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Abstract

We prove existence and uniqueness of entropy solutions for the quasilinear elliptic equation
diva(u, Du)=v, where 0<v € LY(RY)NL®(RN), a(z, &) = V: f(z, &), andf is a convex function
of & with linear growth ag/£|| — oo, satisfying other additional assumptions. In particular, this class
of equations includes the elliptic problems associated to a relativistic heat equation and a flux limited
diffusion equation used in the theory of radiation hydrodynamics, respectively. In a second part of
this work, using Crandall-Liggett's iteration scheme, this result will permit us to prove existence and
uniqueness of entropy solutions for the corresponding parabolic Cauchy problem.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We are interested in the problem
u —diva(u, Du) =v, in R", (1.1)

wherev € LY(RY) N L®(RN), v>0, a(z, &) = Ve f(z, &) andf is a function with linear
growth as||¢|| — oo. )

Our purpose in this paper is to define a notion of entropy solution for (1.1), and to prove
existence and uniqueness results when the right-handvsgla nonnegative function in
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LY(RY) n L (RY). Besides the fact that the elliptic problem (1.1) is interesting by itself,
this result permits us to associate to the expressidiva(u, Du) an accretive operator

B in L1(Q) whose domain is contained {LY(RY) N L°(RY))* (which amounts to
consider the right-hand sideof (1.1) in (LY(R"Y) N L>°(R"))T) and whose closurg?

is m-accretive (hence, it generates a nonlinear contraction semi@raipin L1(RY)*
[11,17] However, we have not been able to characte#za distributional terms. In spite

of this, the knowledge of the operatBrand the fact that, ifi is the entropy solution of
(1.1), we have thatu|l . < ||v|l, permit us to use Crandall-Ligget'’s iteration scheme and
define

u(t) ;= T(Hug= lim (1 + £B>_ uo, ug € (LYBRN)NnL®@RV)T,
n—o00 n

which is a semigroup solution of the Cauchy problem

ot (1.2)

: Qe _ divau, Du), in Qr =(0,T) x RV,
u(0, x) = ug(x), in x e RV,

In a subsequent woillé] we shall define the notion of entropy solution for (1.2) and prove
that the semigroup solutian(z) is an entropy solution. Moreover, we shall also prove that
entropy solutions of (1.2) are unique. As a technical tool we shall use some lower semi-
continuity results for energy functionals whose density is a fungtianu, Du) convex in
Du with linear growth rate agDu| — oo (se€[18,20).

Particular instances of problem (1.2) have been studigt?iyi9] whenN =1. In these
papers the authors considered the problem

Ou .
= (@p)b(uy)),, in (0, T) xR, (1.3)
u(0, x) = uog(x), inx € R,

corresponding to (1.2) wheN = 1 anda(u, u,) = ¢(u)b(u,), wherep : R — RT is
smooth and strictly positive, arfl : R — R is a smooth odd function such thiat> 0
and lim;_, .o b(s) = bs. Such models appear in the theory of phase transitions where the
corresponding free energy functional has a linear growth rate with respect to the gradient
[25]. As the authors observed, in general, there are no classical solutions of (1.2). Moreover,
they defined the notion of entropy solution and proved exist§t®jeand uniquenegd.9]
of entropy solutions of (1.2). Existence was proved for bounded strictly increasing initial
conditionsup : R — Rsuchthab(ug) € C(R) (whereb(ug(xo0)) =b if ug is discontinu-
ous atxg), b(uy(x)) — 0asx — Fo0[12]. The entropy condition was written in Oleinik’s
form and uniqueness was proved using suitable test functions constructed by regularizing
the sign of the difference of two solutions.

In [13], the author considered the following Neumann problem in an intervgt of

Z—L; = (@, ux))y, in (0,7) x (0, 1),

uy(t,0)=u,(t,1) =0, intre 7)),
u(0, x) = ug(x), inx e (0,1),

(1.4)
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wherea(u, v) is a function of clas€1*([0, co) x R) satisfying other additional assump-
tions. The author associatedmraccretive operator te (a(u, u,)), with Neumann bound-

ary conditions, and proved the existence and uniqueness of a semigroup solution of (1.4).
An example of the equations consideredl8] is the so calleghlasma equatioifsee[21])

Ou u?y, .

i <1+ Mlhl)X’ in (0, T) x (0, 1), (1.5)

where the initial conditiong is assumed to be positive. In this caseepresents the tem-
perature of electrons, and the form of the conductiaity, u.) = u®?u,/1 + ulu,| has

the effect of limiting the heat flux. But, as far as we know, existence and uniqueness results
for higher dimensional problems have not been considered in the literature. This was the
purpose of our papefd,5] in which we studied the Neumann problem for Lagrangians
satisfying the following coercivity and linear growth condition:

Coll<ll = Do< f(z, &) < Mo(1+ [[CID), (1.6)

for some positive constan&), Mp. Now, there are some relevant cases likerdiativistic
heat equatior{see[14,26)

D
uy = viv [P} 1.7)
JVu? + a?|Dul|?

for which the Lagrangiary (z, &) = v/a?|z|y/z2 4 a?|¢|2 does not satisfy (1.6). Observe
that, in this casef (z, &) satisfies the following condition:

CoIEN = Do(2) < f(z, ) < Mo@) (<] + D), (1.8)

forany(z, £) € Rx RY, and some positive and continuous functi6iys Do, Mo, such that

Co(z) > 0 for anyz # 0. Eq. (1.7) was introduced by Ph. Rosena(PiB] to overcome the
nonphysical dependence of the flux on the gradient as predicted by the classical transport
theory. He imposed the acoustic speed as an upper bound of the permitted propagation speed
in a medium. This provides the means to control the growth of the flux; flux saturates as
the gradients become unbounded. Let us also mention that Eq. (1.7) was recently derived
by Y. Brenier by means of Monge—Kantorovich’'s mass transport thgay As Brenier

pointed out in[14], this relativistic heat equation is one among the varithus limited
diffusion equationsused in the theory of radiation hydrodynami@<]. Indeed, a very

similar equation

. uDu
Ur = vdiv <m> (19)

can be found ir24].

Finally, let us explain the plan of the paper. In Section 2 we recall some basic facts about
function spaces, functions of bounded variation, denotes By(2), Green'’s formula, and
lower semi-continuity results for energy functionals definedvi(2). In Section 3 we
state the main assumptions on the Lagrangjiaacall the meaning of expressions of type
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f (u, Du) for functionsu in BV (R") and define an associated functional calculus, and
finally define the notion of entropy solution for the elliptic problem (1.1). In Section 4 we
prove an existence and uniqueness result for (1.1) when the right-hands&deonnegative
function in LY(RY) N L®(RY). In Section 5 we define an accretive operator associated to
—diva(u, Du) whose closure generates a contraction semigroug {&”" )", providing a
solution of (1.2) in the semigroup sense. Finally, in Section 6 we state without proof the
analogous results for the Neumann problem.

2. Preliminaries
2.1. Some function spaces. BV functions

Let us start with some notation. We denote 5§ and #¥~! the N-dimensional
Lebesgue measure and e — 1)-dimensional Hausdorff measure Rl", respectively.
Given an open se® in R we shall denote by(Q), or CSO(RN), the space of infinitely
differentiable functions with compact supportih The space of continuous functions with
compact support iflR" will be denoted byC¢(RY).

We shall use several notations borrowed friir@]. Let M (R") the set of Lebesgue’s
measurable functions frof" into R. We denote by. (R") the spacé. (RY) := LL(RY)+
L>®(RY), which equipped with the norm

1100 := inf{lluglls + lluzlloo : u = u1 4+ uz, us € LARY), uz € L*(RN)}

is a Banach space. If we denote

Lo(RY) := {u e M(RY): /N(|u| — kT <o0 Vk>0},
R

12400

we have thaLo(RY) = LY(RY) N Lo(RY) [10]. The dual space dfo(R") is iso-
metrically isomorphic td.1"°(RY) := LY(RY)NnL>®(RY), whenL1">°(R") is endowed
with the normjlu(l1nee := max{|lul1, lulle} [10].

Givenu, v € M(RY), we shall write

u<v, if and only iff j(u)dng Jj(v)dx,
RN RY

forall j € Jo:={j : R — [0, +o0], convex l.s.c, j(0)=0}.

Due to the linear growth condition on the Lagrangian, the natural energy space to study
(1.1) is the space of functions of bounded variation. Recall th@tig an open subset of
R, afunctionu € L1(Q) whose gradierbuin the sense of distributions is a vector valued
Radon measure with finite total variation@hs called &unction of bounded variatiori he
class of such functions will be denoted BW (Q2). Foru € BV (£2), the vector measure
Du decomposes into its absolutely continuous and singular parts D%u + D*u. Then
Du=Vu ¥V whereVu is the Radon—Nikodym derivative of the measDrewith respect
to the Lebesgue measut&”. We also splitD*« in two parts: thgump part Du and the
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Cantorpart D%u. It is well known (see for instandé]) that
Diu = (ut — u_)vw%”N_lLJu,

where J, denotes the set of approximate jump pointsupfand v, (x) = Du/|Du|(x),
Du/|Du| being the Radon—Nikodym derivative Biu with respect to its total variation
| Du|. For further information concerning functions of bounded variation we refdr, 22]
or[27].

2.2. Lower semicontinuity of functionals defined on BV

Let Q2 be an open subset &" . Given a Borel functiory : Q x R x RN — [0, oof, we
consider the energy functional

G(u) :=f g(x, u(x), Vu(x)) dx,
Q

defined in the Sobolev spadé’-1(Q). In order to get an integral representation of the
relaxed energy associated wiii.e.,

Gu) = inf {lim inf Gun) : uy € WHHQ), wy > u e Ll(Q)},

{u)l} n—

Dal Maso introduced il 8] the following functional foru € BV ():

Rg(u) = f g(x,u(x),Vu(x))dx+/ go (x,ﬁ(x), ﬂ()c)) | DCu|
Q Q [Du|

Uy (x)
+/ <f : L, s, vu(x))ds> doaN"1(n), (2.1)
Ju u—(x)

where the recession functi@f of g is defined as

(2. = lim 1g (x,z, §)_ (2.2)
t—0t 1t

In case thaf is a bounded set, and under standard continuity and coercivity assumptions,
Dal Maso proved if18] that%(u) = %, (u) for all u € BV (). Recently, De Cicco et al.
[20], have obtained a very general result aboutthdower semi-continuity o2, in BV,
which contains, in particular, the following statement.

Theorem 2.1. Let Q be an open subset 8f¥ andg : @ x R x RY — [0, oo a locally
bounded Carathéodory function such tffat every(z, ¢) € R x R", the functiong (-, z, &)
is of classC?. Let us assume that

(i) g(x,z,-)is convexirR" forevery(x,z) € Q x R,
(i) g(x, -, &) is continuous irR for every(x, &) € Q x RV.

Then the functionalZ, (u) is lower semi-continuous respect to th&Q)-convergence.
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Let f : R x RY — [0, oo a continuous function, such that there exigt and
170z, &)< M€ for anyz € R, ¢ € RY. Given a functioru € BV(RY), we define
the Radon measurg(u, Du) in R as

(f(u, Du), ¢) := Ry ), ¢ e Cc(RY). (23)

Let us observe that if°(z, &) = p(2)Y°(¢), whereg is Lipschitz continuous ang® is
an homogeneous function of degree 1, by applying chain’s rulB¥&functions (se¢1]),
we have

Ry ) = / () f (u, Vu)dx+/ P()y° <|D |>|D Jo)l, (2.4)

whereJ,(r) = fo ¢(s) ds. Then, under these conditions, we have
fu, Duy* = y° <|D |) 1D T (u)]. (2.5)
2.3. A generalized Green’s formula

We shall need several results frg8j (see alsq3]) in order to give a sense to integrals
of bounded vector fields with divergencelid integrated with respect to the gradient of a
BV function. Following[8], we denote

X1(RV)={z e L®@RY,R") : div(z) € LY(RY)}. (2.6)

If z e X1(RY)andw e BV (RY)NL>®(RY)we define the functionak, Dw) : CZ(RY) —
R by the formula

((z, Dw), @) := —/ we div(z) dx — / wz-Vedx. (2.7)
RV RN
Then(z, Dw) is a Radon measure i&", and
/ (z, Dw) =/ z-Vwdx, VYwe WHYRN) N LO®RY). (2.8)
RY RY

Moreover, (z, Dw) is absolutely continuous with respect tbw]|. Its Radon—Nikodym
derivative, denoted bg(z, Dw, x), is a| Dw| measurable function fro®" to R such that

/(z, Dw) =f 0(z, Dw, x)|Dw|, for any Borel setB € R". (2.9)
B B
By writing

z-D'u = (z, Du) — (z- Vu)d&V,

we see that - D’u is a bounded measure.
We have the followingsreeris formulafor z € X1(RY) andw € BV(RY) n L>®(RY)
[8]:

/ wdiv(z) dx + / (z, Dw) =0. (2.10)
RY RY
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3. The notion of entropy solution for the elliptic problem
3.1. Assumptions on the Lagrangian f
Our purpose in this section is to introduce the main assumptions on the Lagraagan
to give a sense to the expression
v=—div a(u, Du), in R". (3.1)

We assume that the Lagrangign R x RY — R* satisfies the following assumptions,
to which we refer collectively as (H):

(Hy) fis continuous ok x RY and is a convex differentiable function éfsuch that
Vef(z,8) e C(R x RY). Further we requiréto satisfy the linear growth condition

Co@ € = Do(2) < f(z, ) < Mo() (<l + 1), (3.2

forany(z, ¢) € R x RN, and some positive and continuous functi@ns Do, Mg, such
thatCo(z) > O for anyz # 0. Moreover, we assumg® exists.

We consider the functioa(z, &) = V¢ f(z, £) associated to the Lagrangi&nBy the
convexity off

az,8) - =< fzm— fz,9) (3.3)
and the following monotonicity condition is satisfied
(az,n) —a(z, 9) - (n—¢=0. (3.4)

Moreover, it is easy to see that for eakhl- 0, there is a consta = M (R) > 0, such that

laz, OI<M, V(& eRxRY, [z]<R. (3.5)
We also assume thatz, 0) =0, for all z € R anda(z, &) = zb(z, &) with

Ib(z, &)|<Mo, V(z.&) € Rx RY,|z]<R. (3.6)
We consider the functioh : R x RY — R defined by

h(z, &) ==a(z,¢) - <.
By (3.4), we have

h(z,&)>0, VéeRY, zeR. (3.7)
Moreover, from (3.3) and (3.2), it follows that

Co@IICll — D1(z) <h(z, O <ML, (3.8)

forany(z, &) € R x RY, |z]<R, whereD1(z) = Do(z) + f(z, 0). We note that the left
inequality holds for anyz, &) € R x RY. Moreover, we assume that there exist constants
A, B> 0anda, f>1, such that

|D1(2)| < Alz|* + Blz|F,  for anyz € RV, (3.9)
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This condition will be used to prove some estimates during the proof of existence, and we
assume it for simplicity, since a more general condition could be used.

(Ho) We assume thdia/0¢&; (z, &) € C(R x RY) foranyi =1,..., N.

We assume that

(Ha) h(z, &) = h(z, &), forallz € Rand¢ € RY andhP exists.

Observe that we have

Co@ €<z, O <M, for any (z,¢) € Rx RY, |z|<R.

(Ha) 1Oz, & =h0(z, &), forall ¢ € RN and allz € R.

(Hs) a(z, &) - n<hOz, n), forall &, n € RN and allz € R.

(He) We assume that%(z, &) can be written in the form®(z, &) = @(2)y°(¢), where
@ is a Lipschitz continuous function such thatz) > 0 for anyz # 0, andlp0 is a convex
function which homogeneous of degree 1.

(H7) For anyR > 0, there is a constaidt > 0 such that

@z, &) —a, &) - (E—O|<Clz =2 1E= ¢, (3.10)

forany (z, &). (¢, &) € R x RV, |z, |2|<R.
Observe that, by the monotonicity condition (3.4) and using (3.10), it follows that

@i &) —aG d) - E-H=—Clz—21E- &, (3.11)

forany(z, &), 2, &) € R x RY, |z|, [Z]<R.
Let us observe that under assumptigHg) and(Heg), applying (2.5), we have

Du

f(u, Du)* = h(u, Du)* = y° (m) |DS J (). (3.12)

Remark 3.1. There are physical models for plasma fusion by inertial confinementin which
the temperature evolution of the electrons satisfies an equation of type (1.2) aihere=
12/%/2€/1+|z]|¢| which corresponds t@(z, &) = |z[¥/2(¢] — |z1%/2 In (1+ |z]|¢]) [21], (see
also[13] for a mathematical study in the one-dimensional case). It is easy to check that
(Hy) (in particular (3.2) and (3.8)) holds for ary, ) € R x R". Notice that condition

(H2) holds. We observe thaP(z, &) = |z|%2|¢| and(H3)—(He) hold. Finally, to checkHr)

we observe that

5 73/%¢ %2¢|E
21+4zE A +z)¢)?

oa
a(zs é) =

and therefore

da 7 1
2. Ol <=7V
oz (z, 9 5 2177,

forany(z, ) € R x RY. From this, it follows that

la(z, &) —a(, &)< 5 RY?|z - 2],
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for any (z, &) € R x RY, |z|<R. Thus also(H7) holds. In this case, the results below
will prove existence and uniqueness of entropy solutions of (1.2) for any initial condition
ug € L¥(RY) n LY(RY), up>0.

Remark 3.2. The function f(z, &) = v/a®|z|\/z% + a2?||? satisfies the assumptions

_ i £y — |21 - i i ]
(H1)—(H7), with a(z, &) = v v This particular case is related to the so-called
relativistic heat equatiotfsee[14,26))

. D
ur = vev [ =424 (3.13)
Ju? + c12|Du|2

with a =v/c, c being a bound of the propagation speed, ahding a constant representing
a kinematic viscosity.

Let us mention that, as pointed out by Brenier{1d], this relativistic heat equation
can be derived using Monge—Kantorovich’s mass transport theory. On the other hand it
is one among the varioutux limited diffusion equationgsed in the theory of radiation
hydrodynamicg$24]. Indeed, a very similar equation

. D
us = vdiv <_) (3.14)
u+ 2| Dul

can be found if24]. In this case, the Lagrangidmassociated with the above equation is

[z, 8 =cz (Iél _— log <1+ l|Cf|>>
A% cZ

and satisfies the assumptiahé; )—(H7).
3.2. A functional calculus

We need to consider the following truncature functions. ket b, let T, ,(r) =
max(min(b, r), a).As usual, we denotE =T_; ;. We also consider the truncature functions
of the formT;b(r) =T, ,(r) — (I € R). We denote

T ={Tup : 0<a<b}, Tt .= {Tal,l7 :0<a<b, | €R, T!

a

=0}
We need to consider the function space
TBVTRY) :={ue LXBRY)" : T(u) € BVioc(RY), VT € 7,}

and to give a sense to the Radon—-Nikodym derivafiveof a functionu € TBV*(R"Y).
Using chain’s rule foBV-functions (see, for instancH,]), and with a similar proof to the
one given in Lemma 2.1 9], we obtain the following result:

Lemma 3.3. For everyu € TBVT(RY) there exists a unique measurable function
RY — RY such that

VT,5(u) = vy PNae, VT,peT,. (3.15)

a<u<b]»
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Thanks to this result we definex for a functionu € TBV+(R") as the unique function
v which satisfies (3.15). This notation will be used throughout in the sequel.

We denote by? the set of Lipschitz continuous functign: [0, +oco[ — R satisfying
p'(s) = 0 for slarge enough. We write?™ := {p € 2 : p>0}. We recall the following
result (2], Lemma 2).

Lemma 3.4. If u € TBVT(RY), thenp(u) € BV(RY) for everyp € 2 such that there
existsa > 0 with p(r) = 0 for all 0<r <a. Moreover Vp(u) = p'u)Vu £"-a.e.

For any functionq, let J,(r) denote the primitive of, i.e., J,(r) = fg q(s)ds. Let
S € 2 andT =T¢,. Given a functionu € TBV*(R"), by Lemma 3.4, we have
S)T (), Jrrs(u), Jrg(u) € BV(RY). Moreover, it is easy to see that

D(SG)T ) = DJ rs () + DJ 75 (). (3.16)
Hence, ifz € X1(R"Y), we have
(z, D(SW)T (w))) = (z, DI 715(u)) + (Z, DJ 75 (u)). (3.17)

Letg : RY x Rx RY — [0, oo be a function satisfying the assumption of Theorem 2.1,
andT € 7 *. Then there is somg, , € 7, and a constant € R such thatl’ =7, , — c.
Observe that

r=T()+c atthe values of € R, whereT’(r) = 1. (3.18)

Let us consider the functional
R(g, T)(u) := /N g, ux), VT w(x)) dx, ue WHL(RY).
R
Foru e TBVH(RYM), if we define

H(g, TYw) = Ry (Tap(u)) + / (g(x, u(x). 0) — g(x, a, 0)) dx

[u<al

+ / (8(x, u(x),0) — g(x, b, 0)) dx, (3.19)
[u=Db]
by Theorem 2.1, we have th#t(g, T) is lower semi-continuous ifi BV (R") with respect
to L1(RY)-convergence. Observe that, with this notation, we have
R(g, T)(u) = R(g, Tap)u).
Moreover, ifu € WL-L(RY), using (3.18) we have
R(g, T)(u)=R(g, T)(u).

Since it will be sufficient for our purposes, let us assume ghddes not depend on If
u e TBVH(RY) andT € 7T, we define the Radon measwe:, DT (1)) in RY by

(g, DT W), §) := R(pg, T)w), ¢ € Co(RY). (3.20)



F. Andreu et al. / Nonlinear Analysis 61 (2005) 637 —-669 647

If T € 7,,thenT (r) =r foranyr € R such thatt’(r) = 1, and, using (3.19), (3.20), and
(2.3), we have that

(g(u, DT (), ) = (¢(T (), DT (u)), ¢)

+f[ o P(g(x, u(x),0) — g(x,a,0)dx

+ / ¢ (g(x, u(x),0) — g(x, b, 0)) dx.
[u>b]

LetS € 2T andT € 7 ©.Wedenote bys(u, DT (1)), hs(u, DT (1)), the Radon measures
defined by (3.20) witfg (z, &) = S(z) f(z, &), andg(z, &) = S(2)h(z, £), respectively.
Sinceh(z,0) =0, forallz e R,if S, T € 7, with T =T, , — ¢, we have

hs(u, DT (u)) = hs(Ty p(u), DT (u)) = hs(T,pw), DT 4.5 (1)) (3.21)
and, by (2.5),
(fs(u, DT @)))* = (fs(Tap (), DT 4.p(u)))°
=V <%) D" Jsp(Ta.p @) (3.22)

Similarly, we have

(hs(u, DT u)))* = (hs(u, DT 4.5 ()))’

DT, »(u)
0 a,b s
= ————— | |D* Js, (T, . 3.23
Y <|DTa,b(u)|)| So(Ta,p(u))] (3.23)
Note that both singular parts are identical. By the representation formulas in Section 2.2,
the absolutely continuous partbf(u, DT (u)) is S(u)h(u, VT (u)). Similar identities are

true whenS = 1.

3.3. The notion of entropy solution
We introduce the following concept of solution for problem (3.1):

Definition 3.5. Givenv € L>®(R") n LYR"), v>0, we say thaiu >0 is anentropy
solutionof (3.1) ifu € TBVT(RY), anda(u, Vu) € X1(R") satisfies

v=—div(a(u, Vu)), in Z'(RY), (3.24)
hs(u, DT (u)) <(a(u, Vu), DJ5(u)) as measuregS e 2, T € 7+, (3.25)

h(u, DT (u)) < (a(u, Vu), DT (1)) as measuresT € 7 . (3.26)
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Note that (3.25) and (3.26) are equivalent to

hs(u, DT ())* <(a(u, Vu), DJ5(u))® as measuregS ¢ 2, T € 7+
(3.27)

and
h(u, DT ())* <(a(u, Vu), DT (1))* as measure¥7 € 7 T, (3.28)

respectively. The inequalities in (3.25) will be useful to prove uniqueness and the ones
in (3.26) are convenient to prove Lemma 5.2. We could have restricted the inequalities in
(3.25)to hold only fors, T e 7+, butusingS € 2 turns out to be convenient to simplify

the proof of uniqueness.

4. Existence and uniqueness of entropy solution
This section is devoted to prove the following existence and uniqueness result.

Theorem 4.1. Assume that assumptioft$) hold. Thenforany0<v € L®(RV)NLL(R")
there exists a unique entropy solutiore 7BV T (RY) N L= (R") of the problem

u —diva, Du)=v, in RN, (4.2)
Moreover givenv, v € L>(RY)*, if u, w are bounded entropy solutions of the problems
u—divaw, Du)=v, in RV
and
u—diva@, Du)=v, in RY,

respectivelythen

/(u—ﬁ)+</ w—-D".
RN RN

Proof. Existence of entropy solutionid/e divide the proof in different steps.

Stepl: Approximation and basic estimatdset 0<v € L®°(RY) n LY(RY). For ev-
eryn € N, considera,(z, ) = a(z, &) + ,—llij. As a consequence of the results about
pseudomonotone operators given %] we know that for any: € N there existss, €
wL2(RY) N L>°(RY) such that

/ (w —up)(v —uy) dx < / ay(uy, Vuy) - V(w —uy) dx,
RY RY

v we WHRN). (4.2)
Let

Po:={p e C®R) : 0<p’'<1, suppp’) compact 0¢ suppp)}.
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Givenp € Py, takingw = u, — p(u,) as test function in (4.2), we obtain

/ unp<un)<f opitn).
RN RN

Then, by results if10], it follows thatu, <v, for alln € N and consequently, we have

luall, <llvll,, foralneN, forallpell,oo] (4.3)
and

lunllince S llvllinee,  for all n e N. (4.4)
Moreover,u,, >0 and

{u, : n € N} is a weakly sequentially compact subsetlaf(R"). (4.5)

Takingw = 0 in (4.2), applying Young’s inequality and using (4.3) we get

1
/ a(u,,,Vu,,)-Vu,,dx—i——/ |Vu,,|2dx</ up(v —uy)dx<C,
RN n RN RN

for some constant > 0 depending offjv||2. Since, by (3.8), we have
a(un, Vuy) - Vup 2 Co(un)|Vun| — D1(un),

using (3.9), we obtain

/ IVQ(un)IdX<C+/ Di(up) <M1, VneN (4.6)
RN RN
and
1 2
—f IVup[“dx<C,  VneN, (4.7)
n Jrvy

where Q(r) is a primitive of Co. By (4.5) and (4.3), by extracting a subsequence if is
necessary, we may assume thatconverges weakly itLo(R") and inL2(R") to some
nonnegative functiom asn — -+oc. Moreover, by (4.4), we have thakQ: € L®(RY) N
L1(RY). On the other hand, if @ a < b, by the coarea formula and (4.6), we have

b b
/[RN IVTa ()| = / |DX[un<[]|(RN) df:/ D10y < Q(t)]|(RN) dt
a a

o(b) RV ds
= D" s —
/;(a) | /{[Q(un)ék]l( ) Q/(Q_l(s))
1

1 +00 N M
N D RY)yds < ————.
inf [a,b]CO /—oo | X[Q(u”)gs]l( ) ds inf [a,b] Co

Thus, T, »(u,) — T4p(u) in Llloc([REN). Consequently, we may assume thatconverges
almost everywhere ta. Then, by Vitali's Convergence Theorem, we get that— u in
L1(RY), and using the above estimate on the gradients we obtain tha BV (RY).
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Observe that by (3.5) we may assume that

a(un, Vu,) — z asn — oo, weakly* in L (RN, RY). (4.8)
Since, by assumption we have tlt:,,, Vu,) = |u, |b(u,, Vu,) with |b(u,, Vu,)| < Mo
(where the constariifg is independent ofl), [ty |lco < ||V]lco, @Ndu,, — u a.e. as — oo,
we may assume that

b(un, Vuy) — z, asn — oo, weakly* in L¥(RY, RY)
and

Z=uz,. (4.9)

On the other hand, by (4.7),

%|wn| — 0, in L%RN). (4.10)
Given¢ € Z(RV), takingw = u, £ ¢ in (4.2) we obtain

/RN ¢ —uy)dx = /IRN a(uy, Vuy) - Vo dx + % /RN Vu, - V¢ dx.

Lettingn — 400, having in mind (4.8) and (4.10), we obtain

/(v—u)d)dx:f z-V¢dx,
RY RN

that is,

v—u=—div(z), in Z'(R"Y) (4.11)
and

diva, (un, Vi) — div(z), weakly in L2(RY). (4.12)

Note that by (4.11), we hawee X1(RV).
Step2: Identification ofz(x).

Lemma 4.2. We have
z(x) = a(u(x), Vu(x)), ae xeRV. (4.13)

Proof. We use Minty—Browder’s technique. LetOa < b, let 0< ¢ € Cé(RN) andg €
C2(RY) n wl>(RV). By (3.4), we have

/ platun, Vuy)—a(u,, Vg) - Vu, — )T, ,(u,) dx>0.
RY ’
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Now, since
/N da@un, Vuy) - V(uy — )T, ,(uy,) dx
R
= / $alun, Vi) - V(Tap(uy) — g) dx
RN
+ /N ¢a(uy,, Vuy) - Vg (1 — T‘;‘b(un)) dx
R
= V/I‘QN oy, (uy, Vuy,) - V(Tap(up) — 8) dx
1
- - / ¢Vun . V(Ta,b(un) —-8) dx
n JrvN
+ /N ¢a(uy,, Vuy) - Vg (1 — T(:‘b(un)) dx
R
<= [ @ V)Tt — )
- / (Ta,b(un) - g)a(um Vuy) - V¢ dx
RN

4 E / ¢Vu, -Vgdx +/ da(un, Vuy)
n Jr¥ Ry
x VgL —T, , )T, )+ (1= T, ,(u)))dx,

we get

lim N da(uy,, Vuy) - V(u, — g) T‘:‘b(un) dx
R

n—o0

<- / V@) (Top () — ) dx — f (Tup () — 9)2- Vel
RN RN
4 M||Vg||oo/ 6T, ) dx
IRN

:/[RN ¢z, D(Tap(u) —g))+M||Vg||oo/RN ¢ (L~ T, ,w)dx.

On the other hand, let us denote by

r r a
Jo (X, 1) = / a;(s, Vg(x))ds and Jey (x,r) = f —a;(s, Vg(x))ds,
0 Ox 0 ax]'

i,je{l, ..., N} and observe that

0 Oun ,
P Ja; (x, Ta b (0 (x))) =8 (un (x), Vg(x))ai(x)Ta’h(un)—i—J% (x, Ta,p(un(x))).
)Cj .X:j 0x

Now, since

0 0
— .. T = — J5 (x, T,
o, Ja; (x, Ty p(up)) o, Ja; (x, Ty p (1)),
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weakly as measures, addy, (x, T, 5 (U, (x))) — Joa (x, Tap(u(x))) a.e., we have

a,\j cx,

lim 4)3(“)1» Vg) -V, — 2T, b(un) dx

n—o0

n—o0

. 0
> lim fR L9 ; |:a—xifa,~(X, Ta(en(060)) = Je (v, Ta,bwn(x)))}

n— oo

_ Iim/ A, V) - Vg T/ (un) (T ) + (L= T, u))) dr

0
/ ¢ Z[—Ja,(x Ta,p()) = Joa; (x, Tab(u(X)))]

(El

- / dpa(u,Vg) -VgT, (u)dx.
RN B

Consequently, we obtain
/ (2, D(Tap(u) — 8)) + MIIVglloo / ¢ (1 —T, ,(u)dx
RN RN

+ / $a(u, Ve) - Vg T ()
RN
N

0
- fRN ¢ (Z [a— Ja (%, Tap(u(x))) — Joa, (x, T h(u(X)))D >0, (414)

i=1 i

forall 0< ¢ € CA(RY). Thus the measure

Noro
2. D(Typw) —g) — Y |:—Jai (6, Tap(u(x))) — Jog (x, Tab(u(x))):|

d =
i=1 !
+a(u, Vg) - Vg T, ) LN + M| Vgllo (1— T, ,u)) £V >0.

Then using chain’s rule foBV functions (1], Theorem 3.96) applied td,, (11, u2) with
ur(x) =x,uz(x) =T p(u(x)), x € RY, we deduce that the absolutely continuous part of

N

0
> [— Jay (¢, Ta b (u(x))) = Jog, (x, T, b(u<x)>)]

) a ox;

isa(u, Vg) - VT, ,u) #", and we obtain
z-V(Typw) —g) —au, Vg) - VI p(u)
+ a(u, Vg) - VgT, ,(u) + M||Vglloo (1 =T, ,(u)) >0.
In particular, forx € [a <u < b], we have
(z—a(u,Vg)-Vu —g)=0, ae.

Since we may take a countable set of functigns C2(RY) N w2°(R") which is dense
in CY(RY), we have that the above inequality holds for alle Q N [a <u < b], where
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Q c RV issuchthat” (RM\Q)=0, and allg € C1(R"). Now, fixedx € QN[a <u < b]
and given? € RV, there isg € C1(R") such thatVg(x) = ¢. Then

(2(x) — au(x), ) - (Vux) — >0, VvéeRY.
By an application of Minty—Browder’s method R", these inequalities imply that
Z(x) =a(u(x), Vu(x)) ae. onla<u<>b].

Since this holds for any @ a < b, we obtain (4.13) a.e. on the pointof R" such that
u(x) # 0. Now, by our assumptions @and (4.9) we deduce thatx) =a(u(x), Vu(x))=0
a.e. onu = 0]. We have proved (4.13).0J

From (4.13) and (4.11), it follows that
v—u=—diva(u, Vu), in Z'(RY). (4.15)
Step3: To finish the existence part of the proof we only need to prove that
hs(u, DT (u)) <(a(u, Vu), DJr1s(u)) as measuregS e 27, T € 71t (4.16)
and
h(u, DT (u)) < (@, Vu), DT (1)) as measuresT € 7 . (4.17)

To prove (4.16) we require some intermediate inequalities summarized in next Lemma.

Lemma 4.3. We have the inequalities

|imnSUI0/RN a(un, Vup) - V(I115(up)) P (x) dx < /Q $@u, Vu), D(Jr5(u)))
(4.18)
forany0< ¢ € Cc(R") and
fs(u, DT (u)) <@, Vu), D(Jrs@))) + S(u) f (u,0) L. (4.19)

Before proving the Lemma, let us give the proof of (4.16). Using (4.19), we have

@(u, Vu), D(Jrrs(w))) = (@(u, Vu), D(Jps(w))*“ + (@(u, Vu), D(Jrg(u)))*
Za(u, Vu) - V(Jrs@)) + (fs(u, DT (u)))*
=a(u, Vu) - V(IrrsW)) + (hs(u, DT (u)))*
=hs(u, DT (u)

and (4.16) holds.
Proof. Let us prove (4.18). By (4.2), we have

fRN w(v — uy,) dx =/Q a,(y, Vi) - Vwdx, Yw e WH2(RV). (4.20)
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Then, takingw = J775(u,) ¢ as test function in (4.20), we obtain
1
/ $a(un, Vuy) - V(J7rs(uy)) dx + = / GVuy -V (Jrrs(uy)) dx
RY n JrN
= / (v — un)JT/S(un)¢ dx — / Jrrs(up)a(uy,, Vuy,) - Vd) dx
RY RN

1
- —/ Jrs(un)Vuy, - Vo dx.
n JrN

Lettingn — oo we get
lim sup /R | $au, Vi) - V(s () dx
S /RN = u)Jyrs(u) dx — /[RN Jpsau, Vu) - Ve dx
_ _/RN div au, Vi) Jprs () dr — fRN Jrrs(at, Vi) - Vb

_ /R _ d@, Vu), DUrrs ).

Let us prove (4.19). Using the convexity fofand using that
aup, VT (up)) - VI (uy) = a(uy, Vuy) - VT (uy),

we have
[ #8G) £ 97 ) ds
< [, @SR IT @) - VT @b+ [ 680 0
= [, datun V) Vs a4 [ 68 G0 0

Then, sinceZ(¢Sf, T) is lower semi-continuous respect to thé-convergence and
(4.18), lettingn — oo we obtain

(fs(u, DT (u)), ¢)
= 2GS, T)@) < im inf R(GSF, T)(un) dx

=lim inf / ¢S (uy) f(uy, VT (uy,)) dx
n RN

< lim inf / da(uy,, Vuy) - V(I s(uy)) dx +/ ¢S(uy) f (uy,, 0)dx
n RN RN

<lim SUP/ aup, Vup) - V(JIrrs(un))P(x) dx +/ ¢S(u) f (u, 0) dx
n RN RY

< / , @G, Vi), DUps) + f L S fu 0 dr
R R

and (4.19) holds. (J
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In a similar way (4.17) follows from the following Lemma:
Lemma 4.4. We have the following inequalities
IimnsuprN da(un, Vup) - VT (1)) dx < /RN @, Vu), D(T (n))), (4.21)
for any0< ¢ € C¢(RY) and
[, DT ) < (@u, Vu), D(T ())) + f(u, 00N, (4.22)
Before going into the proof, let us prove (4.17). From (4.22) it follows that
(h(u, DT u)))" () = (f (u, DT ()))* (u) <au, Vu) - D*(T (u))).

Hence,

(a(u, Vu), D(T (w))) = a(u, Vu) - VT (u) + a(u, Vu) - D°(T (v)))
>a(u, Vu) - VT (w) + (h(u, DT (w)))* = h(u, DT (n)).

Proof. To prove (4.21) let & ¢ € Cc(RY), takingw = T'(u,,)¢ as test function in (4.20),
we obtain

/ ¢paun, Vuy) - VT (uy)) dx + } / ¢Vuy - VT (uy)) dx
RY n Jr¥
= / (v —up)T (up)pdx — / T (up)a(uy, Vuy) - Vg dx
RY RY

- E / T (uy)Vu, - V¢ dx.
RN

n

Lettingn — oo we get
lim Supf ¢auy, Vuy) - VT (uy)) dx
n RN
< / ¢ —u)T (u)dx — / T (w)a(u, Vu) - V¢ dx
RY RY
=— / diva(u, Vu)T (u)¢ dx — / T (w)a(u, Vu) - V¢
RY RY
:/RN p@(u, Vu), D(T (u))).
Let us prove (4.22). Using the convexity fofve have
/ ¢ f (un, VT (up)) dx < / paun, VT (uy)) - VT (u,) dx
RV RV
+/ ¢ f (uy, 0) dx.
RN
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Then, sinceZ(¢ f, T) is lower-semi-continuous i V (R") respect to thé 1-convergence,
lettingn — oo we obtain

(f(u, DT (w)), ¢)
=R} f, T)(w) < lim inf / ¢ f (un, VT (uy)) dx
n RN

< lim inf / ¢au,, VT (u,)) - VT (u,) dx + / ¢ f (u, 0)dx
n RN RN
< lim sup/ a(uy,, Vuy) - VT (uy))p(x) dx +/ ¢ f(u,0)dx
n RY RN
< / d@u, Vu), D(T (u))) +/ ¢ f(u,0)dx.
RY RV

Hence, (4.22) follows. [J

Uniqueness of entropy solutionSiven v, 7 € LY(RY) N L>®°(RY), v>0, >0, let
u, u >0 be two bounded entropy solutions of the problems

u—diva, Du)=v, in RN (4.23)
and
u—diva@, Du) =v, in RY, (4.24)

respectively.
Let p, be a classical mollifiers ilRY, b > a > 2¢ > 0. Let us write

Ca(x, ) =p,(x—y) and T =T;,.

We need to consider truncature functions of the form
Sei(r) i=Te(r =DV =Ty pye(r) — 1 € 27

and
Sy i=Tor =)™ +e=T—p1(r) +&—1 € 2T,

wherel > 0. Observe that
Slry=—T,(0 —r)" +e.

If we denotez(y) = a(u(y), Vu(y)) andz(x) = a(u(x), Vu(x)), we have

u—divz)=v and u—dive =7, in Z'[RY).
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Then, multiplying the first equation b (u(y)) Se ) (u ())&, (x, ¥), the second by
T@(x))S Y @(x))E, (x, y) and integrating by parts, we obtain

| T @D Teur) =7 1)y
+ [ )@ DTS, D)
+ /RN T (u(¥))Se. 00 (y)z(y) - Vy &, (x, y) dy
= [, O ONT ) = 06 65,3 (4.25)

and

- /R AT @) T (y) =TT = )&, (x, y) d
+ /R & @ DT @S @)
+ [ T@S @020 - Vi r, )
=- /R L IOT @) (T () = 7)™ = 9, (x, ) dx. (4.26)
Integrating (4.25) ik and (4.26) iny, and adding both identities we obtain
L, [, @7 ai) =70 @) ~ w0 i, drdy
o [ ]G =TT @ ) dedy

+/ (/ fn(x,y)(Z,Dy(T(u)Ss,u<x>(u))>dx
RY \JRN

T () Se,a00 W ()Z(y) - Vy&, (x, y) dy dx

<
RN xRN
+ / ( / £0(x )@, Dx<T<ﬂ>sz‘(y><ﬁ>>>> dy
RN \JRN
+ / T @) SEY @(x))Z(x) - V&, (x, y) dx dy
RN xRN
- /R i /R LWOIT () = DT @EONT(u(y) =70 &, (x, y) dr dy.
(4.27)

Let I3, I be, respectively, the first term and the rest of the terms at the left-hand side of the
above identity, and lefs be the right-hand side term. From now on, since are always
functions ofy, andu, Z are always functions of, to make our expressions shorter, we shall
omit the arguments except on sub- and super-indices and in some additional cases where

we find useful to remind them.
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Now, sincen — v =divzandV,¢,(x, y) + V&, (x, y) =0, we have

I = 8/ / div(z) T w)¢&, dx dy
[ ( / &0z, Dy(T () S, um(u))))
/ T@)StY @)z - V, &, dx dy
f ( / £, Dy (T(u)sé‘(”(u»)) dy
/ TWSei )2 - Vi, dy s

= f / div(z) T(m)¢, dx dy
/ ( f &u(2, Dy (T (W), um(u)))) dx
/ &z Dy(T@T, —w)7) dr dy

RN
f ( / 02 Do (T @) SE (ﬁ)))) dy
N RN
+ / &0z Do(T )Tl — ) )) dy d
R N

N xR

= 8/ / div(2) T (w)&, dx dy,
RN JRY

+A;{N (/RN e DXJT,Sg(y)(g))> dy

" /RN </RN (2, DyJrs; (u))> dx

- /RN e (/RN CnZ- Dy To(u — ﬁ)+> dx

+/RN (/RN el DxJTSg(),),(ﬁ))> dy

+/N T(u(y)) (/ ¢ 7. DT _W) "
R R

=13+ 12,

where/3 denotes the sum of the first three terms &hdenotes the sum from the fourth to
the seventh terms.
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Let us consider the second and third termgjnSince
hsgj(x) (M, DT(“)) < (27 DyJT/SE,g(X) (Ll))
and

h gue (@, DT (@) < (Z, Dy, gue) ()

as measures iR", we have

/RN (/RN ¢z, DyJT/SSJ(X) (u))) dx>0
and

,/RN <[I;2N (2, DxJT’Sf(-") (ﬁ))) dy>0.

Hence,

12128/ / div@) T @)¢&, dx dy.
RY JRN
Let us write the term

12 = I2(ac) 4 13(s),

659

(4.28)

where/Z(ac) contains the absolutely continuous partgHand/2(s) contains its singular

parts. Now,
12(ac) = /RN /[RN E,T (W) Z- Yy To(u — )t dydx
- /RN /RN & T (@2 Vy Ty — )" dydx
- /RN /RN E,T@)Z- VTy(u —w)* dxdy

+/ / E,Tw)z-Vy To(u — )" dx dy
Ry JRY

= / / & (2T (u) — ZT () (Vy T (u — T+ V T.(u —w)") dx dy
RN JRY

= /N /N fn(Z_Z)T(M)(VyTS(u —ﬁ)++VxT8(u —ﬁ)—"_) dxdy
R R

+ / / EZ(T () — T@)(VyTo(w —u) T + Vi To(u —w)") dx dy
Ry JRY

=: AL+ A2,
Let us estimatei®. First, observe that

VyTe(u — w0 (0) = L) aeo+a @) Vyu(y),

Vi Te () =) () = =Ly =) @O VAT (X) = =Xz 7126 U (0)) VT (2).
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By (3.11), we have
l = —
A= AN /I%N én(z — Z)T(U)(Vyu — VXM)X[E(X),E(X)-‘,—S](M) d.x dy

= _C”T(M)HOO/RN /I;EN X[u>a]én}{[ﬁ(x),ﬁ(x)+g](”)
x Ju —ul[|Vyu — Vyul dx dy.

Now, observe that, if & u(y) —u(x) <eandu(y) >a, thenu(x) > a —&. ThUS) ;> 4,
Villy Yyu=aVytt € LY(RY). Let us remind here that the argument B >ap 1S %
the argument of y;~, . IS ¥V, and yo<,—z<e dENOES o<, 7< (X, y) =
X1, ):0<uty) —a() <) (X, ¥)- Hence

1 .

A > — C”T(”)”C"’S/RN /IRN Alu>a) Xit > a—e)n XO<u—it<e]

x |Vyu — Vyull dx dy.
Similarly

1= | [ [ 6020 = 7@ Vit ) e by
<M /[REN [I%N X[u>a—f;]X[ﬁ>a—z:]X[Ogu—Egz:]én|” —ul [[Vyu — Vyu| dx dy
<M8/RN /RN Tiuza—alimza—eénlio<u—u<e I Vyu — Vx| dx dy
QMS/RN /RN Al > a—e) X > a—e) en X0 < u—ii <o) Vyull + [ Vyull) dx dy,

whereM > 0 denotes the Lipschitz constantfNow observe that

/RN /[R{N At >a—a1Xia>a—a énXo<u—a <o Vyull dr dy

u(x)+e
< / A5 ae)Pn(®) < / P([u%])di) dr <o(e),
RN (x)

whereo(¢) denotes an expression such th@f) — 0 ase — 0. Thus

1 1
“AY> — Co(e)
&

and
1 5
—|A%|<o(e).
&

Hence,

%@mo>m@. (4.29)
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Finally, let us computé2(s).

I5(s) = /R , ( /R Gz D;JTs;,u(x><u>) dx
— /RN (/RN ET@Z- Dy Te(u —ﬂ)*) dx
+ fRN (/RN &z D;JTSg(y)/(ﬁ)) dy
+ /N (/N ETw)z- DT, (u —ﬁ)+> dy
R R

= I2(L,5) + 122, 9).
Note that, ifu(x) > 0, we have
z:-DyJrg ) Zhr(u, DyTy(u —u(x))")* = hr (ue, Dyue)* >0,
whereu,(x, y) = Ti).ux)+: @ (y)) and by(Hs) and(He), we have
- s = W < (i O DS D
Z(x) - DyTe(u —u ()™ < @@y~ (Djug)| Djug).

Since the integrand of the first term is positive and the suppdft(@j is contained in
[u>a], we have

IZ(LS)?/ (/ ¢nZ - DIt (x (u)) dx
2 >al \JRY YIS
- f <f &T@)Z- Dy Tg(u—ﬁ)) dx
[@=a] \JRY

= / f Enhr (ug, Dyus)s) dx
[@>a] \JRY
- f[ ( /R , @T(ﬁ)w(m"(ﬂ)w;mo dx

uz=al

=/ (/ fnT(ua)<p(ug)lﬁo(ﬂ)lD§ual>dx
[@>a] \JRY

- /[> ]( /R ., c’nnﬁ)(p(ﬁ)w"(mnz);ua) dx

+ / / ¢ !
@za \Ja, )T () — )™ ()

@)t () o .
X / T (s)p(s) ds lﬁ(D;ug)|D§ug| dx
(uz:)_(y)

[u>a)

whereJ; denotes the sum of the first and second terms of the above expressioh,thad
sum of the third and fourth terms.
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Now, sinceT and¢ are Lipschitz continuous, we have
_ . —_—
111 < Enl T () pus) — T @) (@) (DY) | DSus| ) dx
RV \J[@=>al y ?

M P (x) (/I;{N lug — ﬁ|Xm(x),u(x)+g](M)|D§?u|> dx

[>a]

<&M / £, (x) (/ |D§u|> dx,
[>a) (yeRY :u(x)<u(y)<e+i(x)}

whereM > 0 denotes the Lipschitz constant®f-) ¢(-).
Using the coarea formula, we obtain

u(x)+e
1 <eM /R L > a1Pn(¥) (/() Per({u(y)%})dl) dx,

which yields
1
= [J1I<Mo(e). (4.30)
&

For convenience, let us write
1
)T () — ()~ ()

Working in a similar way as before, we have

J(ug, y) =

(u)T ()
TALS / E0d (s, ) / IT()o(s) — T@(x)p(@(x))| ds
[t > a] Jug (ug)~ (y)
x ¢°(D;u8)|D§'u8|) dx

u(x)+e
<eM /R s apa®) ( / Per({u<y>>/1}>dz> dx

u(x)

and we obtain that
1
—J220(e). (4.31)
&
Collecting all these facts, we obtain
1
Z12(1,9) >0(e).
&
In a similar way we prove that

1
Z12(2,5) > 0(¢).
&
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Hence,
1o
ZI2(s)=0(e).
&
Then, by (4.29), it follows that
1,
ZI5>0(e).
22 o(&)
Hence, with the estimates of all terms/of we have
1' I»>o0(e) + f / div(z)T (w)&, dx dy.
& RN JRY
Therefore, dividing (4.27) by, and lettinge — 0 andn — oo in this order we obtain
/RN ()T (u(x)) — w(x)T [@(x))signg (u(x) — u(x)) dx
< /RN W) T (u(x)) — V()T (@(x)))Sigry (u(x) — (x)) dx
- / div(Z) T (u(x)) dx.
RN
As above, let us skip the argumenin the expressions below. Letting— 0T, we obtain
/RN (T o.p(u) — uTop())Sigr (u — ) dx
< [, @Tost0) ~ 570 @)sior (u — m dr - f divi(2) To (@) d.
RY ' RY
Dividing by » > 0, and lettingp — O™, we obtain
/RN (X gu0) — W=0)SIONG (u — ) dx

< /RN(UX[M>O] — Vym=0))SIO (u — ) dx — /[RN div(2) yz=0) dx. (4.32)
We claim now that
v=0ae on[u=0] and v=0 ae on[uz=0]. (4.33)

Let 0<¢ € Z(RY) be anda > 0, ¢ > 0. Multiplying v — u = —div(z) in Z'(R") by
T; ,..(u)¢ and integrating by parts, we have

/R =0T
= [, #@ Dttt [ 29T, s
RY ’ RV '

> /RN Z-VT; 4 (u)dx.
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Dividing by ¢ and lettinge — 0T, we get
/RN(U - u)X[u>u]¢dx 2 /RN A V¢X[u>u] dx.
Hence,
/ =Wy <aqPdx = / (v—u)pdx — / (W — W) Yy=q)(X) ¢ dx
RY RY RY
< /;QN(U - u)¢dx - /RN Z: V¢X[u>a] dx
= /I;N Z- V¢X[u<a] d.x.

Then, lettinga — 0%, sincez=0in [u = 0], we have
/RN Vu=0y® dx = /RN (v — u) = ¢ dx <0,

forall 0< ¢ € Z(R"), hencevy,_q =0 a.e. inR" . Similarly, vyz_o; =0 a.e. inR" and
(4.33) holds.
On the other hand, by (4.33), we have

[I‘QN dIV(Z) X[ﬁ>0] dx = /I;N (ﬁ — 5) X[E>O] dx= AN (ﬁ—i) dx= 'A.QN dIV(Z) dx=0.
Then, from (4.32), it follows that
\/I\RN (MX[M>O] —EXW>0])S|gr€_(M—ﬁ) dx < [I%N (UX[M>O] —Exm>0])SIgrB"(u — ﬁ) dx.

Hence, using (4.33), we obtain

/ (u—ﬁ)+dx</ (v—v)signg(u—ﬁ)dng (v —7)" dx.
RN RN RN

This concludes the proof of the Theoreni.]

5. Semigroup solution

In this section we shall associate an accretive operafof(®”") to the formal differential
expression-diva(u, Vu).

Definition 5.1. («,v) € B if and only if 0<u € TBVH[RY) n L®RY), 0<v €
L®(RY) n LY(R") andu is the entropy solution of problem (3.1).
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For O<e<|lulloo, lEt S := T ju) b€. If (1, v) € B, by Green’s formula (2.10), we
obtain

/ (w — Sg(u))vdx < / (a(u, Vu), Dw) — h(u, DS (u)), (5.1)
R RY
forallw € BV(RY)n L>®(R") ande > 0.

Lemma 5.2. Giveni > 0,andv € LY(RY)*,if u = (I + 2B) v, then
u<v. (5.2)

Proof. Sinceu = (I + AB)~v, we have(u, (v — u)) € B. Then,a(u, Vu) € X1(R")
and

%(v —u) =—divau, Vu) in Z'(RV).

Givenp € 2y ande > 0, we denote by

| pe, ifOo<r<e,
Pelr) = {P("), if r>e.

By Green’s formula, we have

/ pe(w)(u—v)dx =4 / pe(w)diva(u, Vu) dx = —/1/ (a(u, Vu), Dp ().
RY RY RY

If Sy := T ) pello» WE havep,(u) = p:(S;(u)). On the other hand, by chain’s rule fBi-
functions (segl]), we haveD (p,(S:())) = (pe)s,u)DSe(u) With (pe)s,w) =0, (Pe) s, )
being the Vol'pert’s averaged superposition. Moreoverdjy

O@(u, Vu), D(p:(Se(u))), -) = 0(au, Vu), DS¢(u), -)|Dp,(Se(u))|-a.e.
Then,

@(u, Vu), D(ps(u))) = (@u, Vu), D(ps(S:(u)))
= 0@@(u, Vu), DSs(u), )| Dp,(Se(u))|

= (pe)s,a 0@, Vu), DS;(u), )| DS, (u)|
= (pe) s, @, Vi), DSe(u)) = (pe) s, o h (u, DS(u)) =0.

Therefore, we get
/ pe(u)(u —v)dx <0
RN
and consequently, letting— 0T, we get
/ pu)udx < / pwyvdx, VpePg
RN Q

and, by results ifil0], this implies (5.2). O
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Proposition 5.3. Assume we are under assumpti¢H3. Then B is accretive i1 (RY),
(L®RM) N LYR¥)T c R + B)
and D(B) is dense inL1(RV)*.

Proof. The accretivity of the operatds in L1(R") and the range condition follow from

71 N
Theorem 4.1. To prove the densityt B) in LY(RY)*, we prove tha@ (R¥ )+ ¢ B” ®D,

Let0<v € Z(RM). By Theorem 4.1y € R(I + % B) foralln € N. Thus, foreach € N,
there exists:, € D(B), ||unlloo < V|00, SUCh thalu,, n(v — u,)) € B. Consequently, by
(5.1) with S := T¢ v, WeE get

[ = Sutun(v = ) &< [ @, Vit Dw) = . DSt
R RY
forallw € BV(RY) N L®(RY). Takingw = v, we get
1
/ (= Se(up))(v — up) dr <— (/ a(un, Vuy,) - Vo dx — h(uy, DSb(un)))
RN n \JRrV

1 M
<- a(uy,, Vu,) - Vodx < — Vvl dx.
n Jrv n RN

Lettinge — 0™, we get

M
fN(v—u,,)zdxg— /N |Vl dx
R n R

and we obtain that, — v in L2(R"), asn — oco. Moreover, by Lemma 5.2, <v for
all n € N. Hence, by results ift.0], we haveu, — v in LY(R"), asn — oco. Therefore

——1YQ .
v e D(B) and the proof is complete.[]
From Proposition 5.3, if we denote b the closure inL1(R") of the operato, it
follows that% is accretive inL1(RY), it satisfies the comparison principle, and verifies the

1N
range conditiorD(@)L B _ LYRM)T c R(I + %) forall A > 0. Therefore, according
to Crandall-Liggett's Theorem (c.f., e.§1,1]), for any 0<ug € LY(RY) there exists a
unique mild solution: € C([0, T1; L1(RY)) of the abstract Cauchy problem

uw'(t) + ABu(t) >0, u(0)=uo. (5.3)
Moreover,u(t) = T (t)ug for all >0, where(T (1)), is the semigroup i} (RV)*
generated by Crandall-Liggett's exponential formula, i.e.,

. t -
T (Hug= nleoo (1 + - 93) ug.

Onthe other hand, by Lemma 5.2, and using the resuliilpwe have that the comparison
principle also holds foff (1), i.e., if ug, 1o € LY(RY)*, we have the estimate

I(T (t)uo — T (1)aw0) " ll1 < Il (o — 7o) |1 (5.4)
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Remark 5.4. Since, by Proposition 5.8L.°(RM)NLY(RY))™ ¢ R(I+B), usingLemma
5.2, we have that

Ttug € (LR NLYRY))T, V>0, Vuge (L®°RY)n LYRY)T.
(5.5)

Remark 5.5. In the proof of the existence part of Theorem 4.1, we have proved that the
resolvent of the operatd,, associated te-diva(u, Du) — % Au converges to the resolvent

of B, i.e., ifv e LY(RY) N L®(RY), v>0, andu, are solutions of/ + B,)u = v in the
sense defined by the inequalities (4.2), then— u in LY(RY) (and inL?(RY) for all

1< p < o0), whereu = (I + B) tv.

6. The Neumann problem

Using similar techniques as above we may prove an existence and uniqueness result for
the following Neumann problem:
u—diva(u, Du)=v, in Q,

Ou
— =0, 0Q,
oy on

(6.1)

whereQ is a bounded set ift"Y with boundarydQ of classCl, v € L®(@Q)*, a(z, &) =
Ve f (z, ), andf satisfies similar assumptions to the ones considered in the Cauchy problem.
We use the notatiod/0n for the Neumann boundary operator associatea(#o Du), i.€e.,

Ou
— = a(u, Du) - v,
on

wherev is the outward unit normal 0.
We introduce the concept of entropy solution for problem (6.1).

Definition 6.1. Givenv € L°°(Q), v >0, we say thati is anentropy solutiorof

Ou (6.2)

—diva(u, Du) =v, in Q,
0, on 09,

5=
if u e TBVT(Q) anda(u, Vu) € X1(Q) satisfies
—diva(u, Vu)) =v, in 2/(Q), (6.3)
hs(u, DT (u)) <(a(u, Vu), DJs(u)) as measuregS e 27, T e 71, (6.4)
hr(u, DT (u)) <(a(u, Vu), DT (1)) as measuresT € 7 T, (6.5)

[a(u, Vu),v]=0, H" l-ae ondQ. (6.6)
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Working as in the proof of Theorem 4.1, we prove the following result:

Theorem 6.2. Assume that assumptio(id) hold. Thenfor anyv € L*°(Q), v>0, there
exists a unique entropy solutiane 7BV *(Q) N L>=(RQ) of (6.1).

As in Section 5, we can associate an accretive operaior(if?) to the formal differential
expression-div a(u, Vu) together with the Neumann boundary condition. More precisely,
we define the operatd in L1(Q) by

(u,v) € B,ifandonly ifu e TBVT(Q) N L®(Q), 0<v € L>®(Q) andu is the entropy
solution of problem (6.2).

Then, assuming that assumptions (H) hold, we have BEhig accretive inL1(Q),
L®(@)* c RU + B) and D(B) is dense inLY(Q)*. Therefore, if we denote by
the closure oB in L1(Q), it follows that# is accretive inL(Q) and verifies the range
condition

71
DA P Z LYQ)T ¢ R+ iB). forall 4> 0.

Therefore, according to Crandall-Liggett's Theorem (c.f., d1l]), for any O<ug €

L1(Q) there exists a unique mild solutione C([0, T]; L1(Q)) of the abstract Cauchy
problem

' (t) + Bu(t) >0, u(0)=uo. 6.7)

Moreoveru(t) =T (t)ug for allz >0, being(T (1)), > o the semigroup i1(Q)* generated
by the Crandall-Liggett’s exponential formula.
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