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The Cauchy problem for linear growth functionals

F. ANDREU, V. CASELLES, J. M. MAZON

Dedicated to Ph. Bénilan

1. Introduction and preliminaries

In this paper we are interested in the Cauchy problem

du_ diva(x, Du) in Q= (0, 00) x RV
ot (1.1)
u(0, x) = up(x) in xeRV,

where ug € L}, (RV) and a(x, ) = Vg f(x, &), f : RV x RV — R being a function with
linear growth as [|£]| — oo satisfying some additional assumptions we shall precise below.
An example of function f(x, &) covered by our results is the nonparametric area integrand
f(x,€) = /1 + ||€]|?; in this case the right-hand side of the equation in (1.1) is the well-
known mean-curvature operator. The case of the total variation, i.e., when f(§) = ||&]| is
not covered by our results. This case has been recently studied by G. Bellettini, V. Caselles
and M. Novaga in [8]. The case of a bounded domain for general equations of the form (1.1)
has been studied in [3] and [4] (see also [18], [11] and [15]). Our aim here is to introduce a
concept of solution of (1.1), for which existence and uniqueness for initial data in L }OC (RM)
is proved.

Due to the linear growth condition on the Lagrangian, the natural energy space to study
(1.1) is the space of functions of bounded variation. Let €2 be an open subset of RY. A
functionu € L'() whose gradient Du in the sense of distributions is a vector valued Radon
measure with finite total variation in €2 is called a function of bounded variation. The class of
such functions will be denoted by BV (€2). Thus, ifu € BV (£2), then Du is a Radon measure
that decomposes into its absolutely continuous and singular parts Du = D%u + D*u. Then
D% = Vu LV where Vu is the Radon-Nikodym derivative of the measure Du with respect
to the Lebesgue measure £V . Moreover, we have the polar decomposition D*u = Du |D¥ul|
where |D*u| is the total variation measure of D*u. Finally, we denote by BV,.(€2) the
sspace of functionsu € L}OC(Q) suchthatug € BV () forallp € C;°(£2). Forinformation
concerning functions of bounded variation we refer to [1], [13] and [20].
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By L}U(O, T; BV(RN)) we denote the space of functions w : [0, T] — BV(RN) such
that w € L'(]0, T[xR"), the maps

te[0,T]— / ¢ dDw(r)
RN

are measurable for every ¢ € C(l) (RN, RY) and fOT [Dw()|(RNYdr < oo. By
L}H(O, T; BV[OC(RN)) we denote the space of functions w : [0, T] — BVIOC(RN) such
that we € L% (0, T, BV(RY)) forall ¢ € C*RM).

Following [5], let

X,RY) = {z e LR, RY) : div(z) € LP(RY)}. (1.2)

Ifz € X,(RV)andw € BV(R)NL? (R") we define the functional (z, Dw) : CZ®(RY) —
R by the formula

(2, Dw), @) = —/

R

wediv(z) dx — /
N

RNwz'V(pdx. (1.3)

Then (z, Dw) is a Radon measure in R" and

‘/ (z, Dw)
B

for any Borel set B C RY. Moreover, we have the following Green’s formula ([5]), for
z € X,(RY) and w € BV(RY) N LY (RV):

5/ a8 Dw)|§||Z||oo/ Dw)| (1.4)
B B

/ (z, Dw) —I—/ wdiv(z) dx = 0. (1.5)
RN RN
We define

z-D'w:= (z, Dw) — (z- Vw) dCV.

Then z - D*w is a bounded measure which is absolutely continuous with respect to | D*w|
[16], hence, it is singular, and we have |z - D’w| < ||z]loo| D*w].

2. The existence and uniqueness result

Our purpose in this section will be to define the notion of solution for the Cauchy problem
(1.1) and to state an existence and uniqueness result for initial data in L 110 . (RM).

We shall assume that the Lagrangian f : RY x RN — R satisfies the following assump-
tions, which we shall refer collectively as (H):
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(Hp) f iscontinuous on RN x RY and is a convex diffentiable function of & with continuous
gradient for each fixed x € RY. Furthermore we require f to satisfy the linear growth
condition

Collgll = Cr = f(x.§) = M(||I]l + C2) 2.1

for some positive constants Cg, C1, Co. Moreover, f possesses an asymptotic function, i.e.
for almost all x € RY there exists the finite limit

lim ¢f <x, %) = O, &), (2.2)

t—0t

and fO(x, —£) = fO(x, &) forall & € RN and all x € RV,
(Hp) Let us consider the function f ‘RN x RN x [0, +00[— R defined as
N fe 5 if >0
fx,&,1) = (2.3)
O, &) if t=0

We assume that f(x, £, 1) is continuous on RY x RY x [0, +oo[ and convex in (£, t) for
each fixed x € RV.

We consider the function a(x, §) = V¢ f(x, §) associated to the Lagrangian f. By the
convexity of f

ax, &) -n—8&) = fx,n) — fx, ), 2.4
and the following monotonicity condition is satisfied

@k, n) —ax,§)-(n—§) =0. (2.5)
Moreover, it is easy to see that

la(x,&)| <M VY (x,& eRY xRV, (2.6)
We consider the function / : RY x RY — R defined by

h(x,§) :=a(x,§)-&.
From (2.4) and (2.1), it follows that

Coll§ll — D1 < h(x,§) < M|i§| 2.7

for some positive constant D;.
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We assume that

(H3) h(x,&) > 0 for x,& € RN, h0 exists and the function 7 is continuous on
RY x RN x [0, 4+o00[.

We need to consider the mapping a* defined by
a%®(x, &) = t_l)il}goo a(x, t€).
Observe that
hO(x, &) =a®(x,£)-& and Coll&] < h(x,&) < M|&].
(Hy) a®(x, &) = Ve fO(x, &) forall £ # 0 and all x € RY.
In particular, as a consequence of Euler’s Theorem, we have
o e) =a%@ 8§ =h(x, ),
for all £ € RV and all x € R, and consequently,
CollEll < fO(x, &) < Mgl VEeRY, vx eR". (2.8)
(Hs)a(x, &) -n < h%(x,n) forall x, £, n € RV,

Either from (Hy) or (Hs) it follows that a® (x, £) - < h%(x, n) forall €, n e RN, & £ 0,
and all x € R". Indeed, it suffices to replace £ by #£ in (Hs) and let t — +-o00.

(Hg) a(x, 0) = 0.
(H7) We assume that

la(x, &) —a(y, &) < o(lx —yl) 2.9

forallx, y € RY, and all £ e RY, where w(r) is a modulus of continuity.

REMARK 2.1. Assumption (H7) is only needed to prove uniqueness. The Lipschitz
continuity in x of the flux is a common assumption to prove uniqueness of Kruzkov’s
solutions of scalar conservation laws ([17]).

We need to consider the space BV(RN )2, defined as BV(RN )n LZ(RN ) endowed with
the norm

lwllgyvy, = lwll 2y, + DwlRY).

As usual, we denote by BV (RV ); the topological dual of BV(RM),. It is easy to see that
L*(R"Y) c BV(RY)% and

lwligyeyy; < lwllpEy, Ywe L2@®RM). (2.10)
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We define the space
ZRY) :={(z, &) e L°@®RN,RY) x BV@RM)* : div(z) =& in D'RY)).

To make precise our notion of solution we need the following definitions.

DEFINITION 2.2. Let W € L'(0, T; BV(RY),) and Q7 = (0, T) x RN for T > 0.
We say W admits a weak derivative in the space L}U(O, T: BV(RN)) N L>®(Q7) if there is
t

a function ® € LIIU(O, T: BV(RM)) N L>®(Q7) such that W (r) = / ®(s)ds, the integral
0

being taken as a Pettis integral.

DEFINITION 2.3. Let& € (L'(0, T; BV(RY),))*. We say that & is the time derivative
in the space (L'(0, T; BV(RM)»))* of a function u € L'(0, T; L} (RN)) if

loc

T T
/ < &(@),V() >dt = —/ / u(t,x)®(t, x) dxdt
0 0 JrRN

for all test functions ¥ € L1 (0, T; BV(R"),) with compact support in time, which admit
a weak derivative ® € L,lu(O, T; BV(RN)) N L®(Qr) which is a function of compact
support.

Observe that if w € L1(0, T, BV(RY)2) N L®(Q7) and z € L®(Q7, RY) is such that
there exists & € (LY, T; BV(RN)z))* with div(z) = & in D’(Qr), associated to the pair
(z, &), we define the distribution (z, Dw) in Q7 by

T
(2, Dw), ¢) = — /0 E@), wOG (@) dr

T
—/ / z(t, x)w(t, x) Ve (¢, x) dxdt (2.11)
0 JrN
forall p € D(Q7).

DEFINITION 2.4. Let & € (L'(0, T; BV(IRV)2)*, z € L®(Q7,RY). We say that
£ = div(z) in (L'(0, T; BV(R)»))* if (z, Dw) is a Radon measure in Q7 such that

T
/ @, Dw>+/ (&), wn)) di =0,
or 0

forall w € L'(0, T; BV(RY)2) N L®(Qr).
We also need the following set of truncatures
P:={peWL®®R): p' >0, supp(p’) compact}.

Our concept of solution for the Dirichlet problem (1.1) is the following.
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DEFINITION 2.5. A measurable function u : (0, T) x RY — R is an entropy solution
of (1.1)in Q7 ifu € C([0, T1; L} (RM)), u(r) converges to ug in L1 (RV) ast — 0%,

loc loc

p(-)) € L,IU(O, T; BV]OC(RN)) forall p € P, and there exists £ € (L', T; BV(RN)Q))*
such that:

() (a(x, Vu(r)), @) € ZRN) ae. 1 €[0,T],

(ii) £ is the time derivative of u in (L' (0, T; BV (R"),))* in the sense of Definition 2.3,
(iii) & = div(a(x, Vu(r))) in (L1(0, T; BV(RV)2))* in the sense of Definition 2.4,
(iv) the following inequality is satisfied

T T
- / / () — Dy dedt + / / n(Oh(x, Dp(u(t) — 1)) di
0 JRN 0 JRN

T
+f f a(x, Vu()) - Vn@®)p(u(t) — 1) dxdt <0
0 JrN

forall [ € R, all n € C® (10, T[xRY), with 7 > 0, n(z, x) = ¢(1)¥(x), being
r

¢ € C°(0,TD, ¢ € CSO(RN), and all p € P, where j(r) := / p(s) ds.
0

Our main result is the following existence and uniqueness theorem.

THEOREM 2.6. Assume we are under assumptions (H). Letug € L} (RN). Then there

loc
exists a unique entropy solution of (1.1) in [0, T1 x RY forall T > 0.

3. The approximation problem with finite energy

To prove the existence part of Theorem 2.6. we approximate (1.1) by problems of the
form

a—“—d'( (x,Du)) in Q=(0,00) xR
o v (pa(x, Du n = (0, 00) x 3.1
u(0, x) = ug(x) in xeRY,

where ug € LZ(RN Jandp € S (RN ) where S (RN ) denotes the space of rapidly decreasing
C® functions in RV .

Let g € S(RY), p(x) > 0 for every x € RY. We define the space BV(RY, ¢ dx) as the
space of functions in L 110 . (R™) such that the distributional derivative Du is locally a Radon
measure such that

/ ¢ d|Du| < oo.
RN

By WLIRYN | ¢ dx) we denote the space of functions in BV(RY, ¢ dx) such that Du €
Ll (RM).

loc
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For simplicity, in what follows we shall assume that ¢ € S (RM), ¢(x) > 0 for all
x € RV, and satisfies the following property

lp(x) =] = Co(x =yl (3.2)

for all x, y € R such that |lx — y|| < 1 for some constant C > 0. It is easy to construct
a function ¢(x) = ¢(|lx||) satisfying (3.2) if we take ¢ a decreasing function such that
@(r) = e~ " for r > 1 and such that ¢ is C*° in RN. Condition (3.2) enables us to prove
the following Lemma.

LEMMA 3.1. Assume that ¢ satisfies (3.2). Let v € BV(RY, ¢ dx) N LP(RM), 1 <
p < oo. Letn € CSO(RN), n > 0, with supp(n) < B(0, 1), fRN nx)dx = 1 and let
7, L 0+ 9 = TLNU(%). Thenvj =nj*v € Wb (RNY satisfy
] .

vj — v in LP(RY) and f |va|g0dx—>/ ¢d|Dv| asj— oo.
RV RV

Proof. We only have to check that
limsup/ |Dvjlpdx 5/ @d|Dv]. (3.3)
j RN RN

For that, we write
/ |Dujlg dx 5/ / 10 — )d|Dul(n)g(x) dx
RN RN JRN
=/ / nj(x = y) (@) —e(y)d|Dv|(y) dx
RN JRN

+/RN fRN nj(x — y)e(y)d|Dv|(y) dx = (1) + (D).

Observe that the second of the integrals above is convergent since 1 ; have compact support.
By interchanging the order of integration in (II) we have

(I1) = f od|Dvl.
RN

Using (3.2) we have
W= [ [, n =30 = pondipeics) ds

sc/ / 0 (& = Mllx — yle()dIDul(y) dx
RN JRN

=C/ nj(Z)IIzlldzf @d|Dv|.
RN RN

Letting j — oo, we obtain (3.3). O
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We denote by
X,(RY) ;= {z € XoRY) : z = pz1, with z; € L°(RY)}.

Ifz e X(p(RN) and w € BV(RY, pdx) N L2 RY) we define the functional (z, Dw) :
CP®RY) — R by

((z, Dw), ¢) = —/

R

N w ¢ div(z) dx — /

Jwe Vo dx. 34
R

Using Lemma 3.1, instead of the one used by Anzellotti in [5], and some small modifications
of the proofs given in [5], we can show that (z, Dw) is a Radon measure in RY and

‘/ (z, Dw)
B

for all Borel set B ¢ RY. Moreover, we also have the following Green’s formula for
z€ X,(RV)and w € BVRY, p dx) N L2(RY)

- ||Z1||oof od|Du| (3.5)
B

/ (z, Dw) + / wdiv(z) dx = 0. 3.6)
RN RN
Our notion of solution for problem (3.1) when ug € L2(RN) is the following:

DEFINITION 3.2. Let ug € L?(R"). A measurable function u : (0,7) x RY — R
is a solution of (3.1) in Q7 if u € C([0, T1, L2 RM)), u(0) = uo, u’(t) € L*(R"Y),
u(t) € BVARYN, o dx) N LERN), pa(x, Vu(r)) € Xo(RY) ae. t € [0, T, and for almost
all t € [0, T] u(r) satisfies:

u'(t) = div(pa(x, Vu(t)) in D’(RN) 3.7
p(ax, Vu(t)) - D'u(t) = p(x) fOx. D*u(t)) = o(x) fO(x. D'u)| D*u. (3.8)

THEOREM 3.3. Assume we are under assumptions (H) and ¢ satisfies (3.2). Given
ug € L2(RN), there exists a unique solution u of (3.1) in Qr for every T > 0 such that
u(0) = uo.

To prove Theorem 3.3 we shall use the nonlinear semigroup theory ([9]). For that we
need to study the energy functional associated with the problem (1.1). In order to consider
the relaxed energy we recall the definition of function of a measure ([6], [11]). Let g :
RY x R¥ — R be a Carathéodory function such that

g, )| < M+ &) ¥ (x,8) e RV x RV, (3.9)

for some constant M > 0. Furthermore, we assume that g possesses an asymptotic function
g, Ttis clear that the function g°(x, £) is positively homogeneous of degree one in &.
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We denote by M(RN RN ) the set of all R¥ -valued bounded Radon measures on RV .
Given u € M(RY,RY), we consider its Lebesgue decomposition 1 = u + u*, where
u® is the absolutely continuous part of u with respect to the Lebesgue measure £V of RY
and p* is singular with respect to £V. We denote by 1% (x) the density of the measure ;¢
with respect to £V and by (du® /d|u|*)(x) the density of u* with respect to |u|*.

For 1 € M(RY,R") and g satisfying the above conditions, we define the measure
g(x, ) on RY as

d S
[ st = [ st axs [ o (x, “s<x>) dlf (3.10)
B B B d|pul

for all Borel set B ¢ R". In formula (3.10) we may write (du/d|un])(x) instead of
(du’/d|nl*)(x), because the two functions are equal |u|*-a.e.

As it is proved in [6], if g is a Carathéodory function satisfying (3.9), then another way
of writing the measure g(x, ) is the following:

d dcN
/g(x,u)=f§<x,—d“(x>,—<x>) de, 3.11)
B B o dOl

where « is any positive Borel measure such that |u| + £V < a.
Let g be a function satisfying (3.9). Then for every u € BV(RY, ¢ dx) we have the
measure g(x, Du)g defined by

/g(x,Du)go :=/g(x,w<x>>wdx+f g%(x, D'u(x)) ¢ d|Dul
B B B

for all Borel set B C RY. Observe that if A = (9 Du, L") and & = (|Dul, £LV), then by
Lemma 2.2 of [6] we have

~ di ~
g(-stu)(p:g<xv d_) :g(xa)") (312)
o
We define the energy functional

Gy(u) == AN g(x, Du) ¢. (3.13)

In [6], G. Anzellotti proves the lower semicontinuity of the functional G, in case of a
bounded domain and ¢ = 1. Adapting the results in [6] or [4] we can also prove the lower
semicontinuity of G, in our case. Indeed we have the following Lemma.

LEMMA 3.4. Assume that g(x, &, t) is lower-semicontinuous on RN xRN x [0, +o0],
convex in (&, t) for each fixed x € RY, and g(x,&) > all§|l — b forall x and §. Then, for
any sequence u, € BV(RY, ¢ dx) such that u, — u in L}OC(RN) one has

liminf Gy (u,) > Gy (u).
n—oQ
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We consider the energy functional associated with the problem (1.1) ®,, : L*(RN) —
[0, +o00] defined by

/ f(x, Du) ¢, if u e BV(RY, ¢ dx) N L2(RY)
Dy (u) := {JRY

+00 if ue L2@RN)\BV(RY, ¢ dx).
Functional &, is clearly convex and has the form given in (3.13). Then, as a consequence
of Lemma 3.4, we have that ®, is lower-semicontinuous. Therefore, the subdifferential

0®, of ¥y, is a maximal monotone operator in LZ(RN ) (see [9]). Consequently, the exis-
tence and uniqueness of a solution of the abstract Cauchy problem

w'(t) + 9Dy (u(t)) 30 t €]0, oo[
(3.14)
u(0) = ug ug € L2 RM)

follows immediately from the nonlinear semigroup theory (see [9]). Now, to get the full
strength of the abstract result derived from semigroup theory we need to characterize 9 ®,,.
To get this characterization, we introduce the following operator B, in L%(RM).

(u,v) € B, <= ueBVRY, ¢dx)nL*RY),ve L*R")
and ¢(x)a(x, Vu) € X, (RV) satisfies:
—v = div (pa(x, Vu)) in D'(RY) (3.15)
va(x, Vi) - D'u = of°(x, D'u) = of°(x, D°)| D*ul. (3.16)

THEOREM 3.5. Assume we are under assumptions (H) and ¢ satisfies (3.2), then the
operator d®, has dense domain in LZ(RN ) and

3D, = B,.

The proof of Theorem 3.5 follows the same approach used in [4] and we shall not include
ithere. Let us mention that one of the main tools needed is an approximation lemma similar
to the one given by Anzellotti in [7]. The proof uses Lemma 3.1 and is similar to the proof
in [7] (see also [4]).

LEMMA 3.6. Assume that ¢ satisfies (3.2). Ifv,u € BV(RN, @ dx)N LP(RN), 1 <
D < 00, then there exists a sequence v € C! (RN) nwil (RN, o dx)N W”’(RN) such
that

v —>v in LPRV), (3.17)

1+ |Vvx)|2ed / 1+|D 2 ¢ dx, 3.18
[ iewu@reas— [ i+ ar (3.18)
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Vuj(x) = Vu(x) LN-ae. in RY, (3.19)
Vu; D

|Vvj(x)] — oo and b0, Do) |Dvf*-ae. in RY, (3.20)
IVvj()l  [Dv(x)]
Vo; D

|Vvj(x)| — oo and v () — u(o) |Dul*-ace. in RY, (32D

Vo)l [Dux)]

where | Du|** denotes the part of the singular measure | Du|* which is singular with respect
to |Dvl’.

Standard semigroup theory (see [9]) and the characterization of @, given in Theorem 3.5
permits us to proof Theorem 3.3.

4. Proof of Theorem 1: Existence

We divide the proof into several steps.

STEP 1. Letug € L} (R"). Let ug, € L*(RY) N L>°(RY) be such that ug, — uo
in Ll (RY). Let 9, € S(RY) satisfying (3.2), 0 < ¢, < 1 and g,(x) = 1 for all
x € B(0,n). By Theorem 3.3, for every n € N there exists a solution u, of (3.1) for
® = ¢y, corresponding to the initial conditions uq,. Therefore, u, (t), u, (t) € LZ(RN ),
un(t) € BVRY, ¢, dx), z,(t) = ppa(x, Vu,(t)) € Xo(RY) ae. t € [0, T], and for
almost all ¢ € [0, T'] u,(¢) satisfies:

ul (1) = div(z,(r)) in D'(RY), 4.1
{znm Dup () = gn fOx, Dun (1)), 42)
Zn(t) - D* p(un (1)) = @ fO(x, DS p(un(1))) ¥V peP. '
From (4.1) and (4.2), it follows that
—/ (W — un (1), (1) dx = / (zn(2), Dw) — / ©nh(x, Duy(t)) 4.3)
RN RN RN

for every w € BV(RY, ¢, dx) N L2(R").

Let us prove that {u,} is a Cauchy sequence in C([0, T]; LIIOC(RN)). Leta > N,
T (r) := max(min(r, k), —k) (k > 0) and let jk+ be the primitive of p,j' r) = ole,j'(r)‘)‘_l
vanishing at r = 0. We define j,~ as the primitive of p,” which vanishes at r = 0, where

P (r) = —p,j'(—r). If N =1, we take @ > 2, so that (jki)/ e WLR(R).



12 F. ANDREU, V. CASELLES, J. M. MAZON J.evol.equ.

Letg € Cf)’o (]RN ), ¢ > 0, and suppose that m > n. Then, by (4.1) and Green’s formula,
we have

/ Py () — um () (), () — uly, (1))
RN
=- fRN (zn (@) = Zm (@), D(p U (1) — wm (1))
=— /R L @G0 = 2m(@), D(py (un (1) = u (1))
- / V¢ - @n(t) = 2 (@) py n (1) — up (1)),
RN
Now, since ¢, = ¢ for all n > n(¢), having in mind (4.2) and (2.5), it is easy to see that
/RN ¢ (@n(t) — 2 (@), D(p} U (1) — um (1)) = 0.
Consequently, for every m > n > n(¢), we get
af .+ _ _ . _ + _
d Ji wn(@) —up ()¢ < Vo - (20 (t) — zm () py Wn(t) — um(t))
t ]RN ]RN
<201 [ 19611t n(®) = 1 0,
Then, choosing ¢ = ¢*, with 0 < ¢ € C{° (RM),

a7 Ji n (1) = (1) < ZOle i n(8) = un ()] ¢~ V|
t RN RN

a—1 1
§2aM</ (Ip;f(un(t)—um(t))lw"“l)ai'> - (f |V¢I°‘>a
RN RN

a1 1
<2a’M (f ITk+(un(t)—um(t))I“¢“> (f IWI"‘) .
RN RV

Now, we observe that Tk+ % < j,:' (r) for all r € R. Hence

d i+ o
E BN Jx (n(t) —um (@)

a—1 1

§2a2M(f j,j(un(r)—um(t))<p“> ’ (/ IVwI"‘)a
RV RN

and therefore,

1

J L :
7 (/ Ji Gun () — um(t))<p°‘> <2aM (/ IWJI“) .
t RN RN
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Setting ¥ (x) = go(’;‘) instead of ¢(x) we get there exists n, € N such that for all m >
n > n,, we have

1

d - N7 N
y / JEUn () — um @) ) < 2aM f V|
t \JRrN RN

N—«a ‘i
=2Mar « </ |V<p|°‘> .
RN

Integrating from O to s, with 0 < s < T, we obtain

1
( / G U (s) — (s))lﬁf‘) -
RN

1

. « N—a o

S(/ J;f(uon—uom)wf> +2TMar ™« (/ |V90|°‘> ;
RN RN

forallm >n > n, and s € [0, T]. Given € > 0, since « > N, we can find r. € N such
that

N—a o €
2TMar = </ |V<p|°‘> <= Vr>re.
RN 2

Now, let ne € N be such that n. > n,, and

1
. o €
(/N ];(“On_uOm)wZ) 55 Vm >n > ne.
R

Then, we obtain that

(/N Ji i (s) —um(s))lp;’:)a <e VYm>n>ne and s € [0, T],
R

from where it follows that {u, } is a Cauchy sequence in C ([0, T']; LlloC (RM)). Thus we may
assume that u,, — u in C([0, T]; LIIOC(RN)) for some function u € C([0, T]; LIIOC(RN)).

In particular, we have that u(t) — ug in L] ((RY) ast — 0+.

STEP 2. Convergence of the derivatives and identification of the limit. sSince the map
t + u) (¢) is strongly measurable from [0, 7] into LZ(RN) and, by (2.10),

||u,/1 (I)HBV(RN); = ||u,/1 (f)”LZ(RN),

it follows that this map is strongly measurable from [0, 7] into BV (RY )5. Moreover, for
every w € BV (RY),, if we take u, (f) — w as test function in (4.3), since

/ ouh(x, D (1)) = / (2 (0), Dun(1)),
RN RN
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we get

/1;{"’ u,(Hw dx = — /RN(zn(t), Dw).
Hence

/RN u,(Hwdx| < M/I;N |Dw| < Mi||lwllgygy), YneN.
Thus,

||u;z(t)||BV(RN); <M; VneNandtel0,T]

Consequently, {u}},ey is a bounded sequence in L*°(0, T; BV(RN )3). Now, since the
space L*°(0, T; BV(RN)i) is a vector subspace of the dual space (LY, T; BV(RM))))*,
we can find a subnet {u/,} such that

ul, — & € (LY(0, T; BV(RY)p))* weakly*. (4.4)
Since ||z, (#)|lcc < M foralln € Nand a.e. ¢ € [0, T], we may also assume that
n— 2€ L7, RY)  weakly*. (4.5)

Obviously, we have

& =divy(z) inD'(Qr) (4.6)
and
£(t) = divy(z(t)) inD'RY) ae. t [0, T]. .7)

Consequently, (z(1), £(t)) € Z(RY) for almost all ¢ € [0, T.
With a similar proof to the one given for Lemma 4.1 of [3], we get the following result.

LEMMA 4.1. & is the time derivative of u in the sense of the Definition 2.3.

STEP 3. Next, we prove that £ = div(z) in (LY, T, BV(RN)Q))* in the sense of the
Definition 2.4. To do that, let us first observe that (z, Dw), defined by (2.11), is a Radon
measure in Q7 forall w € LL}(O, T, BV(RN)Q) NL*®(Qr). Letp € D(Q7), then

T
((z, Dw), ¢) = — /0 (@) — ug, (1), w(n)p (1)) dt
T
- / w(z — zq) - Vi dxdt + / ((za (), Dw(2)), §(1)) dt.
or 0

Taking limits in «, and using (4.4), we get

T
((z, Dw), ¢) = 1iorlnf0 ((za (1), Dw (1)), ¢(1)) dt. (4.8)
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Therefore

T
I((z,Dw),¢)|SMll¢||oo/ / [Dw(t)| dr.
0o JrV

Hence, (z, Dw) is aRadon measure in Q 7. Moreover, from (4.8), applying Green’s formula
we obtain that

T
(z, Dw) = lim/ (za (1), Dw(t)) dt
or “ Jo

T T
= —lim/ / div(zq ())w(t) dxdt = —/ E@®), w()) dt,
@ Jo JrN 0

that is,

T
(z, Dw) ~|—/ (E@®), w(t))dt =0. “4.9)
or 0

As a consequence of the boundedness of {u),}, (4.4) and the above statement, we have

u, > €€ (L'0, T; BV@®N)2)* weakly*. (4.10)

STEP 4. Convergence of the energy.

Let0 < ¢ € C° (®M). If n is large enough, we have p¢, = ¢. From now on, we assume
that this is the case. Multiplying (4.1) by (w — p(u, (¢)))p, integrating in RY and using
(4.2), we have that

- /RN (w — pun(t)))pu,, (t) dx
=/ (zn(t),Dw)w—/ h(x,Dp(un(t)))prr/ Zn(w — p(uy)) Dy (4.11)
RN RV RV

for every w € BV ,®¥)NL? ®Y)andall p € P.

loc
First, we observe that setting w = 0 in (4.11) and integrating in (0, T'), we obtain

T
/ Jp(un (T))pdx + / / h(x, Dp(u,(t)))e dxdt
RN 0 JRN

T
_ / Ty (tom)g — / / 2D (1)) D dxc,
RN 0 JRN
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where J 1’, (r) = p(r). In particular, we have

T
/ / Jpun () dxdt < C, 4.12)
0 JRrN

T
/ / h(x., Dpuy (1)) dxdt < C. (4.13)
0 RN

Hence, by (2.7),

T
Lé'éNMDPWMDNdHEC (4.14)

where C is a constant depending on ug, @, [|pllcc and the constants in (2.1). Since the
functional @, : L}OC(RN) —] — 00, +00], defined by

/ ed|Dw| if w e BVie®")
®,(w) = { ey (4.15)

+00 if welL) (RN) \BVI()C(RN)y

loc

is lower semicontinuous in L 110 . (®N), we have that

By (p(u(1))) < Tim inf &, (p(u, (1)) = lim in fR @IDp(un (D).

On the other hand, by Lemma 5 in [3], the map ¢ +— fRN ¢|Dp(u,(t))| is measurable, then
by the Fatou’s Lemma and (4.14), it follows that

T T
/ ®y (p(u()) < / nminf(/ ¢|Dp<un(t)>|> dr
0 0 " \JRV

T
< liminf/ (/ (p|Dp(un(t))|> dt <C. (4.16)
n—o0 0 RN
As a consequence of (4.16), we obtain that p(u(t)) € BV, (®M) for almost all ¢ € [0, T].
From Lemma 4.2 in [3],if 0 < n = ¥ (#)e(x), ¥ () € D0, T, ¢(x) € CSO(RN), the
map t — p(u(t))n(t), from [0, T] into BV(RN), is weakly measurable.
Using the same technique than in the proofs of Lemmas 4.3 and Lemma 4.4 of [3], we
obtain the following two results.

LEMMA 4.2. For any t > 0, we define the function V%, as the Dunford integral (see
[12])

1 t
() = - / n(s)p(u(s)) ds € BV (®N)*™,
1—1



Vol. 2, 2002 The Cauchy problem for linear growth functionals 17

that is,
1 t
(W), w) = ;/ (n(s)p(u(s)), w) ds
1—T

forany w € BV(RN)*. Then ¢ € C([0, T1; BV(RM)). Moreover, ¥* (1) € L>(R"), thus,
Y (t) € BV(RN), and * admits a weak derivative in L, (0, T, BV(RY)) N L>®(Q7).

LEMMA 4.3. For t > 0 small enough, we have
T T ) —
/ (W), &@)) dr < —/ / MJp(u(t)) dxdt. 4.17)
0 0 JRM -7
We need the following result.
LEMMA 4.4. Let
T
Awi= [ [ nex Dptg a
0 JRrVN
n=vy0px), ¥ € DO,T), ¢ € CCRY), and
1 t
@) 0 =+ [ e pis)ds
-1

Then

T
limsup A, < / / z(t) - Vpu(t)) ¢ dxdt
0 JrV

n—oo
T
—i—liminfliminf/ z(@®), D*(qpw)* (1)) dt.
ntl =0 Jo

Proof. Let w € Wh1((0, T) x RY). We use as test function (7p(w()))” in (4.11) and
integrate in (0, T') to obtain

T T
_/ / (np(w(t)))’wu;(t)dxdf+/ / Py (1)) pu,, (1) dxdt
0 JRN 0 JrY
T
N / / h(x, Dp(ua () dt
0 JRN

T T
=/ f (zn (1), D(p(w(1)))") edt +/ / 2, (1) Dp(np(w(t)))" dt
0 RN 0 RN

T
_/ / () Dop (uy (1)),
0 JRN
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where n*(t) = % fttf ; N(s)ds. Our purpose is to take limits in the above expression as

n— 00, w — uin L}OC((O, T) x RY), 7 — 0and n 1 1. We take T > 0 small enough.

Let us analyze the first term

T T
—/ / (p(w(1)))* pu,, (1) dxdt:/ / (p(w(1)))] pun(t) dxdt
0 JRrV 0 JRrV

T
— / / (mp(w()))f pu(t) dxdt as n — oo.
0 JrV
Now, using Lemma 4.7 and Lemma 4.9,

T T o .
/ / mp(w(®){pu = / / nWpw®) =0 = H)pwlt = 7)) ou(t) dxdt
0 JrN 0 JrN

T
/T / n(@)pu () —nit —1)pult — 1))
—
0 JRrV

T

ou(t) dxdt, asw — uin L},

T T —7) —
= —/0 (E(t),(wnp(u(t)))f)dtzfo fRN n(tr_—)rm(p.]p(u(t))dxdt
T
—>/ / n@Jpu(t)) dxdt, ast — 0
0 JrN

— /RN(J,,(M(O)) —Jpyu(T))pdx asn 1 1.

The analysis of the second term is easy. Letting n — oo we have

T T d
/ / Pl (1))id (1) dedt = / a4 / Ty (un (D) dx
0 RN 0 d[ ]RN
_ /R ) (T) — Iy @)y dr — /R (D) ~ Iy w(0))g ds.

Let us deal together the first two terms of the right hand side of the equality we are analyzing.
Having in mind Steps 3, 4 and (4.10), taking limits asn — 0o, w — u in Llloc andt — 0,

we get:

T
/ / (2u (1), DI(np(w)) ] di —
0 JRN
T T
- fo E(), (np(w))Fe) di = /O / w () (p (W) ddt
RN

T _ _ _
zf / u(t)n(t)p(w)(t) n(t —t)pw)(s r)¢dxdt
0 JrRV

T

T _ _ _
_)/ / u(t)n(t)p(u)(t) n(—t)p)(t r)(pdxdt
0 JrY

T
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T T
=/ / u(t)(np(u))fwdxdtz—/ (@), mpw)T @) dt
0 JrN 0
T T
- / / 2(6) - VIp() gl dxds + / / 2(0) - D [(np (@) g dr
0 JrN 0 JRrN
T T
—>/ / z(t)'V(np(u)w)dxdurliminf/ / (1) - D*(np(u) g dt
0 RN 7—0 0 RN
T
—>/ / z(t) - V[p(u(t))e]l dxdt + lim inf lim inf
0 JRrV ntl

7—0
T
f / z(t) - D*(np(u)) g dt
0 JRrN
as n 1 1.

The last term fOT Jzn zn(1) Dep(u, (1)) easily converges to fOT Jen 2() Dop(u(r)). O

The lemma follows by collecting all these facts.
The proof of next Lemma is similar to the proof of Lemma 9 in [3].

LEMMA 4.5. Let ¢ € C°(®"). Let
Wy o (p()) = /N S (x, Dpu(1)))p.
R
Then
T T
f Wy o (pu()))dt = lim / Wy 0 (p(uy (1)) dr. (4.18)
0 n—>0oo 0

As a consequence, we also have that

Wy (pu() = lim Wy (p(un(@))) ae. in 1. (4.19)

From Lemma 4.5 it follows that
/ h(x, Dp(u(1)))p = lim / h(x, Dp(u,(1))e, (4.20)
RN n—oo RN

a.e. inr € (0, T). Indeed, if we consider the R" -valued measures i, 1 on RY which are
defined by

n(B) :=fB<pDP(un), n(B) 1=/B§0Dp(u)

for all Borel sets B € RY, we have

pn — u weakly as measures in RV,
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Moreover,
Wy (p() = / fG,n)  and W, (p(uy) = / Fx, ),
RV RN
with A = (i, @£) and A, = (1, 9LV). Hence, (4.18) yields

lim Fx,hn) = / fx,n).
RN RN

n—oo

Then, applying Theorem 3 of [19] (see also [14], Theorem 1, page 90), it follows that

/ h(x,\) = lim/ h(x, Ap) = lim/ h(x, Dp(up))e.
RN n—0o0 RN n— o0 ]RN

Now, it is easy to see that

/ﬁ(x,x)zf h(x, Dp(u))ep,
RN RY

consequently, we obtain (4.20).
Let us now prove that

T T
/ / z(t) - Vpu(t))e dxdt < / / a(x, Vu(t)) - Vpu(t))e dxdt. “4.21)
0 JRrN 0 JRrN

In fact, from the convexity of f in &, we have
T T
/ / a(x, Vp(un)) - Vp(u)p dedi < / / ax, Vp(un)) - V plun)p dudr
0 ]RN 0 RN
T T
4 / f Fx, V) dxdi — f / 6 V) dxdi
0 JRN 0 JRN
T T
_ / f h(x, V pun))g did + / / FOC, D plun)) di
0 JRN 0 JRN

T T
—/ / O, D p(un))e dt+/ / f(x, Vpw)e dxdt
0 JrV 0 JRN

T T
—/ / S, Vpun))e dxdt:/ / h(x, Dp(un))e dt
0 JrV 0 JrV

T T
—/ f f(x, Dp(un))e dt+/ / fx, Vpu)e dxdt.
0 JrV 0 JrV

Now, since

n—oo

T
lim / / [a(x, Vit (1)) — aCr, Vp(un ()] - Vp(u(t))g dudi = 0,
0 JRN
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we have

T
lim / / a(x, Vp(u,())) - Vpu(t))e dxdt
0 JrN

n—oo

T
= / / z(t) - Vpu(t))p dxdt.
0 JRN

Then, letting n — 00, using Lemma 4.11 and (4.20), we deduce that

T T
/ / z(t) - Vpu(t))e dxdt < / / h(x, Dp(u))p dt
0 JrV 0o JrV

T T
—/ / f(x, Dp(u)g dt+/ / f&x, Vpu))p di
0 JRN 0 JRN
T
:/ / a(x, Vu(t)) - Vp(u(t)) dxdt,
0 JRN
and (4.21) holds.

STEP 5. Identification of the limit. Let us now prove that
2(t, x) = a(x, Vu(t,x))  ae. (t,x) € (0,T) x RV, (4.22)

Let 0 <¢ € CJ((0,T) x RV) and g € C1([0, T] x R"). We observe that
T
/ /N ¢l@alx, Vuy), Dp(un — g)) —a(x, Vg)Dp(uy — )]
0 JR
T
= / fN ¢lalx, Vup) —a(x, Vo)l - Vp(u, — g) dxdt
0 JR
+ /N pla(x, Vup) —a(x, Vg)l - D p(u, — g).
R
Since both terms at the right hand side of the above expression are positive, we have
T
/ /N ¢l@alx, Vuy), Dp(un, — g)) — a(x, Vg)Dp(u, — )1 = 0. (4.23)
0 JR
Our purpose is to take limits as n — oo in the above inequality. We assume that ¢ (¢, x) =

n®)y(x), wheren € DO, T), ¥ € D(RN), n > 0, ¢ > 0. First, integrating by parts in
the first term, we have

T T
/ f ¢(a(x, Vup), Dp(up — g)) dt = —f / p(un — g)Vx - a(x, Vuy) dxdt
0 RN 0 RN

T
—/ / ¢div(a(x, Vu,))p(u, — g) dxdt
0 JRN
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T T
[ [ pun = 9% ate Vun e~ [ [ puptus — ) s
0 ]RN 0 RN
T T d
_/ / pun — g)Vx¢ - a(x, Vuy) dth_/ / ¢—Jp(un — g) dxdt
0o JrN o Jry odt

T T
- f f G681y — g) dxdt = — / / Pty — §)Vih - a(x, Viy) ddi
0 JRN 0 JRN

T T
+f / &1 Jp(un — g) dxdt —/ / ¢grp(uy — g) dxdt.
0 JrV 0 JrV

Letting n — oo in (4.23), taking into account the above equalities, we obtain

T T
—/ / p(u —g)VX¢-zdxdt+/ / &1 Jp(u — g) dxdt
0 JRVN 0 JRrVN

T T
—/ / dgrp(u — g) dxdt — / / ¢(a(x,Vg), Dp(u —g))dt > 0. (4.24)
0 JRV 0 JrV

Now,
T
/ / G Jp(u — g) dxdt
0 RN

= lim MJP(M ) dxdt
7—0 RN —

— lim yo =D = n® ) 10 ) i — g) dxdr. (4.25)
7—0 RN

For simplic1ty, let us write v = u — g. Since
Jp(0) — Jp(v(t + 1)) < (v(t) —v(t + 1)) p(v(2)),

for 7 small enough, we have

T _
/ / VD) 70O g p (2 ddr
RN T

T —
- / / Jp((t + 1)) — Jp(v(t)) (W () dxdr
RN T

/ f M= =00 00 ) . (4.26)
RN

By Lemma 4.1, we have
T f—
/ /RN Mn(t)wx)p(v(t))dxd;

T d
—/ / v(®) - (p ()" ()Y (x) dxdt
0 RN dt

T
= / / & — &)@ p)" ()Y (x) dxdt. (4.27)
0 JrV
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Collecting these inequalities, we obtain

T _ _
/ / =D =00 g ) dvdr
0 JrV

-7

T
<- / / (& — g () ()Y (x) dxdt
0 JRN
T
——tim [ i) = 1. o )" @)
T 1 t
— —lim /0 . / 1(5) (divizn (1)) — g/ (1), po())Y) dsdr
-1
T 1 t
—tim [ 2 [ 90| [ @0 Do+t poen |
-7
T 1 t
— lim / ! / n(s) / (2 (1), Dp(u(s))¥ dsdr
nJo T Ji—t RN
T 1 t
+lim/ —f n(s)/ p((s))zy(t) - Vi dsdt
nJo T Ji—1 RN

T 1 t
+f —/ n(s) {g:, p(v(s)Y) dsdt.
0 TJi—
Since

Dp(v(s)) = Vp(u(s) — g(s)) + D’ p(u(s) — g(s))

and

zn(t) - D' p(u(s) — g(s)) = a(x, Vu,(t, x)) - D* p(u(s) — g(s))
< hx, D pu(s) — g(s))),

from the above inequality, it follows that

T _ _
[ [, 2010y g gy
0 JrV T

T t
= / l/ 77(5)/ z(t) - Vp(u(s) — g(s))y dxdsdt
0o T Ji—t RN
T 1 t ]
+ / - / n(s) / wh(x, D p(u(s) — g(s))) dsdt
0 T Ji— RN
T 1 t
+/ —/ 77(5)/ pu(s) — g(s))z(t) - Vi dxdsdt
0o T Ji—t RN

T 1 t
+/ —/ ’7(5)/ & () pu(s) — g(s)) ¥ (x) dxdsdt.
0 T Jt—1 RN

23

(4.28)
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Hence, letting T — 0 in (4.28), we obtain

T T
/ / Plpli =) = / / n(@)z(t) - Vpu(r) — g(1))y dxdr
0 RN 0 RN
T
+/0 n(t) /I;N 1/fh0(x, D*p(u(t) — g(1))) dt
T
+f0 fRN n(O)put) — g)z(t) - Vi dxdt

T
+/0 /RN n(0)8: () p(u(t) — &)Y (x) dxdsdt. (4.29)

Taking into account (4.24) and (4.29), we get

/OT /}RN ¢z —alx,Vg)]-Vpu —g)
+h00c, D’ p(u — 8)) — a(x, Vg) - D*pu — ) = 0

forall (¢, x) = nt)Yy(x),n € DO, T), ¥ € D(RN), n, ¥ > 0. Thus, the measure

([z —a(x, V)] - Vpu — g) + h’(x, D" p(u — g)) — a(x, Vg) - D’ p(u — g)) = 0.
Then its absolutely continuous part

[z—a(x,Vg)] -Vpu—g) >0 ae inRY.
Hence

[z—a(x,Vg)] -Vu—g) >0 ae inRV,

Since we may take a countable set dense in C,loc([O, T] x RN ), we have that the above
inequality holds for all (¢, x) € S, where S C (0, T) x R is such that £V (((0, T) x RY) \
S) =0,andall g € CL ([0, T] x RY). Now, fixe (, x) € S, and given y € R there is
g € CL.([10, T] x RY) such that Vg(t, x) = y. Then

(z(t,x) —a(x, ) - (Vu(t,x) —y) =0 Vy eRY,
and we get that

z(t, x) = a(x, Vu(t, x)) ae. (t,x)e Qr. (4.30)
Then, we have

div(z(#)) = div(a(x, Vu(@®))) in D'(RY), ae. t €[0, T].
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STEP 6. Conclusion. Finally, we are going to prove that u verifies:
T T
[ [ iwo —pnasdr+ [ [ nwne po ~yar
0 JRVN 0 JRN
T
+/ f z(t) - Vn@®)p(u(t) — 1) dxdt <0, (4.31)
0 JRN

for all n € C®(Qr), with n > 0, n(t,x) = ¢@)Y(x), being ¢ € D0, T[),
¥ € CP(RY), and p € T, where j(r) = / p(s) ds.
0
Let n € C§°(Qr), with 5 = 0, n(1,x) = (MY (x), ¢ € D0, T, ¥ € CPRY),
p€Panda € R Let G,(r) = / p(s) ds. Since u), () = div(z,(¢)), multiplying by

a

p(u, (¢))n(t) and integrating, we obtain that
T d T
/ / & Gy (un(t)n(0) ddt = / f P (O, (0 (1)
o Jrn dt 0 JrN
T
=f f div(z, () p(un ()1 () dxdt
0 JrV
T
= —/0 /}RN (zn (1), D(p(un(£))n(1))) dt
T T
:_/ / 77(t)h(x,Dp(un(t)))dt—/ / zn(t) - V(@) p(un()) dxdt.
0 JrV 0 JrV
Hence, having in mind that n(0) = n(T) = 0, we get
T T
/ / DO, Dplun(t) di = — / f 20(t) - V() plun(0)) dxde
0 JrV 0 JRrV

T T
- / / 4G un(O)0(0) dxdt = — / / 2n(0) - V() plun (1)) ddt
0 RN dt 0 RN

T
4 f / Gt (1)) 1 dixcr,
0 JRrN

Now, observe that, by the Lemma 4.5, we have that

/n(t,X)f(x,Dp(un))%/ n(t, x) f(x, Dp(u))
RN RV

a.e. int € (0, T), and, therefore,

/ 0t h(x, Dplin)) — / 0t )h(x, Dp(u)),
RN RN
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a.e. int € (0, T). Hence, integrating in (0, 7') and using Fatou’s Lemma, it follows that

T T
/ / n(@)h(x, Dp(u(r))) dt < lim/ / n(@)h(x, Dp(un(1))) dt
0 JrN nmeeJo JRN

n—o0

T
+ / / G o (un (1)) mdxdt]
0 JRrRN

T T
= —/ / z(t) - Vn(t) p(u(t)) dxdt +/ / Gp(u(t)) n; dxdt.
0 JrN 0 JrN

We have

T T
- / / G o (D)) ddr + / / n(Oh(x, Dp(u())) di
0 JRN 0 JRN

T
+/ / z(t) - Vi) p(u(t))dxdt <O0. (4.32)
0 JRrN

T
= lim |:—/ / 2n(®) - V() p(u,(t)) dxdt
0 JRN

Finally, given [ € R and p € 7T, since q(r) := p(r — [) is an element of P, and taking
a =1, we obtain (4.31) as a consequence of (4.32). The proof of the existence is finished.

5. Proof of Theorem 1: Uniqueness

Uniqueness of entropy solutions can be proved using the same technique used to prove
uniqueness in the case of a bounded domain (see [2], [3]), a technique inspired by the
doubling variables method introduced by Kruzhkov [17] (see also [10]) to prove the
L'-contraction estimate for entropy solutions for scalar conservation laws. This technique
has been also applied in [8] to prove uniqueness of entropy solutions of the Total Variation
flow in RY . Since the methods are similar to the above mentioned works, we shall not give
the details here.
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