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A Strongly Degenerate Quasilinear Equation: the Elliptic Case

F. ANDREU — V. CASELLES — J. M. MAZON

Abstract. We prove existence and uniqueness of entropy solutions for the Neu-
mann problem for the quasilinear elliptic equation u — diva(u, Du) = v, where
vel®alzé) =V:f(z&),and f isaconvex function of £ with linear growth
as ||| — oo, satisfying other additional assumptions. In particular, this class
includes the case where f(z, &) = ¢(@¥ (&), ¢ > 0, ¥ being a convex func-
tion with linear growth as ||§]] — oo. In the second part of this work, using
Crandall-Ligget’s iteration scheme, this result will permit us to prove existence
and uniqueness of entropy solutionsfor the corresponding parabolic problem with
bounded measurable initial data.

M athematics Subject Classification (2000): MISSING.

1. — Introduction

Let Q be a bounded set in RN with boundary 92 of class C. We are
interested in the problem

(L1) u

— =0 on 0%2,
an
where v € L>(Q2), a(z, &) = Ve f(z,&), f being a function with linear growth
as ||€]] — oo and 3%7 is the Neumann boundary operator associated to a(u, Du),
ie.,

{u—div au,Du)y=v IinQ

au
— :=a(u, Du) - v,
an

with v the unit outward normal on 9<2.

Our purpose in this paper is to define a notion of entropy solution for (1.1),
and prove existence and unigqueness results when the right hand side v is in
L>°(2). Besides the fact that the elliptic problem is interesting by itself, this
result permits us to associate to the expression —div a(u, Du) with Neumann
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boundary condition an accretive operator B in L1(£2) whose domain is contained
in L°°(2) (which amounts to consider the right hand side v of (1.1) in L*°(£2))
and whose closure B is m-accretive in L1(2), and, thus, generates a non-linear
contraction semigroup T(t) in LY(Q) [11], [18], [19]. However, even if B
is not characterized in distributional terms, the knowledge of the operator B
and the fact that if u is the entropy solution of (1.1) we have the estimate
lUlloo < llvlleo, permits to use Crandall-Ligget’s iteration scheme and define the
function

u®) = TOuo = lim (1 + 1B) "o, Up e Lo(R).
n—o0 n
which is a semigroup solution of the parabolic problem

a_u =diva(u,Du) inQr=(0,T) xQ

at
d
(12) 8—“ ~0 on St = (0,T) x 90
n
u(0, X) = ug(x) in X e Q.

In a subsequent work [6] we shall define the notion of entropy solution for (1.2)
and prove that the semigroup solution u(t) is an entropy solution. Moreover,
we shall aso prove that entropy solutions of (1.2) are unique. As a technical
tool both in this paper and in [6] we shall use the lower semi-continuity results
proved in [21] for energy functionals whose density is a function g(u, Du)
convex in Du and with a linear growth rate in Du.

Particular instances of these PDE's have been studied in [12], [13], [14]
and [20], when N = 1. Let us describe their results in some detail. In [12],
[13], and [20] the authors considered the problem

(1.3) ot

{ M @b in ©.T) xR
u(0, x) = Up(x) inxeR

corresponding to (1.2) when N = 1 and a(u, ux) = @(u)b(uy), where ¢ :
R — R is smooth and strictly positive, and b : R — R is a smooth odd
function such that b’ > 0 and lims_. . b(s) = bs. Such models appear as
models for heat and mass transfer in turbulent fluids [8], or in the theory of
phase transitions where the corresponding free energy functional has a linear
growth rate with respect to the gradient [28]. As the authors observed, in
general, there are no classical solutions of (1.2), they defined the notion of
entropy solution and proved existence [12] and uniqueness [20] of entropy
solutions of (1.3). Existence was proved for bounded strictly increasing initia
conditions up : R — R such that b(uy) € C(R) (where b(up(Xp)) = b if Ug is
discontinuous at Xp), b(uy(x)) — 0 as x — +oo [12]. The entropy condition
was written in Oleinik’s form and uniqueness was proved using Kruzhkov's
method of doubling variables.
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In [14], [15], the author considered the Neumann problem in an interval
of R

E;—;j = (a(u, Uy))x in (0, T) x (0,1)
(1.4) Ux(t, 0) = Ux(t,1) =0
u(0, x) = ug(x) inxe (0,1

for functions a(u, v) of class C1%([0, oo) x R) such that %a(u, v) < 0 for any
(u, v) € [0, 0) xR, a(u, 0) = 0 (and some other additional assumptions). After
observing that there are no, in general, classical solutions of (1.2), the author
associated an m-accretive operator to —(a(u, uy))x with Neumann boundary
conditions, and proved the existence and uniqueness of a semigroup solution
of (1.4). However, the accretive operator generating the semigroup was not
characterized in distributional terms. An example of the equations considered
in [14], [15] is the so called plasma equation (see [23])

au u®/2u,
15 — = — in (O,T 0,1),
(15) ot <l+uwﬂ ) O T xOD
where the initial condition ug is assumed to be positive. In this case u represents
the temperature of electrons and the form of the conductivity a(u, uy) = %

has the effect of limiting heat flux. Thus, existence and uniqueness results for
higher dimensional problems were not considered. This will be the purpose of
the present paper.

The case of equations of type

(1.6) u—dv ax,Duy=v Iin ,

where v € L(Q), or the corresponding parabolic problem

1.7 Z—l: =div ax, Du) in (0,T) x Q,

where a(x, &) = V: f(x, &), f(x,-) being a convex function of & with linear
growth as ||&|| — oo has been considered in [2], [3] and [4] (see aso [5]),
where existence and uniqueness results of entropy solutions were proved.

The present work can be considered as an extension of the previous works
to the case where a depends on (u, Du) instead of (x, Du). We treat in this
paper the elliptic case, the parabolic problem being considered in [6]. Entropy
or renormalized solutions for elliptic or parabolic problems of types (1.1), (1.2),
or (1.7), when f(u, &) or f(x,&) has a growth of order p > 1 as ||§]| — oo,
were considered in [9], [16] and [17] (see aso the references therein).

Finally, let us explain the plan of the paper. In Section 2 we recall some
basic facts about functions of bounded variation, denoted by BV (L2), Green's
formula, and lower semi-continuity results for energy functionals defined in
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BV (). In Section 3 we introduce the main assumptions on the underlying
operator, and define the notion of entropy solutions for (1.1). In Section 4
we prove an existence and uniqueness result for the entropy solutions of (1.1)
when the right hand side v is in L>®(2). To prove existence we shall use
the lower semi-continuity result for energy functionals whose density is a func-
tion g(u, Du) convex in Du and with a linear growth rate in Du proved in
[21], uniqueness will be proved by means of Kruzhkov's technique of doubling
variables. Finally, in Section 5, we define an accretive operator associated to
—diva(u, Du) with Neumann boundary condition whose closure is m-accretive
and generates a contraction semigroup in L($2), providing a solution of (1.2)
in the semigroup sense. That semigroup solutions can be characterized in terms
of entropy solutions will be the object of a subsequent paper [6].
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2. — Preliminaries

We start with some notation. Here £N and #N~! are, respectively, the N-
dimensional L ebesgue measure and the (N — 1)-dimensional Hausdorff measure
in RV,

Due to the linear growth condition on the Lagrangian, the natural energy
space to study (1.1) is the space of functions of bounded variation. We recall
briefly some facts about functions of bounded variation (for further information
concerning functions of bounded variation we refer to [1], [24] or [29]).

A function u e L1(Q) whose partial derivatives in the sense of distributions
are measures with finite total variation in Q is caled a function of bounded
variation. The class of such functions will be denoted by BV (). Thus
u e BV (Q) if and only if there are Radon measures i, ..., un defined in Q
with finite total mass in  and

2.1) /uDi(pdx= —/ odu;
Q Q

for dl ¢ € C3°(R2), i = 1,...,N. Thus the gradient of u is a vector valued
measure with finite total variation

|Duj(2) = sup{/ udivedx : g € ch(sz,RN), lp(x)] < 1for x € Q} .
Q

The space BV (R2) is endowed with the norm
(2.2) Iullev=IlU Il 1) +IDul(€2).
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For u € BV (Q), the gradient Du is a Radon measure that decomposes into its
absolutely continuous and singular parts Du = D2u+ DSu. Then D2u = Vu £N
where Vu is the Radon-Nikodym derivative of the measure Du with respect

to the Lebesgue measure £N. Let us denote by DSu = DS_l)J|DSU| the polar
decomposition of D®u, where |D®u| is the total variation measure of D%u. We
also split DSu in two parts: the jump part D'u and the Cantor part DCu.
We denote by §, the set of al x € Q@ such that x is not a Lebesgue point
of u. We say that x € Q is an approximate jump point of u if there exist
ut(x) £ u=(x) e R and vy(x) € SN such that

1
li o _
pl[g EN(B;_(X’ vu(X))) B;(X,UU(X)) uty) = urogrdy =0
1
) —u (x)|dy=0
le)l LN (B, (X, v (X)) JB; (xoo0) [u(y) —u~(x)|dy =0,
where
B (X, vu(X)) ={y € B,(X) : (y—X, (X)) > 0}
and

B, (X, vu(x)) ={y € B,(x) : {y—x,v(x) <0}

We denote by J, the set of approximate jump points of u. J, is a Borel subset
of §, and HN-1(§,\ Jy) = 0. We have

Dlu=DSuLJ, and D°u=DSul(Q\S).
It is well known (see for instance [1]) that
Diu= @t —u )y HN 1L J.
Du Du

Moreover, if x € Jy, then v(X) = W(X)' ouT being the Radon-Nikodym

derivative of Du with respect to its total variation |Dul.
Let Q be a bounded open subset of RN. Given a Borel function g :
Q xR x RN — R* such that

(23) Cliéll-=D =9(x,z §) = MA+ 5 V(x,28eQxRxR,

for some constants C > 0, M > 0, we consider the energy functional
G) = / g(x, u(x), Vu(x)) dx
Q

defined in the Sobolev space W1(R2). In order to get an integral representation
of the relaxed energy associated with G, i.e,,

G(u) := inf {liminfG(un) CUup e WEHQ), up > U € Ll(Q)},
{un} n— oo
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Dal Maso in [21] introduced the following functional for u € BV (2):

. 0 ﬂ c
Rg(u) ._/Qg(x,u(x),Vu(x))dx—i-/Qg <x,u(x), |Du|(X)> |D*ul

U4 (X)
0 N—-1
4 /J u ( / | Gs00) ds) dHN (),

where the recession function g° of g is defined as

(2.4)

(2.5) °(x,z, &) = lim tg (x, z, §> .
t—0t t

It is clear that the function g°(x,z, &) is positively homogeneous of degree
onein &, i.e

g%(x, z, s&) = sg°(x, z, &) for al z & and s > 0.

Let us describe a different way of writing the functional Rq(u). Let us
consider the function §: Q x R x RNx] — 0o, 0] — R defined as

—g(x,z,—%)t ift<O

(2.6) g(x,z&,1) = {
g°(x, z, &) if t=0.

As it is proved in [21], if g is a Borel function satisfying (2.3) and g(x, z, -)

is convex in RN for al (x,2) € @ x R, then one has

day
Rg(U)z/ @((x,S),%'(x,S)) dlay|(X, 8)
(27) QxR Oy

= g ((x, ), v[(x, 8); NW]) dHN(x, 9),

QxR

where ay = D Xnw), With N(U) :={(X,S) eRxQ : s < up(x)} and v[(X, S); N(u)]
is the interior normal to N(u) at (s, x) if it exists, and v[(X,s); N(u)] = O
otherwise.

In [21] Dal Maso proved the following result:

TueoreM 2.1. Let Q beabounded opensubset of RN. Letg: @ xRxRN — R
be a continuous function satisfying (2.3), g° exists and such that g(x, z, -) is convex
inRN. Then, G(u) = Rg(u) forall u € BV () and Rq(u) islower semi-continuous
respect to the L(£2)-convergence.

We need to consider the following truncature functions. For a < b, let
Tap(r) := max(min(b,r),a). It is usua to denote Ty = T_y k.
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PRrOPOSITION 2.2. Let Q beabounded opensubsetof RN. Letg: QxRxRN —
IR be a continuousfunction satisfying (2.3), g° existsand such that g(x, z, -) isconvex
in RN, Let us define the functional

Rg’b(u):/ g(x, U(X), VTapu(x)) dx, ue WHH(Q).
Q
For u e BV(Q), let
b
REPw = [ [ a0 s vlons: N dit oo ds
+ [ @xu0.0 - g(x.a.0) dx
[u<a]

+/ (9(x, u(x), 0) — g(x, b, 0)) dx.
[u=b]

Then Rg’b(u) islower semi-continuous with respect to the L*(£2)-convergence, and
R&P coincides with the lower semi-continuous envelope of R&-°.

Proor. Observe that we have

b
Ry(Tan(W) = /Q / §((x. 9), v[(x. 9); NW]) dHN1(x) ds.

Hence, we may write

REPW) = Ry(Tan() + |

fus

+/[ ' (g(x, u(x), 0) — g(x, b, 0)) dx.

! (g(X, U(X)’ O) - g(Xv a, 0)) dX

Since the functional Rg is lower semi-continuous with respect to L1(€2) con-
vergence (Theorem 2.1), we conclude that Rg*b is aso lower semi-continuous.

Moreover, if u e Wh(Q), we have
RS**’(U)=/ g(x,U(X),VU(X))dX+/ g(x, u(x), 0) dx
[u=<a]

[a<u<b]

+ g(x, u(x), 0) dx
[u=b]

=/ g(x,u(x),Vu(x))dx+/ g(x, a, 0)dx
[a<u<b]

J[u=a]

+ g(x, b, 0) dx +/

[u=D] [us

+ - (9(X, u(x), 0) — g(x, b, 0)) dx

— Ry(Tan(W) + /

[us

| (9(X, u(x),0) — g(x, a, 0)) dx

| (9(x, u(x), 0) — g(x, a, 0)) dx

+/[ ; (9(x, u(x), 0) — g(x, b, 0)) dx = R3°(u).
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Therefore, RSP is a lower semi-continuous extension of R&® to BV(Q). O

Let g: R xRN — R be a continuous function satisfying (2.3). Given
u e BV(Q), let us define the measures

Rg(U, ) = /R /Q $ (08 (s, v[(5, %); NW]) dHN1(x) ds

and .
REPw ) = [ [ 40080 vl 0z NWD a0 ds

+/[ ]¢(X) (9(u(x),0) — g(a, 0)) dx
4 / 6 (%) (g(UX), 0) — g(b, 0)) dx
[u=b]

for any ¢ € C(Q). For simplicity, we shall write

Rg(U, ¢) = /Q $(x)g(u, DU)

RED(U, ¢) = /S2 $()0(U, DTap(W)).

The singular parts respect to the Lebesgue measure £N of these measures will
be denoted by

(Rg)(U, ¢) = /Q $(Xx)g(u, DU)®

(REW.6) = [ $009(U. DTap(W)”.
Q

respectively.

We shall need several results from [7] (see aso [25]) in order to give a
sense to the integrals of bounded vector fields with divergence in LP integrated
with respect to the gradient of a BV function. Let p> 1 and p’ > 1 be such
that &+ =1 . Following [7], let

(2.8) Xp(Q) = {ze L®(Q,RY) : div(z) € LP(Q)).

If ze Xp(R) and w € BV(Q) N Lp/(Q) we define the functional (z, Dw) :
C§°(R2) — R by the formula

(29) (Z, Dw). p) = —/

wgodiv(z)dx—/ wz- Vedx.
Q

Q
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Then (z, Dw) is a Radon measure in £,

(2.10) /(z, Dw) = / z- Vwdx vV we WHQ) NnL®(Q)
Q Q

and

(2.12) ‘/B(Z’ Dw)‘ §/B|<z, Dw)| < ||z||oo/B|Dw|

for any Borel set B € Q. Moreover, (z, Dw) is absolutely continuous with
respect to |Dw| with Radon-Nikodym derivative 6(z, Dw, X) which is a |Dw]|
measurable function from € to R such that

(2.12) /(z, Dw) = / 6(z, Dw, X)|Dw]|
JB B
for any Borel set B C Q. We aso have that
(2.13) 10(z, Dw, JllLoo,pw) < I1ZllLoo(q Ny
By writing

z-DSu:= (z, Du) — (z- Vu) dcN,

we see that z- DSu is a bounded measure. Furthermore, in [25] it is proved
that z- DSu is absolutely continuous with respect to |DSu| (and, thus, it is a
singular measure with respect to £N), and

(2.14) |z- D%u| < [|Z]|o| D3]

As a consequence of Theorem 2.4 of [7], we have:

215) If ze Xp(Q)NC(Q,RY), then z.DSu=(z-D°) d|Dsul.
p

In [7], a weak trace on 02 of the normal component of z e X,(R2) is
defined. Concretely, it is proved that there exists a linear operator y : X(2) —
L*®(0€2) such that

1Y @D lloo < 1Zlloo
y@(x) =z(x)-v(x) foradl xeaQ if zeCYQ RN,

We shall denote y(z)(x) by [z, v](X). Moreover, the following Green’sformula,
relating the function [z, v] and the measure (z, Dw), for z € Xy(L2) and

w e BV(Q)NLP(Q), is established:

(2.16) / w div(z) dx + / (. Dw) = / [z, v]w dHNL.
Q Q Q2
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3. — Basic assumptions. Thenotion of entropy solution for the elliptic problem

This section deals with the elliptic problem

v = —div a(u, Du) in Q
(31 {

u
an B
Here we assume that 2 is an open bounded set in RN, with boundary

dQ of class C!, and the Lagrangian f : R x RN — R satisfies the following
assumptions, which we shall refer collectively as (H):

on 9€2.

(H1) f is continuous on R x RN and is a convex differentiable function of &
such that Vi f(z, &) € C(R x RN). Further we require f to satisfy the linear
growth condition

(3.2 Coll§ll — Do = f(z, &) = M(I5 + D).

for any (z,&) € R x RN, |z < R and some positive constants Cg, Dg, M
depending on R. Moreover, we assume fO exists.

We consider the function a(z, £) = V; f (z, §) associated to the Lagrangian
f. By the convexity of f

(3.3) az.§) -m—-§ =f@zn-1z§),

and the following monotonicity condition is satisfied

(34) @iz mn—-azé) -5 =0.
Moreover, it is easy to see that

(35) az &)l <M ¥ (z§)eRxRY |7 <R

We also assume that a(z, 0) = 0 for all z € R. We consider the function
h:R xRN — R defined by

h(z &) :=a(z§) - &.
By (3.4), we have
(3.6) hz.&)>0 VeeRN, zeR.
Moreover, from (3.3) and (3.2), it follows that
(3.7) Colléll = D1 = h(z, &) < M|§]|

for any (z,&) e R x RN, |z| < R, where D; is a positive constant depending
on R, Cy and M being as above.
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(H,) We assume that %‘(z,é) eCMR xRN forany i =1,...,N.

This assumption is not necessary for the case of separated variables described
in Remark 3.1.

We assume that
(H3) h(z,&) =h(z, —&), for dl ze R and & € RN and h° exists.
Observe that we have

Collsll < h%z &) < M|g|| for any (z.§) e Rx RN, |2 < R.

(Ha) 9z &) =h%z &), for dl £ e RN and al z € R.
(Hs) a(z, &) -n <h%z,n) for dl £,n RN, and al zeR.

(Hs) We assume that h%(z, &) can be written in the form h%(z, &) = ¢(2)¥°(&)
with ¢ a C!-function such that for any R > 0, we have ¢(z) > ar > 0 for all
zeR, |z <R, and y° being a convex function homogeneous of degree 1.

(H7) For any R > 0, there is a constant C > 0 such that

(3.8) l(a(z, &) — a2, &))- (£ —&)| <Clz—2||& - &|
for any (z £), (2,€) e Rx RN, |z], 12| < R.
Observe that, by the monotonicity condition (3.4) and using (3.8), it follows
that
(3.9) (az,&) — a2, &) - (£ — &) > —Clz— 2/ | — £
for any (z, £), (2,€) e Rx RN, |z], 12| < R.

Let us observe that under assumptions (H4) and (Hg), applying the chain
rule for BV-functions (see [1]), we have

Du

(3.10) Rt (u) =/Q f(u, vuydx + ¢° (m) |D3J,(u)],

where J,(r) = [5 ¢(s) ds.

ReEMARK 3.1. An important particular case of Lagrangian f satisfying all
assumptions (H) but (Hy), is the one given by f(z &) = ¢(2)¥ (&) with ¢ a
C!-function such that for any R > 0, we have ¢(z) > ag > 0 for al z e R,
|z < R, and ¥ a convex smooth function such that

Coléll — Do < ¥(6) < M(JEll +1) V& eRN,
and there exists

Orey — i §
Y (5)—t£r(§lt¢<t>-
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In this case, if b() = VY (&), we have a(z, &) = ¢(2)b(&), and h(z, &) =
az, &) -& = p(2b(&) - £. Then, in order to have that (H) holds we need to
assume that:

(i) b(=&)-(—&)=Db()-£>0for al £ e RN and there exists
lim b (%) & =9%e).

t—0t

(i) b©) -n < y°%e&) -n fordl &neRN.

We note that in this case (H3) is not necessary to obtain existence and uniqueness
of solutions for problem (1.2). Let us prove that (H7) holds. Indeed, by applying
the mean value Theorem, we have

&z, &) — a2, &) - (€ — )| = |(9(2) — p(@)|IbE) - (£ — &)

< sup ¢/ (tz+ (L -1)2)IM [z -2 |IE — £
7€[0,1]
<Clz—2| & - |,

for some constant C > 0 depending on R and any (z, &), (2,&) € R x RN,
12,12 < R.

ReEMARK 3.2. There are physical models for plasma fusion by inertial

confinement in which the temperature evolution of the electrons satisfies an
equation of type (1.2), where a(z, &) = % which corresponds to f(z, &) =
121321 — 1212 In(1 + |2]1&]) [23], (see aso [14] for a mathematical study in
the one-dimensional case). It is easy to check that (H;) (in particular (3.2) and
(3.7)) holds for any (z,&) € R x RN with z € [a, R], a > 0, the constants in
(3.2) and (3.7) depending on a, R. Note that (H,) aso holds. We aso observe
that h%(z, £) = |z|¥?|| and (H3)-(He) hold. Finaly, to check (H;) we observe
that

5 2% e

2142 1+ zED?

ada
E(Zﬁ g) =

and therefore
Ba(z o < 721/2
9z -2

for any z e [a, R] and any & € RN. It follows that
5 7 1/2 5
laz, &) —a(z, §)| < ER lz—2|

for any z € [a, R] and any £ € RN. Thus (H;) aso holds for the values of
ze[a, R] and £ e RN. In this case, the results below will prove existence and
uniqueness of entropy solutions of (1.1) for any initial condition v € L* ()
such that v(x) > a > 0 for some a > 0.
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We need to consider the function space
TBV(Q) = {u e LY(Q) : Tu(u) e BV(Q), ¥ k> o},

and to give a sense to the Radon-Nikodym derivative Vu of a function u €
TBV(R2). Notice that the function space TBV () is closely related to the
space GBV (R2) of generalized functions of bounded variation introduced by E.
Di Giorgi and L. Ambrosio ([22], see aso [1]). In [3] we give the following
results.

LeEMMA 3.3. For everyu € T BV (Q2) there exists a unique measurable function
v Q — RN such that
(3.12) VTk(U) = vxgu<ky LN —ae.

Lemma 3.4. If u € TBV(RQ), then p(u) € BV () for every Lipschitz con-
tinuous function p : R — R satisfying p/(s) = 0 for |s| large enough. Moreover,
Vpu) = p'(uyVu £N-ae.

Thanks to Lemma 3.3 we define Vu for a function u € TBV(Q2) as the
unique function v which satisfies (3.11). This notation will be used throughout
in the sequel.

We introduce the following concept of solution for problem (3.1)

DEFINITION 3.5. Given v € L*™°(2), we say that u is an entropy solution of
(31) if ue TBV(R2) NL*(R), au, Vu) € X1(2) and satisfies:

(312) v = —div a(u, Vu) in D(R),
(3.13) (a(u, Vu), DTap(u)) > h(u, DTap(u)) as measures V a < b,

(3.14) [a(u, Vu),v] =0 HN1 —ae on Q.
Observe that (3.13) is equivaent to

(3.15) a(u, Vu) - DTap(u) > (R¥P)S(U)  as measures V a < b.

We have the following characterization of entropy solutions.

ProrosITION 3.6. Let v € L®(Q) and let u € TBV(R2) N L*®(R) with
a(u, Vu) € X3(R), satisfying (3.12) and (3.14). Then u is an entropy solution
of (3.1) (i.e., satisfies (3.13)) if and only if u satisfies

(3.16) /Q¢h(u, DTa,b(u))+/QTa,b(u)a(u, Vu)-Vqsdxg/Qcvaa,b(u) dx

for any ¢ € D(Q2), ¢ > 0.
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Proor. Assume that u is an entropy solution of (3.1). Multiplying (3.12)
by Tan(u)¢, integrating by parts and using (3.13) and (3.14), we obtain (3.16).
Similarly, from (3.16), (3.13) and (3.14), we have

/ Sh(U, DTap(U)) + / Tap(W)a(u, VU) - Vg dx < / $uTap(U) dx
Q Q Q
__ / diva(u, Vu) Ta p(U)e dx = / (a(u, Vu), D(Tap(U)$))
Q Q
- / $(a(u, Vu), DTap(W)) + / Tap(Wa(U, VU) - Veb dx.
Q Q

Hence,
/ Sh(U, DTap(U)) < / $(a(U, VU), DTab(U))
Q Q

for al ¢ € D(2), ¢ > 0. This implies (3.13). O

4. — Existence and uniqueness of entropy solutions

This section is devoted to prove the following existence and uniqueness
result.

THEOREM 4.1. Assume that assumptions (H) hold. Then, for any v € L*°(2)
there exists a unique entropy solution u € BV (2) N L*°(£2) of the problem

(4.1) u
an B
Proor. Sep 1. Existenceof entropy solutions. Let v € L*°(2). For every n €

u—dvau,Duy=v inQ
{ on 9%Q.

1
N, consider a,(z, &) := a(z, $)+ﬁ.§. Since a, satisfies the classical Leray-Lions

conditions [28], we know that for any n € N there exists u, € WH2(Q)NL>®(RQ)
such that

(4.2) /Q(w—un)(v—un) dx < /Qan(un, Vun)-V(w—up) dx ¥V w e WH(Q).

Then, taking w = uUp — (Uy — ||v]lo)T as test function in (4.2), we obtain
[ = 10y = v) dx <

Hence,

/ (Un — [[v]l0)? dx < / (Un = [[vllec) (v = Ivllec) dXx < 0.
{un>vllco}

{un>lvlloo}
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Consequently, up < ||Vl ae in Q. Similarly, taking w = Uy — (Un + [[v]leo) ™

as test function (where r— := min(r, 0)), we get —||v]lec < Uy, ae in Q.
Therefore,
(4.3) IUnlles < V]l for al n e N.

Taking w = 0 in (4.2) and using (4.3) we get

1 .
/a(un,Vun)-Vun dx + —/ IVu,|? dx < / Unv dx—/ [Un|? dx < My.
Q n.Jjo Q Q

Hence, by (3.7), we obtain

(44) / [Vup| dX < M3 V neN.
Q
and
1 2
(4.5) ﬁ/ IVup2 dx < Ms ¥ neN
Q

Thus, {u, : n e N} is bounded in W(Q2) and, by extracting a subsequence if
is necessary, we may assume that u,, converges in L(2) and almost everywhere
to some u € LY(Q) N BV(Q) as n — +o0o. Now, by (4.3) and (4.4), we have
that u, — u in L?(Q) and u € BV(Q) N L=(RQ).

Observe that by (3.5) and (4.5), {an(un, VUu,) : n € N} is bounded in
L2(Q, RN). Consequently we may assume that
(4.6) an(un, Vuy) — z as n — oo, weakly in L2(Q2, RN).

Given ¢ € C3°(Q2), taking w = u, £ ¢ in (4.2) we obtain

/¢<v—un) dx:/an(un,Vun)-qu dx.
Q Q

Letting n — +o0, we obtain

/Q(v—u)d) dx:/Qz~V¢ dx,

that is,
4.7 v—Uu=—div(2), in D'(Q)
and

(4.8) diva,(un, Vuy) — div(z)  weakly in L%(Q).
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Since, by (4.5),

(4.9) %Wunl -0 in L),

as a consequence of (4.6), it follows that

(4.10) a(un, Vup) — z  as n — oo, weakly in L?(Q, RN).

Moreover, by (3.5) we may assume that

(4.11) a(un, Vup) — z  as n — oo, weakly* in L>®(Q, RN).

By (4.7), we have z € X,(€2). On the other hand, by (4.2), we have
[an(Un, Vup),v] =0 N1 —ae on 99.

Then, by (4.6) and (4.8), we obtain that

(4.12) [zv]=0 HN'-_ae on aQ.

Let us prove that
(4.13) zZ(X) = a(u(x), Vu(x)) ae XxXeQ.

Let 0< ¢ € C}(Q) and g e C3(Q). By (3.4), we have

(4.14) / $lalUn, Vin) — a(Un, VG)) - V(Un — g)] dx = 0.
Q
Now, since

/ ¢a(un, Vup) - V(up — g)dx = / ¢an(un, Vup) - V(uy — g) dx
Q Q
1
5 /Q¢Vun - V(up — @) dx
< —/ div(an(un, Vun))¢ (up — g) dx
Q
- /Q (Un — G)an(Un, VUy) - Vb dx

1
+—/¢Vun-ngx,
nJjq
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we get
I|m / ¢a(un, Vup) - V(up — g) dx < —/ div(2)¢(u — g) dx
—/(u—g)z-Vqs dx
Q
= [s@Dw-o).
Q

On the other hand, let us denote by

r r 8
Jo (X, 1) .:/0 a (s, Vgx))ds, and Jg%(x,r) ':/o ﬁa.(s Vg(x))ds,

i,j e{l,...,N}, and observe that

a1(X Un(X)) = & (Un(X), Vg(X))—(X) + ng (X, Un(X)).
%

We note that assumption (H,) is used here, and, as we shall notice in Remark
4.3, (Hy) is not needed when f(z, &) has the form described in Remark 3.1.
Now, since

0
—Ja (X, Up) = —Jz (X, U weakly as measures,
ox y (X, Un) ox o (X, U) y

and Jgi(x, Un(X)) — ‘]gi(x’ u(x)) ae., we have
g X
NoTd
,mgé¢mmyw-vwrng=L@/¢§j%f%o<ma» bﬁuuamﬂ
— I|m /¢a(un,Vg) Vgdx
=[x

— / ¢a(u, vg) - vgdx.
Q

_\]a| (X, u) — Jag (X, u(x))]

SXi

Consequently, from (4.14), we obtain

/¢@Dw—w
Q

(4.15) N

0
—A¢<§j%;%auu»—@iuuuﬁ—awvwww>za

i=1
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for all 0 < ¢ € C}(Q). Thus the measure

N

zDUu—-9g)—)

i=1

+a(u,vg) - vgcN > o.

9
7Jai (X, u(x)) — Jgi_(X, u(x))

Then using chain’s rule for BV functions ([1], Theorem 3.96) applied to
Jg (U1, U2) With ug(x) = X, U2(X) = u(x), X € ©, we deduce that the ab-
solutely continuous part of

N

0
3 l7Ja“ (X, U00) = Jag (X, u(x))}

i=1 3Xi
is a(u, Vg) - Vu£N and we obtain
z-V(u—g)—a(u, vg)-Vu+a(u, Vg)-vg = (z—a(u, vg))-V(u—g) >0 ae.

Since we may take a countable set of functions g € C%(Q2) dense in CY(Q)
we have that the above inequality holds for al x e &, where © c Q is such
that £N(©2\ Q) =0, and al g e CL(). Now, fixed x € Q@ and given & € RN,
there is g € C1(Q) such that Vg(x) = &. Then

(Z(x) — au(x), £)) - (Vu(x) —&) >0, V &eRN,

These inequalities imply (4.13) by an application of Minty-Browder's method
in RN,

From (4.13), (4.7) and (4.12), it follows that

(4.16) v —Uu = —diva(u, Vu), in D(Q)
and
(4.17) [a(u, Vu),v] =0  HN"1—ae on 9Q.

Therefore, to finish the existence part of the proof we only need to prove that
(4.18) (a(u, Vu), DTap(u)) > h(u, DTap(u)) as measures V a < b.

To do that, first let us prove

(4.19) Iimsup/ a(Up, Vup) - VTap(Up)g(X) dx < / ¢(a(u, Vu), DTy p(u))
n Q Q

for any 0 < ¢ € D(R2). By (4.2), we have

(4.20) / w(v —Uuy) dx = / an(Un, VUp) - Vw dx vV we WH(Q).
Q Q
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Then, taking w = T, p(Un)¢ as test function in (4.20), we obtain

/¢a(un,Vun)-VTa,b(un)dx+}/ ¢VUp - VTap(up) dx
Q nJjo
_ / (v — Un) Tap(Un)b X — / Tap(Un)altn, VUp) - Ve dx
Q Q

- } / Ta’b(Un)VUn . v¢ dX.
nJjo

Since the sign of the second term at the right hand side of the above inequality
is positive, letting n — oo we get

Iimnsup/ﬂqba(un, Vup) - VTap(up) dx < /Q¢(v — W Tap(u)dx
—/szTa,b(u)a(u,Vu)-V¢dx
= —/Qdiva(u, Vu) T p(U)¢ dx
—/QTa,b(u)a(u,Vu)-qu
= [ #(atu. VW, DTaw)
Now, let us prove the following inequality for measures
(4.21) f(u, DTap(w) < (a(u, Vu), DTy p(w)) + f(u, 0).
Using the convexity of f, we have for any w € WH(Q)
[ 9. VTan(un) dx = [ gatn, VTan(un) - Vas(uy dx
- /qua(un, VTap(Un)) - Vw dx

+/Q f(up, Vw)o dx.

Choosing w = 0, we obtain

/ ¢f (Un, VTap(up)) dx < / ¢a(Un, VTap(Un)) - VTap(Un) dx
Q Q

+/Q¢f(un, 0) dx.
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By Proposition 2.2 and (4.19), letting n — oo we obtain

RE(u, ¢) < liminf / f (Un, VTap(Un) dx
n Q
< liminf | ga(un. VTan(Un) - VTan(un) dx-+ [ £(u.0)p dx
n Q Q

< /Q $(a(u, VU), DTap(U)) + /Q 1 (U, 0) dx,

and (4.21) holds.

Note that by the definition of R?’b(u,¢>), using the chain rule for BV-
functions, we deduce that

Du

(U, DTap(W)® = 9° (m> D53, (Ta (W),

Then using (4.21), we have

(a(u, Vu), DTap(u)) = (a(u, Vu), DTap(u)* + (a(u, Vu), DTap(u))®

D
—”) D53, (Tab(W)|

0
> a(u, Vu) - VTap(W) + ¥ (IDUI

= h(u, DTy p(W)).

Sep 2. Uniqueness of entropy solutions. Given v, v € L*®°(), let u,u be two
bounded entropy solutions of the problems

u—dv au,Duy=v InQ
4.22
622 {_ 0
an
and
u—diva@ Du) =7 inQ
4.23 u
( ) { a_u =0 on 0€2,
an
respectively.

Let p, be aclassical mollifiersin RN, and let us write &,(X, y) = pn(X—Y).
If we denote z(y) = a(u(x), Vu(x)) and z(x) = a(u(x), Vu(y)), we have

u—dve=v and uU-—-divz=v in D(Q).
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Then, multiplying by T.(u(y) — U(x))én(X,y) and integrating by parts , we
obtain

/ YT, (U(Y) — TOOVEn(X, y)dy + / £n(, Dy(T, (U — T(X)
Q Q
(4.29) 4 /Q TL(U(Y) — U)Z(Y) - Vyn(x, ) dy

_ /Q ()T (U(Y) — UX))En(X. ) dy
and

/ TOOT (U(Y) — TO)En(X, Y)dX + / £n(Z, Dy (T, (U(Y) — U))
Q Q
(4.25) + /Q TL(U(Y) — U)Z(X) - Vén(X, ) dx

_ /Q T T, (U(Y) — TOX))En(X, y) dX.

Integrating (4.24) in x and (4.25) in y, and taking differences we obtain

/ / (U(y) — TOO) T (U(Y) — TX))En (X, y) dx dy
QJQ

+/Q (/Q &n(z, Dy(Ts(u_U(X)))> dx

+ /Q T(U(y) ~ TO0)ZY) - Ty (x, y) dy dx
- / ( / En(2 D@(u(y)—n)) dy
Q Q
- /Q TL(U) = TO0)Z00 - Tk, ) ey
_ /S2 /Q (W(y) — T T (U(Y) — UX))En(X, y) dx dy.
Let I be the first term at the left hand side of the above identity, 1] the other

part of the left hand side of the above identity and let 15 be the right hand side
term. Note that, by applying Green's formula and using that T.(—r) = —T.(r)
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and Vy&n(X, y) + Vién(X, y) =0, we get

1D = /S2 < /S2 e Dy<Te<u—U<x>>>) dx — /Q ( /Q En(z Dx<Tg(u(y>—U>>>> dy

+ / T.(U(y) — T))Z(Y) - Vykn(X, y) dy dx
QAxQ
- /Q T(U(y) ~ TO0)Z) - Vin(x. ) dxly

= Joro T:(u(y) — T(X) [(Z(Y) — 2(X)) - (Vyén(X, ¥) + Vxén(X, ¥))] dydx

Qx

+/Q (/Qén(z, Dy(Ts(U_U(X)))) dx

+ / T.(U(y) — T))Z(X) - Vykn(X, y) dx dy
QxQ

- / ( / En(2, D@(u(y)—u»)) dy
Q Q
- /Q T(u(y) ~ BO0)ZY) - Vb (x, y) dy dx
= / ( / &n(z, Dy(Ts(U_U(X)))> dx
Q Q
- / ( / En(Z(0), DyTg<u—U(x))) dx
Q Q
n _’ DX T€ u— d
+/Q(/Qs (2, Dy(T.(@ u(y))))) y

- / ( / Enz(y), DXTS(U—u<y))>> dy.
Q Q

Since T, (U(X) —u(y)) = T tuqy).e+uy) @X) —u(y), if we take Uy (x, y) :=
T_eruy),euey) (TU(X)), we have

D (T (U — u(y)) = DxU: (-, y).

Similarly,
Dy(Te(u —T(X)) = DyUg (-, X),



A DEGENERATE QUASILINEAR EQUATION 23

being u. (Y, X) '= T_stu.+ux) (U(Y)). Therefore, we can write

oy
g
/

Q

/Q En (X, Y)Z(Y) - Yyl (Y, X) dy) dx
( /Q En(X, Y)Z(X) - VyUs (Y, X) dy) dx

/anz- Df,us(-,x)) dx—/Q </Q £nZ(X) - D)S/ug(.’x)> dx

+ / /an(xa Y)Z(X) ° VXUé‘(Xv Y) dX) dy

(
/ (/Q%'n(x, V)Z(Y) - Vi, (X, y)dx) dy
/Q (/Q £nZ- DRU (-, Y) dx) dy —/Q (/Q £n2(y) - DST (., y)dx> dy

B /sz  En(X Y)(@(Y) = 200) - (VyUe(y: X) = Vlls(x. ) dy dx
+/g (/Q n2 DiL(Y) dx) dy — /Q < /Q Enz(y) - DRUL(., y)dx> dy
* /Q (/sz SnZ: Df/US(" X)> dx = /52 (/sz En2(X) - Diug(.’ X)> dx

_n n n
=ly + I+ x5

Let us compute 1J;. By (3.9) it follows that

Q

+

Q

)

+

12y = /S2 o En(X, Y)(Z(Y) —Z(X)) - (VyUe (Y. X) — VxU:(X, y)) dy dx

=/ . En(X, V)T, (u(y) — U(X))(Z(y) — Z(X)) - (Vyu(y) — VxU(x)) dy dx

Qx
> —-C o En(X, V)T, (u(y) — T(x)|u(y) — Ux)| [ Vyu(y) — VxU(x)|| dy dx
u(y)+e
> _Ce / / En(x, V) VyU(y) — Vxu() dx | dy.
Q uy)—e
Hence
(4.26) :8—L| D> o(e) vneN,

where o(g) is an expression that tends to 0 as ¢ — 07

Now we analyze 1J,. Having in mind the condition (3.13) of the definition
of entropy solution, we obtain that

/Q(/anz. DiUg(.,y)dx) dy > /Q (/anh(us(.,y), Dng(-,y))s) dy
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On the other hand, by (Hs) and (Hg), we have

z(y) - DRU(-, y) =

Therefore we have

15, > /SZ ( /S2 Ea(T,, wa‘) dy — /Q ( /9 snwu(y))w%DTiNDan) dy
_ /Q ( /Q sngo(ng(x»w‘)(DT’UsnDiUA) dy
- /Q ( /Q Snfp(u(y))l/fo(DT)Ug)IDQUgo dy

1 @)+ (x) 40 v 5% 1oia 1) 4
+/sz /JUE Sn(Ue)Jr(X)—(Ug)*(X) /(Ug)(x) S R

- / ( / snso(u(y»w‘)(DT’Ug)le‘Uel) dy=J7+J]
Q Q

where Ji' denotes the first and second terms of the above expression, and J;
the third and fourth terms. Now, since ¢ is Lipschitz continuous, we have

30 < /Q ( /Q sn|so<ng(x)>—w(u(y»wo(DT’USND;Ua) dy

M / ( / |Us(x>—u(y)|Tig+u(y>,5+u(y)<n(x))|D§U|) dy

M /(/ |u£<x>—u(y)||D§U|)d
XeQ 1 —e4u(y)<U(x)<e+u(y)}

<o, [ ([ osu).

Using the coarea formula, we get

u(y)+e
137 < &My /Q ( / . Per(Eeo = 1) dx> dy.

which yields

(4.27)

IA

s St 0,~s5= St
(z(y) - D7U,)| DU | < @(u(y)¥~(DU,)| D{U|.

1
lim =J'=0 VneN.

e—0t &

On the other hand, working in a similar way as before,

(Te) T (%)

n 1 _ 0,57\ P
|J2|§Q/ L/sn(US)JF(X)—(US)_(X)< [ 10 w(u(y)>|ds)w (DT DJu; | |dy

<&M,

u(y)+-e

u(y)—e

TUe) ™ (%)

Per({ti(x) > A})da | dy,
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and we obtain that
1
(4.28) lim =J'=0 VneN.
e—0t &

Then, by (4.27) and (4.28), we get
1
(4.29) =13 >0(s) VneN.
&
In a similar way, we also obtain that
1
(4.30) “13>0() VneN.
&
Now, from (4.26), (4.29) and (4.30), we deduce that
1 2
“12>o0(e) VYneN.
&

Consequently, since

l[im lim }I{‘=/ [u(x) — u(x)| dx,
Q

N—>00¢c0t &

and 1
lim lim —|g5/ v(X) — 50| dX,
Q

N—00 .0t &

we deduce that
[ w60 = wootdx = [ oo — w001 dx.
Q Q
and we conclude the proof of the Theorem. O

REMARK 4.2. When applying Kruzhkov's method, if instead of multiplying
by T.(u(y) —u(x)) we multiply by T,(u(y) —t(x))*, we obtain the estimate

(4.31) /Q(u(x) —u(x)Tdx < /Q(U(X) —v(x))" dx.

REMARK 4.3. We observe that (H,) is not used when f(z, &) = ¢y (&)
as in Remark 3.1. Indeed, it suffices to prove the analogous of (4.15). Since
a(z, &) = p(2)b(&), if we denote by J,(r) := f(; ¢(s)ds, we have

lim/cba(un,Vg)-V(un—g)dx: lim / ¢ ¢(Un)b(VQ) - V(up — g) dx
n—oo /o n—oo Jo

= Jim [ 9b(¥g)- (V3,(un) ~ ¢(un) V) dx.



26 F. ANDREU — V. CASELLES—J M. MAZON

Now, since VJ,(un) — DJ,(u) weakly as measures, we have

lim [ $atun, V9) - V(un— @) dx = [ 4[(Y9) - DI, w) ~ p(Wb(VQ) - V]

and (4.15) follows as in the proof above.

REMARK 4.4. If a(z, &) = 277 [23], [14], then Theorem 4.1 holds for

any v € L*°(Q) such that v > a, for some a > 0. Moreover, multiplying the
equation
Un —a—diva,(up, Vup) = v —a

by (un —a)~ = min(u, — a, 0) and integrating in 2 we obtain that

/((un —a))2dx < /(v —a)(Up—a) dx <0
Q Q

and we deduce that u, > a. Hence u > a.

5. — Semigroup solution

In this section we shall associate an m-accretive operator in L1(Q2) to
the formal differential expression —div a(u, Vu) together with the Neumann
boundary conditions.

DEFINITION 5.1. (U, v) € B if and only if u e BV(Q)NL®(Q), v e LY(Q)
and u is the entropy solution of problem (3.1), that is, a(u, Vu) € X1(2) and
satisfies:

(5.2 v = —div a(u, Vu) in D'(Q)
(5.2) a(u, Vu) - DSTap(u) > (R®P)S(u)  Va < b,
(5.3) [a(u, Vu), v] =0 HN"l —ae onaQ.

Let (u,v) € B, and w € BV () N L*(). Multiplying (5.1) by w — u,
using Green's formula (2.16) and having in mind that (5.2) is equivalent to
(3.13) (using a = —||U|loes b =|lU]lo0), We obtain
/(w —WvdX = — / (w — wdiv a(u, Vu) dx

Q Q
= /(a(u, Vu), Dw — Du) —/ [a(u, Vu), v](w — u) drN?
Q Q2

< /(a(u, Vu), Dw) — Rn(u).
Q
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Therefore, if (u, v) € B, we have that
(5.4) /(w —Wwv dx < /(a(u, Vu), Dw) — Rp(u),
Q Q

for al w e BV(Q2) N L®(Q).

ProPOSITION 5.2. Assume we are under assumptions (H). Then B is accretive
inLY(Q), L*(2) c R(I + B) and D(B) isdensein L1(Q).

Again, we observe that assumption (H2) is not required if f(z &) =
ey (&), being ¢ a bounded smooth function such that ¢(z) > ar > 0 for al
Ze R, |Z] < R (see Remark 3.1).

Proor. The accretivity of the operator B in L1($2) and the range condition
follows from Theorem 4.1.

To prove the density of D(B) in L($2), we prove that CE@CB
Let v € CF(Q). By Theorem 4.1, v € R(l +1B) for al n e N. Thus, for each
n € N, there exists u, € D(B), ||Unlloc < lIv]leo, SUch that (un, Nn(v — uy)) € B.
Consequently, by (5.4), we get

L2()

/ (1w — UpN(v — Uy) dx < / (aUp. VUp). Dw) — Ry (Up).
Q Q
for dl w e BV(R2) NL>®(R). Taking w = v, we get
/(v —up)? dx < 1 (/ a(Un, Vup) - Vodx — Rh(un))
Q n Q

1 M
< —/ a(up, Vup) - Vodx < —/ [Vv| dx.
nJjo n Jo

2
Letting n — oo, it follows that u, — v in L?(Q). Therefore v e DB @ ¢

—— LY .
D(B) and the proof is complete. O
From Proposition 5.2, if we denote by B the closure in L(2) of the opera-

tor B, it follows that B is m-accretive in L(2) and WLl(Q) = LY(Q). There-
fore, according to the genera theory of nonlinear semigroups (c.f., e.g., [11]),
for any up € L1(Q) there exists a unique mild solution u € C([0, T]; LY())
of the abstract Cauchy problem

(5.5) u'(t) + Bu(t) 3 0, u(0) = uo.
Moreover, u(t) = T (t)ug for al t > 0, being (T (t))1~o the semigroup in L1(R)
generated by the Crandall-Liggett’'s exponential formula, i.e.,

. t -n
T(t)uo=nILr(r)10 (I +HB> Uo.
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LEMMA 5.3. Given» > 0,andu € L9(Q),1 < q < oo, ifv = (I +AB)"u,
then

(5.6) lvllg < Ilullg-
As a consequence, for any up € L), 1 < g < oo, we have
(5.7 T(tup € LY(Q) Vt>0.

Proor. Since v = (I + AB)~!u, we have (v,%(u—v)) € B. Then,

a(v, Vv) € X1(2) and the following holds:

1 i . ,

X(u —v) = —diva(v, Vv) in D' (Q),

a(v, Vv) - D%v > (R1)%(v),
[a(v, Vv),v] =0 HN"t —ae onoQ.
Let
Po:={peC®®R) : 0<p <1, supp(p) compact, O ¢ supp(p)}.

For p € Py, by Green's formula, we have

/ p(v)(v —u)dx = A/ p(v)diva(v, Vv)dx = —1 / (a(v, Vv), Dp(v))
Q Q Q

= —)»/Q p'(v)a(v, Vv) - Vo dx — A/Qa(v, Vo) - D>(p(v)).
Now, by (3.6), it follows that

/ p'(v)a(v, Vv) - Vodx > 0.
Q

On the other hand, by the chain rule for BV-functions (see [1]), we have
D3(p(v)) = p,D%v with p, > 0, P, being the Vol pert averaged superposition.
Moreover, by [7],

6(@(v, Vv), Dp(v), -) = 0(a(v, Vv), Dv,-) |Dv| —ae
Then,
a(v, Vv) - D3(p(v)) = 6(a(v, Vv), Dp(v), -)|D°p(v)|
=P,f(@(v, Vv), Dv, -)| D3|
=TPp,a(v, Vv) - D% = P,(R¢)*(v) = 0.
Therefore, we get
[ pwe-wdx=<o

and conseguently,

/p(v)vdxg/ p(vyudx Vpe P
Q Q

This implies (5.6), having in mind a result of [10]. Last assertion is a conse-
guence of (5.6). O
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In [6] we shall define the notion of entropy solution for (1.2), and we shall
prove that entropy solutions are unique and coincide with semigroup solutions.
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