u(t)s weakly” as measure. (6.22)

Let us prove that u(t)s = ps = aH* LS. Given n(t,z) = ¢(t)v(z), with
¢ € D(]0,T[) and ¥ € D(RY), since v, (t)|cy is the strong solution of problem

. ( Dw . ) n
wy = div (m> , in (0,T) x int(C7),

w=Cr, on OCT x (0,7T),
U)(O) = Mac + CLV,,/.L y in int (O{l) .

. OT / nlon = / ' / thon= / ' / RO
T

- Un N-L
/O qs(t)( /c (60,90 + /mm» JpdH )

(6.23)

We have

[ [ o

1
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Now, by (6.22) we have

/ () = (u(t)s, ).

1

Moreover,

[ .70 0

1

and

/ en(t) vnliedH = — [ pard1 .
acy acy

Therefore, taking limits as n — oo, we obtain that

T
/0 ¢ (O)u(t)e,)dt =0, ¥ ¢ € D(0,TY).

Hence

4
dt
Thus, we have proved that

(u(t)s, 1) = 0in D'(J0,T[), V1€ DRN).

ult)s=ps, Vt>0,ifk<N-—-1.

In conclusion, under the assumption that p satisfies (H), with 8 = 2 we have
proved the following result.

Theorem 6.7. Assume that k < N — 1. Let pt = jiqe +aH* S, with a > 0, pac €
LY RN)YNL®(RY), S a compact k-manifold of class W>>. Then, if u(t) is the limit
solution of problem (1.1) corresponding to the initial condition i = pgc+ps obtained
as a limit of the solutions u,(t) of (1.1) corresponding to u,(0) = pac + pn * s, we
have u(t)s = ps and u(t)qe is the strong solution of problem (5.39). In particular
u(t) is the limit solution of problem (1.1) corresponding to the initial condition p.

Let us complete the proof in case that p € C§°(RY) be a radial decreasing
function such that p > 0, whose support coincides with B(0, 1), and [, p(z)dz = 1.
Let wno = pac + pn * ps and let u,(¢) be the solutions of (1.1) with u,(0) =
Uno- We know that u,(t) — U(t) weakly® as measures for some function U €
Cw ([0, T], Mp(RY)). Given € > 0, let p be a kernel satisfying (H), with 8 = 2 for
which we already know that Theorem 6.7 holds. Let &}, be the measure constructed
with the kernel p which satisfies Lemma 6.6. Let ©,(t) be the solution of (1.1)
corresponding to the initial condition 9,,(0) = g + a@),. By Theorem 6.7 we know
that 0, (t) converges to u(t) where u(t)s = ps for all £ > 0 and u(t)q. is the strong
solution of (5.39) corresponding to the initial condition %(0)4c(0) = ftqc. Since

lon * ts — pn * paslln < llon — pnllillpslls < ellpsllt
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we have that
[ (0) = 0 (0) 1 < €ll sl
and, therefore,
[un(t) = on(t)llr < €llpslly V¢ >0.
Letting n — oo we obtain
1U#) —u@®)ll < ellpsly ¥E>0.

Since this is true for all € > 0, we conclude that U(t) = u(t) for all ¢ > 0. This
concludes the proof of Theorem 6.7.

7. Guy David Measure Initial Conditions

Lemma 7.1. Let ug € L*(RY) be and u(t) the unique strong solution of (1.1) with
initial datum ug. Then, for every set E C RN of finite perimeter, we have

/ ut(t)dz < Per(E) a.e t>0. (7.1)

E

/ u(t)dz < / uodr +tPer(E) a.e. t>0. (7.2)
E E

Proof. Taking w = Tj(u(t)) — Xg as test function in the definition of strong
solution, we have

/ Xpu(t) < —/ (2(t), DXg) < Per(E).
RN

RN

Then, integrating in time, we get
/ Xg(u(t) —uo)dr < tPer(E). 0
RN

Proposition 7.2. Let p be a Guy David measure and u(t) the limit solution of
(1.1) corresponding to the initial condition p. Then, for any t > 0, u(t) is also a
Guy David measure.

Proof. Since wp, () — p and u,(t) — u(t) locally weakly* as measures, by
Lemma 7.1, for any « € RY and r > 0, we have

u(t)(Br(y)) < lim inf/ Up(t)dr < lim inf/ uo,ndx + t Per(B,(y))
B (y) B (y)

n—oo n—oo

< lim sup/ uo,ndx + tPer(B,(y)) < pu(Br(y)) + t Per(B,(y)) .
n—oo Br(y)

Now, using Theorem 2.1, we deduce that u(t) is a Guy David measure. O
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8. Distributional Solutions of (1.1) and the Equation —div(z) = u
In [8], extending a result of [22], the following result is established.
Lemma 8.1. Let f € L2(RN)NLN(RYN). The following statements are equivalent:

(i) The function u =0 is the solution of
weLQ(Rgl)lgllBV(RN)D(w)’ D(w) = /RN |Dw| + % /sz(w — f)%dz.  (8.1)
(ii) There exists z € Xo(RN) with ||2]|oc < 1 satisfying
—div (z) = f in D'(RY).
(ii)
1f11+

= sup{

Now we are going to study the equation —div(z) = u, where u € M(RM) N
BV (RM)*. We denote

ZRN) :={z € L=®RY ,RY) : div(z) € BV(RY)*}.

Given z € Z(RY) and u € BV (R"), we can define the distribution (2, Du) in RY,
by

(x)w(x)dx

cwe LARY) N BV(RN),/

|Dw| < 1} <1.
]RN

RN

(2, Du), @) 1= —(div(2), pu) py- pv — / 2 Vouds, Ve DRY).
]RN

Definition 8.2. Given u € M(RY) N BV(RY)*, we say that z € Z(RY), with
Iz]lco <1, is a solution of

~div(z) = p in BV (RM)*,
if
—div(z) = p in D'(RY),

and (z, Du) is a Radon measure satisfying

/ (2, Du)| < / [ Dul, / (2, Du) = (p,u)pv=,pv ¥ u € BV(RY).
RN RN RN
Theorem 8.3. Let u € M(RY)N BV (RN)*. There is a solution z € L= (RN RN)
with ||z||co < 1 of

~div(z) = p in BV(RY)*, (8.2)
if and only if

vy =5 { (o) ov-ovl o € BYV@EY), [ 1D <1} <1,

N
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Proof. If z € L®(RN RY) with |z]loc < 1 is a solution of (8.2), then for any
v € BV(RY) we have
< / |Dvl.
RN

b vl = | [ (z.00)
RN
Thus |[p]lpy@~)- < 1.

Assume that p € M(RY) N BV(RY)* is such that ||ul|py@y)- < 1. Let p €
Cs°(RY) with p > 0, [ p(z)dz =1 and pp(z) = rp(L). Let py = py * p. Then
pn € CX(RN)N L2RN) N LY RN) N BV(RN)* and

lunllBv@yy- < llpllBy@yy- < 1.
Thus, by Lemma 8.1, there is a vector field z, € L>®(RM,RY) with ||z,]c < 1
such that

—div(z,) = p, in D'(RY). (8.3)
We may assume that z, — 2z weakly* in L>®°(RY) and —div(z,) — ¢ weakly* in

BV (RN)* with ||z]|oc < 1 and [[£]| py@yy+ < 1. Thus we may pass to the limit in

(8.3) and obtain that £ = —div(z) in D'(RY). Thus, we have z € Z(R"Y). Let us
see that (z, Du) is a Radon measure in RY for all u € BV(RY). Let » € D(RY),
then by the integration by parts formula (2.6), we have

((z,Du), p) = (£ +div(zn), up)BV* BV — div(z, )updr — / z - Vudz
RN RN

= (€ + div(zy),u@)Bv+ BV + / (zn, — 2) - Vooudz + / o(zn, Du).
RN RN
Then, taking limits in n, we get

(G Du g < Nl [ 1Dl

consequently, (z, Du) is a Radon measure in RY and

/RN |(z, Du)| < /RN |Du .

(&, u)py- By = /]RN (z2,Du), Yuec BV(RY). (8.4)

Moreover,

Indeed, let p € C§°(RY) be such that ¢ > 0, p(z) =1 for x € B(0, 1), supp(p) C
B(0,2), and ¢, () = ¢(£). Since up,, — u in BV (RY) as n — oo and

—/ z-VQpnude%/ |lu| — 0,
RN n n<|lz]|<2n

as n — 00, we have

<§au>BV*,BV:/ (2, Du),

RN
for all u € BV(RY).
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Finally, let us prove that £ = u. For that, by an approximation procedure,
we only need to prove that (¢, u)pv+ gy = (U, u)py+- pv for any u € BV(RY) N
L>(RYN) with compact support. We know that p, * u(z) — u*(z)H" !-a.e. in RY
[2], hence, also j-a.e., since p vanishes on H™ 1 null sets [26, Theorem 5.12.4].
Then

Gadpvesy = [ wdp=tin [ p, s u(@)du(o)
RN nJRN

= lim w()pr * p(x)de = Umu, pn) By = BV

n RN

= lim(u, —div(z,,)) v+ Bv = (U, &) Bv+.BV - -

If u € BV(RY), we have that the equality (2.1) holds modulo an H~~! null
set. Then for any rectifiable set I' we have

<HN_1\ F7U>BV*,BV / ( )dHN_l( )

/ / (Xjusq) " (z)dtdHN (2)
/ /x[wt z)dHN " (z)dt

Z/ <HN 1 F,X[u>t]>BV*,Bth-
0

1 Let us consider first the simpler case of the Hausdorff measure restricted to a
rectifiable Jordan curve.

3 Proposition 8.4. Let I' be a rectifiable Jordan curve in R?. Then,

|H' _T|py- <1 if and only if T is a convex curve.

Proof. Assume that I' is a convex curve. Let u € BV (R?), u > 0. Then, by the
coarea formula, we have

(H'| F7U>BV*,BV:/ (H' T, Xpusq) v+, pvdt
0

g/OOOPer([u>t])dt:/Rz Du,

5 in other words, |[H! _T'||py~ < 1.
Now, assume that ||H!_T'|| gy« < 1. Suppose that I is not convex. Let V = co(T)
7 (where co(T") denotes the convex enveloppe of I'). Then Per(V) < H!(T"). Choose

€ > 0 small enough so that, if U = V + B(0,¢), then Per(U) < H(T'). Then we
have
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<H1 _TI, XU>BV*,BV = H (P > Per / |DXU|
hence, |H! _T||gy~ > 1, a contradiction. m|

We need to recall the following definition given in [1]. Let D C R be a set of
finite perimeter, D is said to be decomposable if there exists a partition (A4, B) of
D such that Per(D) = Per(A) + Per(B) and both |A| and | B| are estrictly positive.
D is said to be indecomposable if it is not decomposable.

Theorem 8.5. Let I;, i = 1,...,m be disjoint rectifiable Jordan curves in R2.
Then, if we take T := |J;~, I'; we have |H' _T|| gy~ < 1 if and only if the following
two conditions hold:

(i) T is convex for alli=1,...,m,

(ii) let C; the bounded open set with boundary T'; and let {i1,...,ix} C{1,...,m}
be a k-tuple of indices with 0 < k < m; if we denote by E;, ... ;. a solution of
the variational problem

k
min § Per(E) : E of finite perimeter, U Ci, CE CR?\ U Ciop s
Jj=1 it ik}
we have
k k
Per(E;, ..i,) > Y Per(Ci))=H'| [Ty, | . (8.5)
j=1 J=1

Proof. We recall that by the coarea formula, for any rectifiable set I' and u €
BV (RY) we have

(HN! _T,u)pys py = / (YT, Xpusq)pv- prdt.
0

Assume now that |[H! _T'||py+ < 1. Suppose first that exists i € {1,...,m} such
that T; is not convex. Let V = co(I';). Then Per(V) < H(T';). Choose ¢ > 0 small
enough such that, if U = V + B(0,¢), Per(U) < H!(T;). Then we have

(H' LT, Xu)pv+,pv > H'(T;) > Per(U) = / | DXy,
R2
hence, |[H! T| gy« > 1, a contradiction.

Suppose now that condition (8.5) does not hold. Then we have for suitable
{i1...,ix} that there exists E;, __; such that

k
Per(E;i,, i) < H* U
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Choose ¢ > 0 small enough such that, if U = E;, . ;. + B(0,¢), Per(U) <
'Hl(U?:1 I';;). Then we obtain

k
(H' _T',Xv)pv-pv > H' | |JTi| > Per(U) :/ |DXy| .
j=1 R

To prove the other implication we recall that if we take Q := (J!", C;, as it is proved
in [8], from (8.5) we have,

k
H' [Dn | JTy, | | < Pex(D,R*\ Q) < Per(D), (8.6)
j=1
for any bounded indecomposable set, of finite perimeter D [1], where {i1,...,ix} C

{1,...,m} is the set of indexes such that D U Ule C;, is connected. Let u €
BV (RY). Since [u > t] has finite perimeter, there exists a countable family {D,}
of indecomposable sets such that H!([u > t]) = >, Per(Dy) (see [1]). Then

(H*) F7U>BV*,BV:/ (H' T, X[usq)Bv= Bvdt
0

:/O Hl([u>t]ﬂF)dt:/O XP:HI(D,,mr)dt.

Now, if D,NT'= D, N Uf(:pl) Li(p), using (8.6), we finally obtain

k(p)

(Hl,P,u>BV*7BV:/ S H [ Dy | i, | at
0 p j=1

g/OOOXP:P(Dp)dt:/OOOPer([u>t])dt:/Rz Dul.

O

Definition 8.6. Let u € M,(RY). We say that u(t) is a distributional solu-
tion of (1.1) in [0,T] x RN corresponding to the initial condition u(0) = pu
if w € C>(0,T], Mp(RY)), u(t) — u(0) weakly* as measures and there exists
2z € L*®((0,T) x RY) with ||zl < 1 such that

(2(t), DTx(tac)) = | DTk (uac(t))| ae. t€(0,T), Vk>0, (8.7)
and
uy = div(z) in D'((0,T) x RY) . (8.8)

Let p € My(RY) be a singular measure. Then u(t) = pu is a distributional
solution of (1.1). Indeed, it suffices to take z = 0. Note that u(t) satisfies the family
of inequalities (5.42), hence is an entropy solution of (1.1) in this sense. Thus, if
p=aH¥"1_ S where S is a compact N — 1-manifold of class W3, and o > 0,
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we cannot take condition (5.42) as the notion of entropy solution for (1.1) but a
different family of inequalities which one could obtain as in Sec. 5.1. Assume now
that ||u|l gy @~y < 1. Then u(t) = (1 —t)u is also a distributional solution of (1.1).
In this case, we take z as a solution of —div(z) = p with [|z]|e < 1.

Remark 8.6. Let I';,i = 1,...,m, be convex curves and let C; denote the bounded
open set with boundary I';. Let I' = Uzil I';. We assume that T'; are of class C1:!
satisfying

Per(C;
ess sup kr, (p) < er(C:) ;
per |Cil
where kr, denotes the curvature of I';, and the assumption (ii) of Theorem 8.5. Let
us see that the limit solution of problem (1.1) corresponding to the initial datum
uo =aH' T, a>0is given by

(o — 2t)H* F—i—ZPer tXe, t€[07%]7
u(t) = (8.9)

" Per(C;) n
a—1)"Xg,, t
; TR

v
(] e}

Indeed, by results in [8] we know that there is a vector field £ € L°°(R?,R?) with
[€]loc < 1 such that

—div(¢) = (8.10)
and
v =-1 i=1,...,m,
where v is the outer unit normal to Cj, i = 1,...,m. Now, for ¢ € [0, 5], we define

the vector field

/ ) =), zeli, i=1,....m,

Then, u; = dive’ in D'((0, §) x C;) and we have that u(t)|c, is the strong solution
of (5.26) in (0, §) x C;. In the same way we prove that u(t)|gz\ym @, is the strong
solution of (5.26) in (0, %) x R?\ U™, C;. Thus, by Theorem 5.10, u(t) coincides

’ 2

in [0, §] with the limit solution of (1.1) corresponding to the initial condition u.

For times ¢ > 5, the limit solution u(t) is described by the strong solution of (1.1)

corresponding to the initial data u(§) = §>.7° Pelrc(ii)xci and is given by (see

[8])

( +tx) i

(__Q Xe,(x) t>0,2 RV,
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Appendix

In this Appendix, for the sake of completeness, we outline the proof of (3.2) using
the ideas of Minkowski’s content [2].

First of all, we note that, if f is a continuous function and S is a countably
HF-rectifiable set, we can write its integral respect to the Hausdorff measure as

/ f(2)dHE (2)
S

= sup {Ztler}g, fYH*(K;); K; C S compact, pairwise disjoint} . (A1)

3

We denote by Gy, the set of orthogonal projections onto k-dimensional subspaces
of RY. A slight modification of the proof of [2, Proposition 2.66] give us the following
result.

Proposition A.1. For any countably H*-rectifiable set E,

/E f(x)dm*

= sup {Ztlenigi fOL*(mi(K;)) : 7 € Gy, K; C E compact, pairwise disjoint} .

3

(A.2)

With the same technique used to prove [2, Proposition 2.101 and Lemma 2.102],
we can stablish the following two results.

Proposition A.2 (Lower bound). For any countably H*-rectifiable closed set S,
if [ is a positive continuous function, the following inequality holds

2)dLN (2
J1, 1 (2)1 k( ) z/f(Z)de(Z%
S

lim inf ~
p—0F WN—EP"

where 1,(S) :={z € RN : dist(z, S) < p}.
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Lemma A.3. Let S C R” be a countably HF-rectifiable set and T > 1. Then, for
any B > 0, H*-almost all of S can be covered by a sequence (S;) of pairwise disjoint
compact sets with diameter less or equal than B satisfying

<THF(S;) < . (A.3)

In the next Theorem we need to assume that S satisfies the following density
lower bound

v(B,(z)) >vpF, YzeS, pe(0,1), (A4)
for a suitable measure v absolutely continuous with respect to H*.
Theorem A.4. Let S C RY be a countably rectifiable compact set and assume that

(A.4) holds for some v > 0 and some Radon measure v in R absolutely continuous
with respect to H*. Then, we have

Sy s FALN ()

N-—k ’

/S F(2)aHE(z) = lim (A5)

p—0t  WN_kP

for all continuous function f.

Proof. First note that it is enough to prove (A.5) assuming f is positive. By
Proposition A.2, we only have to prove one inequality, and we may also assume
that [ f(z)dH*(z) < .

Given 1 > 0, as f is continuous, we can find S > 0 such that if K is a subset of
RY whose diameter is less than 3, we have that the oscillation of f in K, oscy(f),
is less or equal than 7.

On the other hand, given € > 0, by Lemma A.3, we can find compact pairwise
disjoint sets .S; with diameter less than 3 such that

H* <S\U5‘i>=0,

and

) dLN (2)
N—k

lim sup o
p—>0+ 'LUN—kp

< (14 OH"(S)).

Moreover, we have that there exists n such that v(S) < e+ >, v(S;).
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1 Let E =S\, S; and, for A, p fixed, define
S'p = {x € S :dist (x, U S¢> > )\p} .
3 If we apply now Besicovitch’s covering theorem (see [2]), we can find a cover of
S by balls {Bxp(mj)}je 7 centered at points of S with overlapping controlled by
5 €. By the definition of S, and the lower estimate bound (A.4), we can control the

cardinality of such J since
D A" <D w(Big(ay)) < Ev (IA,)<S> U &) < &e,
7 jeJ jEJ i=1

for p sufficiently small. Thus, we obtain that the cardinal of J is less than %.

9 As a consequence,
~ wn(1+20)Nee -
LN (T140)0(50)) <D LY (Bgan()) < TPN K.
; v
jeJ
11 We notice now that we have the following inclusions

n n

1,(S) C I(E) U | 1,(S:) € T4, (Sp) U | 1,(S5) -

i=1 =1

Therefore, having in mind Lemma A.3 and (A.1), we have

. Jrs) Iz
limsup —4~———
pHQ-%— WN — kp
< limsup S5 2L
- p—0+ wN*kpNik
[ L f(z)deN I S
+ limsup Dica L (50) N F < |1 |loo lim sup MLM
p—0+ WN kP p—0t  WN—kp
. f[ (S) wy (14 20)Nee
+ lim sup p— < oo—
> timup LSS < 2
n I SZ
+ Zlimsup sup ﬂz)%

i=1 POt 2€l,(5) WN—kP

Sce+(l+e)§n:<hmbup inf f(z) + )H’“(Si)

i—1 p—0t+ z€l, (S3)

<Ce+(1+e) </S fdHE +nHk(S)> .

13 We conclude by taking limits as €, n — 0. O
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