
Linking requirements specification with interaction
design and implementation

Sergio España, Inés Pederiva, José Ignacio Panach, Silvia Abrahão, Óscar Pastor

Department of Information Systems and Computation
Valencia University of Technology

Camino de Vera s/n, 46071 Valencia, España
{sergio.espana,ipederiva, jpanach,sabrahao,opastor}@dsic.upv.es

Phone: +34 96 387 7000, Fax: +34 96 3877359

Abstract: One challenging goal in the context of Software Engineering (SE)
and Human-Computer Interaction (HCI) is to provide appropriate bridges be-
tween the most well-known software production methods and techniques. SE is
supposed to be strong in specifying functional requirements, while HCI is cen-
tred on defining user interaction at the appropriate level of abstraction. In any
case, general-perspective software production methods that combine most func-
tional-oriented, conventional requirements specification with the most interac-
tion-oriented, user interface modelling are strongly required. In this paper, we
present a specific approach in this context, intended to properly combine a
sound functional requirements specification with an abstract model of the user
interface represented by a CTT model. When the functional specification is en-
riched with such an interaction model, it is easier to derive the final software
implementation that will represent both the structure and behaviour of the sys-
tem and the user interaction. The presented approach has been successfully im-
plemented in a MDA-based approach called Oliva Nova Model Execution,
demonstrating that Conceptual Modeling-based strategies are more powerful
when user interaction and system behaviour are modelled within a unified view.

1. Introduction

Conventional software production methods focus on a precise specification of system
structure and behaviour. Normally, a class diagram-like model is used to model the
system structure, and a process model fixes the functionality that the system is sup-
posed to provide. Many CASE tools [11] [13] [14] have been proposed during the last
few years with the objective of providing some kind of automation to manage these
data and process models in the context of a well-defined software process.

Generally speaking, when defining such a software process, there is a Require-
ments Modelling step where requirements elicitation and specification are the issues
which are normally based on some kind of use case-based strategy where functional
requirements are dealt with. These functional requirements are the source model for
creating a Conceptual Schema, where the requirements are reified in the correspond-
ing set of classes and relationships between classes. Finally, it is common to have a of

model transformation approach to guide the final step, where the software product
that properly represents the initial requirements is provided.

However, from a HCI point of view, these conventional Software Engineering ap-
proaches for software production have a mayor problem: to determine how to cor-
rectly embed user interaction modelling in such a software production process. It is
curious that interaction modelling is not a key issue when requirements and concep-
tual modelling is faced in a software production process. Together with data and
process models, it is very rare to have an Interaction Model playing a basic role at the
same abstraction level. It is clear that system structure and behaviour are considered
to be basic parts of such a description.

The way in which users interact with the system should be part of the system
model in order to be a basic part of the world description and to model the way in
which user interaction is going to make feasible the putting into practice the static and
dynamic system parts (class architecture and functional requirements respectively) To
do this, we claim that functional requirements specification and user interaction de-
sign and implementation must be linked in a precise way. Precise means with a formal
background, providing a clear set of concepts and a notation to specify user interac-
tion from the very beginning of a software production process; this includes linking
the different models involved at the different levels of abstraction starting from func-
tional requirements to a final software product, through the corresponding conceptual
schema.

To do this, in this paper, we present a specific software production process, where

1. The first step is a conventional requirements modelling approach, that is based on
use-cases, but that has a precise proposal for structuring the relevant functional re-
quirements.

2. When the functional requirements are specified, the corresponding user interaction
model associated to the requirements model is specified. To do this with a set of
precise concepts and notation and with the required formal support, we use the
ConcurTaskTrees (CTT) model [10]. Tasks from the Requirements Model are en-
riched with the specification of their associated interactions, and a well-defined and
contextualized use of the CTT model is proposed to avoid the lack of methodologi-
cal rules that the use of CTT often suffers from in practice.

3. When both the functional requirements and their associated interaction model have
been specified, a Conceptual Schema can be obtained. As an interaction model has
a precise semantics provided by the CTT, it is possible to design and implement
not only classes and services, but also user interfaces, providing a full software
production process from requirements to the final software product where the user
interface corresponding to the modelled interaction is properly incorporated.

It is important to note that the Interaction Model that we introduce with the use of
CTT complements the functional system specification with the kind of logical interac-
tion design description that the CTT model provides. The functional requirements
specification provides the necessary analysis of human life and work context and
takes the source Information System as input. The CTT model associates a user inter-
action to each system task. This will allow the model to execute correctly from the
user interaction point of view at the solution space. Within a well-defined software
production process, these Interaction Models can be converted into the corresponding

sets of user interfaces of the final software product. In this way, system structure, be-
haviour, and interaction properties are properly dealt with.

Furthermore, this strategy fulfils the current MDA-based approaches that defend
the metaphor of model transformation and its automation as the key for defining mod-
ern and efficient software processes [4]. In fact, the ideas presented in this paper are
already being successfully applied to Oliva Nova Model Execution [1]. This is a
model-based code generation tool where our interaction model has been implemented
to put into practice all the ideas discussed here.

This paper has the following structure. After the introduction, Section 2 explains
how to model functional requirements. To determine how to model user interaction to
enrich the Requirements Model, Section 3 describes how the Requirements Model is
enriched to incorporate user interaction specification using the CTT model in a pre-
cise context for very specific objectives. Once both functional requirements and user
interaction are properly specified, Section 4 explains show how to go to the solution
space by generating the user interface that implements the user interactions modelled
in the previous section. We present an example taken from Oliva Nova Model Execu-
tion which is the software generation tat we have used to implement our ideas.

2. Obtaining functional requirements

In the SE field, the first step in building a software system is to capture the functional
properties that the system requires. In our software production process, this is done
through the definition of a Requirements Model [2] [3]. This model contains a de-
scription of the objectives and external behaviour of the system, that is, what the sys-
tem must do without describing how to do it.

The Requirements Model incorporates a set of complementary techniques: the mis-
sion statement, the functions refinement tree, and the Use-Case Model.

The Mission Statement is a high-level description of the nature and purpose of the
system. Through this definition, it is possible to accurately determine what the system
will and will not do.

The Functions Refinement Tree (FRT) represents the hierarchical decomposition of
the business functions of a system independently of the current system structure. The
resultant tree is merely an organization of external functions and does not say any-
thing about the internal decomposition of the system. The leaves of this tree represent
the functions of the desired system, which are the use cases. This gives the entry point
for building the Use-Case Model instead of starting from scratch, and it avoids the po-
tential problem of mixing the abstraction levels of use cases.

Once we have defined the FRT, the next step is to create the Use-Case Model. A
use case is an interaction between the system and an external entity. This interaction
can usually be decomposed into an activity set (Case Use specification) defined at this
level as atomic functions. The leaf nodes of the FRT (elemental functions) are consid-
ered to be primary use cases; they represent the most important functions of the sys-
tem. It is also possible to have secondary use cases. These use cases are scenarios that
have no direct correspondence to the FRT; however, they are important for organizing

and managing complexity through relationships among use cases that are stereotyped
as EXTEND and INCLUDE.

In order to explain our proposal, we use an example taken from a real system from
the Oliva Nova Model Execution portfolio: the Bullent’s Water application. This sys-
tem is used in a company that delivers water to homes. The main functions of the sys-
tem are: read client’s meter, emit an invoice, register the use of some material in a re-
pair, and maintain the stock in the warehouses. For the sake of simplicity, we have
centred our attention only in one task of this system: the task to create a new sub-
scriber in the company. This task is composed by several subtasks: create a client,
create a transfer, create a meter, create a new meter address, create a destination and
verify the new subscriber data. Figure 1 shows the functions refinement tree for the
task being studied. It contains all the functions needed to create a new subscriber.

Fig. 1. Function refinement tree

The next step is the definition of a Use-Case Model. To draw this diagram, we
have used RETO1 (Requirements Engineering TOol).

Subscriber functional group (a) Clients functional group (b)

Fig. 2. Use Case Diagrams

These diagrams show all the functions that make up the task “create a new sub-
scriber”. There is an include relationship between the “New subscriber” use case and

1 http://reto.dsic.upv.es/reto/

all the other use cases, with the exception of the “New transfer” use case. These lines
have not been drawn to simplify the diagram reading.

Finally, all the steps of the use-case behaviour must be specified. As an example,
the “New subscriber” use case is detailed in the following template:

• Description: It creates a subscriber in the company. It records information about
the person, his/her meter, his/her destination and his/her transfer.

• Steps:
1. Create a new client INCLUDE USE CASE: New client

1.1 (Inside New client) Create a transfer for the new client INCLUDE USE CASE:
New transfer

2. Create a meter INCLUDE USE CASE: New meter
3. Create a meter address INCLUDE USE CASE: New meter address
4. Select a zone
5. Select a category
6. Select a house type
7. Introduce dispenser diameter
8. Introduce branch number
9. Select discharge date
10.Create a destination INCLUDE USE CASE: New destination
11.Introduce connection length
12.Introduce connection diameter
13.Select invoice option
14.Select invoice type
15.Introduce concept
16.Select currency
17.Save the new subscriber

As a consequence, all system functional requirements are captured in the Require-
ments Model. The leaves of the functions refinement tree are tasks functionally de-
scribed using the use case templates. However, the next step is to properly capture the
user interaction.

 3. Modelling interaction with CTT task model

After using the RETO tool to elicit and document system requirements, we have a
complete decomposition of the system behaviour. As the leaves of the FRT are well-
defined use cases, the functional requirements of the Information System are properly
stated; however, the interaction between the user and the system is still not suffi-
ciently documented. To be able to use this functionality, this section presents a way to
deal with interaction requirements. It not only shows how to model an interaction but
also to reason about it. To do this, we use the ConcurTaskTree notation (CTT) in the
framework of our development process [9] [10].

CTT, as originally proposed by Paternò, constitutes a formal notation to express
human-computer interaction as a graphical task decomposition. The main constructors
are tasks and relationships between them. Tasks can be of four types (abstract, inter-

action, application and user task) and several relationships are available to link sibling
tasks. These basic blocks for building the task model were well defined, but little cri-
teria has been provided for its application.. Thus, as the HCI and SE communities
started using this notation, different approaches were used, which has resulted in cre-
ating its own criteria for task decomposition and granularity. We define the use of the
CTT notation according to our specific context.

One of the first criterion needed is the starting point for the interaction specifica-
tion: we are not building a single tree that describes all the interactions between the
user and the system, but rather a forest of task trees with the root of each tree being a
leaf of the FRT, that is, a use case of our functional Requirements Model. Given the
correspondence between use cases and the upper abstract task node, we decompose
these into a data introduction task followed by an application task that processes the
data entered by the user (see Figure 3). For some complex use cases, the interaction is
fragmented into several subtasks which are embedded in a similar structure.

Fig.3. Example of the interaction related to a generic use case

The decomposition is continued until the individual data elements that make up the
message that is being communicated to the software system are reached. These data
elements are commonly derived from (and consequently mapped to) the fields of
business forms; they are documented in the use case description (see example in Sec-
tion 2) and will later be mapped to data entry interface fields. This way, we can model
the edition of the message that the user wants to communicate to the system.

We also include application tasks, which correspond to the processing of the in-
formation supplied by the user and the feedback resulting from this process. These
tasks are triggered by the user with an implicit end-of-edition signal (e.g. after the last
piece of data is entered) or an explicit end-of-edition signal (e.g. the user presses a
button). Application tasks are later mapped to services of objects or global transac-
tions; in the latter case, we could decompose the application task into sub-tasks that
would model the structure of services involved in the transaction. However in order to
keep the task tree as simple as possible, this refinement would be done in a separate
tree in a packet-like approach.

Figure 4 shows the CTT for the Create subscriber use case that was described in
the previous section.

Fig. 4. CTT for the Create subscriber use case

Since a use case that includes other use cases a complex one, the resulting CTT has
nested abstract tasks that also consist of data entry and process; for example, the need
for creating a new meter to be related to the subscriber.

 It can be seen how the abstract task in the root maps to a use case of our functional
Requirements Model and also how the decomposition stops at the level of individual
data elements. For the sake of simplicity, we have limited the number of data ele-
ments in Figure 4 by informally using ellipsis points.

4. Generating the user interface

The previous sections define ways to specify the requirements of a software system in
terms of its functionality and user interaction. These requirements describe what the
system needs to provide and does not describe how to implement the solution. In or-
der to complete the software development process, the software should be imple-
mented. For this phase, there are tools that provide support for designing conceptual
models derived from the requirements and that generate the source code of the de-
signed application.

Although there are many popular tools that support this process [11] [13] [14],
none of them consider the design of the user interface. Therefore, none of these tools
provides automatic derivations for the final user interface. The above mentioned Oli-
vaNova Model Execution (ONME) implements the method proposed in OO-
Method [8] which provides both the automatic transformation desired and also takes
into account the abstract design of user interfaces.

In accordance with the directives of the Model-Driven Architecture (MDA)
framework [4], ONME has a direct correspondence with the different models that
MDA proposes. OlivaNova is a MDA-based technology that implements model trans-
formations in an industrial context [6]; specifically, it allows the automatic generation
of complete applications from the Platform-Independent Model, which describes the

information system at the analysis level and comes right after the Computation-
Independent Model.

Fig. 5. Usage of ConcurTaskTrees in a MDA-based development framework

In the Platform-Independent Model level, OO-Method includes the Presentation

Model as a view of the Conceptual Model, which is a model for the abstract specifica-
tion of user interfaces. Based on a pattern language called Just UI [5] [7], this model
allows the analyst or the designer to manipulate, configure and link those patterns in
order to build the interface abstract model.

With the complete design, the source code of the final application can be obtained
with OMNE, resulting in a three-layer application which includes the application
logic, the database, and the user interface.

The design and development process can be resolved based on the requirements
obtained and the interaction designed, but there is no explicit link between them. Al-
though there is no direct binding, we have found a relationship between the CTT
model and the Presentation Model and its final developed interfaces.

As experimentation, we designed the Presentation Model following the design of
the CTT task model using the patterns provided by Just UI [5] [7] and we obtained the
resulting interfaces. Figure 6 shows the final window resulting from the application of
this technique with the CTT previously described in Figure 4.

Fig. 6. Generated window

In these experiments, we found that there was a service behind each task. There-
fore we defined a window for each task. to the comments of each window corre-
sponded to the definition of the task tree and the following rules were applied in the
transformation:

1. Each data introduction had a corresponding widget, corresponding to the data type
that the system required.

2. Each application task had its corresponding Ok button in order to apply the
changes

3. Each abstract task called another window to fulfil the entry (obviously, the win-
dow called was generated by the decomposition of the abstract task).
Figure 7, presents a graphical explanation of these correspondences.

Fig. 7. Correspondences between CTT and the final widgets

The developed application is currently in production phase in the company. The fi-
nal users have indicated that they are happy with the user interface. The results of this
work suggest that we can continue working in this direction in order to link the speci-

fication of the CTT task model and the Presentation Model. The mapping of CTT
primitives and the conceptual patterns proposed by Just UI could open up a new ave-
nue for automatically generating user interfaces based on the CTT task model with a
guaranteed valid semantic granted by CTT task models.

5. Conclusions

5.1 Current research

Current software production methods are characterized by not having the design of
user interaction as part of the system lifecycle. As a result, most of the problems in
software development are related to user-interface design. Similarly, current UI tools
in the HCI field tend to focus on issues such as colours, fonts, and alignment, which
are more appropriate in the later design stages. In addition, most of these tools do not
support a process that links UI design with system behaviour. What is needed is a
complete software production process that properly integrates system functionality,
behaviour, and user interaction in the early stages of the system lifecycle. This proc-
ess should also allow the sketching, modelling, and prototyping of UIs. It is our posi-
tion that SE and HCI software production methods and techniques can be integrated
to provide such an approach.

In accordance with these ideas, in this paper we have presented a software produc-
tion process that integrates model-based and task-based approaches to user interface
design. This process properly combines a functional requirements specification with a
hierarchical model of the user interface represented by a CTT model. In fact, the sys-
tem functionality and behaviour as well as the user interface are modelled at an early
stage of the system lifecycle. This is done thanks to the Oliva Nova Model Execution
approach which allows the modelling and automatic generation of software applica-
tions. This is a pure model-transformation process where conceptual primitives of the
Conceptual Model level are converted into their associated software component coun-
terparts, within what we might call a Conceptual Model Compilation Process. This
approach can help to bridge the gap between SE and HCI since it addresses the issue
of modelling user interaction, which has often been ignored by SE researchers.

5.2 Pending Issues

Although the use of CTT task models in the context of the OlivaNova Model Execu-
tion approach seems to be useful, we must still verify this empirically. We are plan-
ning to run an empirical study to assess the effectiveness and perception of the ana-
lysts in the use of our software production process with and without CTT task models.
The goal is to verify the quality of the user interfaces obtained following a well-
defined semantic provided by the CTT task models.

In addition; we want to make an in-depth analysis of the use of MDA-based tech-
niques to provide a full software production process. In this process, the unified mod-
elling of system structure, system behaviour, and user interaction should guide the

different model transformations at the different levels of abstractions from require-
ments to the final software product through the corresponding conceptual schema.
The final goal is to have a General Model Compiler as the main software production
tool, which will make it easier to guarantee that the final software product is the cor-
rect representation of the initial user requirements. All of this should be based on a
common, sound, and rigorous engineering approach for dealing with the software
production process as a whole, including static, dynamics and interaction.

References

[1] Care Technologies: http://www.care-t.com Last visited: Dic-2005
[2] Insfrán E., Pastor O. and Wieringa R., Requirements Engineering-Based Conceptual

Modelling. Requirements Engineering 7 (2): 61-72 (2002).
[3] Insfrán E., Molina P., Martí S., Pelechado V., Requirements Engineering applied to the

Conceptual Modeling of User Interfaces, IV Iberoamerican Workshop on Requirements
Engineering and Software Environments (IDEAS’2001), Santo Domingo, Heredia, Costa
Rica, pp. 181-192, April 2001 (in Spanish)

[4] MDA: http://www.omg.org/mda Last visit: Dec-2005
[5] Molina P., Specification of User Interfaces: from requirements to automatic generation,

PhD Thesis, Dept. of Information Systems and Computation. Valencia University of
Technology , March 2003 (in Spanish).

[6] Molina, J.C., and O. Pastor. “MDA, OO-Method and the OlivaNova Model Execution
technology”. I Workshop on model driven development, MDA and applications. Málaga,
Spain, 2004.

[7] Molina, P. J. Meliá, S. and Pastor, O. (2002), Just-UI: A User Interface Specification
Model. In Ch. Kolski and J. Vanderdonckt (Eds.), Computer-Aided Design of User Inter-
faces III, Kluwer Academics Publisher, 63–74.

[8] Pastor, O., Gómez, J., Insfrán, E. Pelechano, V. (2001) The OO-Method Approach for In-
formation Systems Modelling: From Object-Oriented Conceptual Modeling to Automated
Programming. Information Systems, 26(7) 507–534.

[9] Paternò, F. (2000). Model-Based Design and Evaluation of Interactive Applications,
Springer-Verlag, Berlin, Alemania.

[10] Paternò, F., C. Mancini, et al. (1997). ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. Proceedings of the IFIP TC13 International Conference on Hu-
man-Computer Interaction, Chapman \& Hall, Ltd.: 362-369.

[11] Posiedon http://www.gentleware.com Last visited: Dic-2005
[12] Pribeanu, C. and J. Vanderdonckt (2002). "A methodological approach to task-based de-

sign of user interfaces." Studies in Informatics and Control 11(2): 145-158.
[13] Rational http://www-306.ibm.com/software/rational/ Last visited: Dic-2005
[14] Together http://www.borland.com/together Last visited: Dic-2005

