
A Model for Dealing with Usability in a Holistic MDD
Method

Jose Ignacio Panach, Óscar Pastor, Nathalie Aquino
Centro de Investigación en Métodos de Producción de Software

 Universitat Politècnica de València
Camino de Vera s/n, 46022 Valencia, Spain
{jpanach, opastor, naquino}@pros.upv.es

ABSTRACT
Currently, the importance of developing usable software is
widely known. For this reason, there are many usability
recommendations related to system functionality (called
functional usability features). If these functional usability
features are not considered from the very early steps of the
software development, they require many changes in the
system architecture. However, the inclusion of usability
features from the early steps in a traditional software
development process increases the analyst’s workload, who
must consider not only features of the business logic but
also usability features. In the Software Engineering
community, holistic MDD methods are a solution to
reducing the analysts’ workload since analysts can focus all
their efforts on the conceptual model (problem space),
relegating the architecture design and the implementation
code (solution space) to automatic transformations.
However, in general, MDD methods do not provide
primitives for representing usability features. In this paper,
we propose what we call a Usability Model that gathers
conceptual primitives to represent functional usability
features abstractly enough to be included in any holistic
MDD method.

Keywords
Model-Driven Development, usability, conceptual model

INTRODUCTION
According to ISO 9126-1 [10], usability is a key issue in
obtaining good user acceptance of the software [6]. Some
authors have divided usability recommendations into two
groups [11]: recommendations that only affect the interface
presentation (e.g., a label meaning), and recommendations
that affect the system functionality (e.g. a cancel function).
This second type is called functional usability features, and
it is the most difficult type to include in the software [11],
since these features affect the system interface as well as
the system architecture. For example, the feature Cancel
aims to cancel the execution of a service. The

implementation of this usability feature is not a single
button in the interface; on the contrary, this feature also
affects data persistency and functionality.
There are several authors in the Software Engineering
community that have identified functional usability features
and have proposed methods to include them in software
development [8]. All these works propose including
functional usability features from the early steps of the
software development process, since they involve many
changes in the system architecture if they are considered
only when interfaces are designed. However, these
approaches have some disadvantages:
• Cost/benefit ratio: The analyst must deal with

usability from the requirements capture step until the
implementation throughout the entire development
process. This increases the analyst’s effort and the
cost/benefit ratio is not always favourable for features
that are difficult to implement [11].

• Changeable requirements: Usability requirements
(like other system requirements) are continuously
evolving [12] and the adaptation to new requirements
can involve a lot of rework in the system architecture.

• Dependency on the implementation language: The
architecture design depends on the language used in
the implementation and on the target platform.

Our research work is based on the idea that the Model-
Driven Development (MDD) method is a suitable solution
for reducing all these disadvantages [21][20]. MDD
proposes that the analyst must focus all their efforts on
building a conceptual model that represents all the system
features (a holistic conceptual model) [17]. What we mean
by “holistic” is that the conceptual model must include all
the relevant systems perspectives: class structure,
functionality and interaction. While class structure and
functional view are supported in almost all the existing
MDD approaches, interaction view is usually designed
once the architecture has been finished. Our work focuses
on modelling interaction adequately, at the same level of
data and functionality, to provide a full system description
in the conceptual model.

Space for copyright

These complementary perspectives must provide the
corresponding conceptual primitives, which are modelling
elements having the capability of abstractly representing a
feature of the system. Examples of conceptual modelling
elements for the class structure view are classes of a class
diagram, attributes, and services. Examples of conceptual
modelling elements for the functional view include service
pre/post conditions, valid states and transitions. In this
paper, our intention is to focus on conceptual modelling
elements for the interaction view, and in particular, for
functional usability features. The holistic conceptual model
can then be seen as the input for a model compiler that can
generate the software application automatically (or semi-
automatically, depending on the model compiler capacity).
Providing such a MDD-based software production
environment, the problems of existing approaches that deal
with functional usability features can find an adequate
solution.
There are currently several MDD methods which model
full functional systems, such as WebRatio [1], AndroMDA
[2], and OO-Method [19] among others. However, none of
them can model most functional usability features in their
conceptual model. These features must be manually
implemented, inheriting all the disadvantages of manual
development mentioned above. This paper aims to extend
existing MDD methods with conceptual primitives that
represent functional usability features well known in the
Human Computer Interaction community [11]. All these
primitives are gathered in what we call the Usability
Model.
The paper is structured as follows. Section 2 presents the
state of the art. Section 3 describes the functional usability
features used in our proposal. Section 4 explains our
proposed Usability Model with its primitives. Section 5
describes how to include the Usability Model in a holistic
MDD method using OO-Method as example. Finally,
section 6 presents some conclusions and future work.

STATE OF THE ART
If we look for existing proposals that deal with usability in
MDD, we notice that, currently, there are not many works
in the literature. Two examples of authors that propose
considering usability in MDD methods are Taleb [24] and
Gull [9]. The main disadvantage of both proposals is that
these authors do not specify the usability traceability
among the different development steps. Moreover, a
specific notation to represent usability features in each step
does not exist.
There are also works that propose integrating HCI
techniques in MDD, such as Wang [27]. Wang proposes a
user-centred design where the users play an important role
in modelling the interface. This work focuses only on
usability features related to the interface display, not to the
functionality. In contrast, Sottet [22] is an author that deals
with usability considering functional usability features.
This author investigates MDD mappings for embedding

both usability description and control. For Sottet, a user
interface is a graph of models, and usability is described
and controlled in the mappings between these models. The
main disadvantage of Sottet’s proposal is that the analyst
must specify the transformation rules for each system and
this is not trivial.
Other proposals use existing models to represent usability
features, such as Sousa [23]. Sousa has defined an activity-
based strategy to represent usability goals. The main
disadvantage of this proposal is that we cannot model how
usability features are related to the system functionality.
Other authors that represent usability in existing models are
Tao [25] and Brajnik [4], who propose modelling usability
by means of state transition diagrams. However, state
transition diagrams are only able to represent interactions,
so they cannot represent all the usability features.
There are also some works [7][15] related to measuring the
system usability in MDD conceptual models. Fernandez [7]
proposes a model to evaluate system usability from
conceptual models. Molina [15] proposes measuring
usability attributes focused on navigational models. The
main shortcomings of these proposals is that many usability
attributes are subjective, and therefore cannot be measured
automatically without taking into account the user. For
instance, attributes related to the attractiveness
subcharacteristic [10] cannot be measured by means of
conceptual models. Therefore, the result of early usability
evaluation is a sort of prediction.
After studying related works, we conclude that existing
proposals for dealing with functional usability features in
MDD present some problems when we want to include
them in a real software development process. First, few
works have a specific notation to represent functional
usability features in a model, and existing notations do not
cover the model of all the existing features. Second, it is
not clear how to include usability features throughout the
whole software development process since existing
proposals do not specify the traceability among models.

BACKGROUND: PROPERTIES OF FUNCTIONAL
USABILITY FEATURES
In previous works, we have extracted the properties that are
needed to configure a set of usability features [18] defined
by Juristo [11] and called FUFs (Functional Usability
Features). We chose these usability features from all the
existing ones since FUFs are specific to management
information systems, the target systems of our work.
Moreover, FUFs have templates to capture usability
requirements that are very useful for identifying features’
properties. In the FUF definition, each FUF has a main
objective that can be specialized into more detailed goals
named mechanisms. A detailed explanation of properties
derived from FUFs is out of scope of this paper, but can be
consulted in [14]. Next, we summarize the process we
followed to extract these properties:

1. We defined Use Ways (UW) using the usability
mechanisms description. Each usability mechanism
can achieve its goal through different means. We
called each such mean Use Way (UW). Each UW has
a specific target to achieve as part of the overall goal
of the mechanism. For example, the usability
mechanism called System Status Feedback aims to
inform the user about the internal system state. We
identified that this goal can be achieved in at least
three use ways: (1) Inform about the success or the
failure of an execution (UW_SSF1): it informs if an
action execution finished successfully; (2) Show the
information stored in the system (UW_SSF2): it
shows information of the system before the user
triggers an action; (3) Show the state of relevant
actions (UW_SSF3): it indicates which actions cannot
be triggered in the current system state.

2. We defined properties for each UW. We called the
different UW configuration options to satisfy usability
requirements as Properties. For example, we
identified that the Inform about the success or the
failure of an execution Use Way is composed of two
properties: (1) Service selection; (2) Message
visualization. By means of Service selection the
analyst can specify the service that will inform about
the success or failure; by means of Message
visualization, the analyst can specify how the message
will be displayed (format, position, icon, etc.).

In previous works [18], we defined Use Ways and
properties but their inclusion in an MDD method affected
its conceptual model. This paper aims to define a generic
approach that does not affect the existing conceptual
model. This new approach is based on a Usability Model
explained in the next section.

A USABILITY MODEL
This section presents the conceptual primitives needed to
represent Use Ways extracted from FUFs. Since currently
there is no a standard notation to represent usability
features, we have used a set of primitives very similar to
UML notation [26]. We use graphical elements already
defined in UML but we have extended these elements with
some textual descriptions. The new conceptual primitives
are gathered in a model called Usability Model.
Next, we detail primitives to represent the set of 22 Use
Ways [14] and their properties in a Usability Model. As an
illustrative example to introduce these primitives, we use a
system to manage a library. In the example, we aim to
improve the system usability by means of the three Use
Ways described above: UW_SSF1, UW_SSF2 and
UW_SSF3. We have focused our example in these three
elements because the primitives needed to represent all
their properties are enough to represent any other property
of the remaining 19 Use Ways.
Table 1 shows the properties of the three Use Ways used in
the example and their values. These properties must be

specified by the analyst in order to develop a usable
system. Next, we present how these three Use Ways
improve the usability of the system to manage a library.
Table 1. Properties of UW_SSF1, UW_SSF2 and
UW_SSF3
Use Way Property Value

UW_SSF1 Service selection All the services
Message
visualization

Display the failure
message textually

UW_SSF2 Dynamic
information

Number of loans and
number of penalties

Static
information

The labels “Loans” and
“Penalties”

Message
visualization

Textually with Arial,
black. Size 10

UW_SSF3 Service selection Lend book
Condition to
disable

When the member is
penalized

Descriptive text “The member is currently
penalized”

1. UW_SSF1 (Inform about the success or the failure of an

execution): Each service of the system must inform
whether or not the execution finished successfully with a
textual message. For example, if the system does not
support this Use Way, when the librarian tries to lend an
inexistent book, she/he will not notice about the reason of
the system failure. However, including UW_SSF1, when
the librarian tries to lend an inexistent book, the system
displays an interface similar to Fig 1, detailing
information about the reason of the mistake. According to
Table 1, when the services specified in the property
Service selection fail in the execution, an error message is
displayed such as Message visualization indicates.

Fig. 1. Error derived from UW_SSF1

2. UW_SSF2 (Show the information stored in the system):
When the librarian queries the list of members, she/he
can choose a member and navigate towards the list of
her/his current loans and towards the list of her/his
penalties (buttons Loans and Penalties in Fig 2). The
librarian would like to see how many loans and penalties
the member has without performing the navigation. This
functionality is supported with UW_SSF2, which
provides dynamic aliases for the navigation buttons by
means of the property Dynamic information. Fig 3 shows
the navigations buttons after including UW_SSF2 in the

system. According to Table 1, navigation buttons aliases
are composed of Static information (Loans and Penalties)
together with Dynamic information (the number of loans
and penalties for the selected member), and they are
displayed such as Message visualization indicates.

Loans Penalties

Close

Fig. 2. List of members with navigations towards Loans

and Penalties

Fig. 3. Navigation buttons with dynamic aliases

3. UW_SSF3 (Show the state of relevant actions): If this

Use Way is not included in the system, when the user
tries to execute a service that cannot be triggered in the
current system state, the execution results in a failure.
For example, when the librarian executes the service to
lend a book to a member that is currently penalized,
the execution will finish unsuccessfully. Including
UW_SSF3, the button to lend a book is disabled if the
member is penalized, avoiding the librarian to make a
mistake. Fig 4 shows an example of an interface that
has disabled the service to create a new loan, since the
selected member is currently penalized. According to
Table 1, if the Service selection (Lend book) has a
Condition to disable (when the member is penalized)
that becomes true, the service is disabled and a
Descriptive text (“The member is currently penalized”)
is displayed.

OK Cancel
The member is currently

penalized

Fig. 4. Disabling the button to execute an action when it
cannot be triggered

The main goal of our work is to demonstrate that these
aspects related to usability improvement can and should be
included in the conceptual schemas that are used in MDD

environments, what is often just ignored. We need thus
incorporate the corresponding set of conceptual primitives
for that purpose. The primitives that compose the Usability
Model are grouped into two levels: packages and
elemental primitives. Packages are primitives that contain
a set of other primitives (packages or elemental primitives).
Elemental primitives constitute the building blocks from
which packages are constructed. There are two types of
packages in our Usability Model:
• First, for each Use Way, the analyst must define a

package that groups all the primitives that define the Use
Way. Each Use Way is represented by means of an
element similar to a UML package whose name is the
name of the Use Way with the label Use Way. Fig 5
shows an example to represent UW_SSF2.

• Second, the analyst must define inside each package Use
Way, the interfaces involved in the Use Way definition.
Each interface groups the main interactive operations that
the user can perform with the system. We propose
defining interfaces by means of an element similar to a
UML package with the label Interface. Fig 5 shows an
example of two interfaces: Member and Loans.

Once we have defined the packages, the next step in our
proposal is to define elemental primitives inside them:
• First, the analyst must define navigations in each Use

Way with a property to navigate among several
interfaces. These Navigations determine the target
interfaces that can be reached from a source interface. For
example, in Fig 2 the librarian can navigate towards the
list of loans and penalties for a selected member. We
propose specifying these navigations by means of an
arrow with a source and a target. Fig 5 represents the
primitives to define the navigation from member to loans
displayed in Fig 2.

Fig. 5. Primitives to model UW_SSF2 in the library

management system
• Second, the analyst must specify attributes and services

used in the properties of the Use Way. An attribute is an
element used to ask the user for data or to query stored
data. A service is an element that represents an action that
can be executed by the user. Attributes and services are
related to a class; therefore we propose modelling them
according to the UML notation used to represent classes.
Fig 5 shows the attributes of the class Loan used in the

definition of the dynamic alias formula (explained in the next step).

Fig. 6. The Metamodel of the Usability Model
• Third, the analyst must define formulas needed in Use

Ways with properties that use conditions or dynamic
information. These formulas are represented textually.
For example, the formula to describe the dynamic alias
used in the navigation towards Loans in Fig 2 has been
textually defined in Fig 5.

Table 2. Example of UsiXML to represent how the error
window will be displayed
 <window id="1" name="Error_window" width="400"
height="158">
 <outputText id="M1" name="Error_message"
isVisible="true" isEnabled="true"
isBold="true" textColor="#000000" value=”The book
could not be lent. You must select an existing book”/>
 <imageComponent id="I1" name="Error_Icon" />
<button id="OK1" name="Ok_Button" "/>
</window>

• Finally, the analyst must specify how the interface will be
displayed to the user. We have called this primitive
display, and it is defined textually using the UsiXML
notation [13] (USer Interface eXtensible Markup
Language), an XML-based markup language for defining
user interfaces. Table 2 shows a piece of code of
UsiXML to express how the window of Fig.1 is
displayed.

These elements compose the suite of conceptual primitives
used in the Usability Model. They are enough to represent
any of the 22 Use Ways extracted from Juristo’s FUFs. A
description of the primitives needed to represent each Use
Way is detailed in [14].
We have defined a usability metamodel to specify the
properties of the Use Ways and how these properties are
related to system functionality. The aim of the metamodel
is to identify the elements needed to represent all the

properties. All these elements can be represented with the
conceptual primitives described above. The usability
metamodel is drawn in Fig 6 (an also downloadable from
[14]), where each Use Way is represented with a class with
the prefix UW. Attributes and relationships represent
properties of the Use Ways. For example, the class
UW_SSF2 that represents the Use Way Show the
information stored in the system, represents the properties
Static information and Dynamic information by means of
two attributes. The property Message visualization is
represented with the relation to the class Display option,
which is a class to represent how the visual elements will
be displayed in the interface. It is important to note that in
the metamodel we can see how the properties are involved
in the functional and interaction features. For example, in
UW_SSF2, the property Dynamic information depends on
the information stored in the system (which is a functional
feature), therefore, we need to relate the class that
represents UW_SSF2 to the class that represents the system
persistency, called Class in the metamodel. Moreover, there
is a relationship with the class Widget, since the navigation
alias (linking Static information and Dynamic information)
is displayed in a button (which is an interaction feature).
Depending on the MDD method where we would like to
include usability features, some of the primitives that
compose the Usability Model can already be supported by
the existing conceptual model of the MDD method. For
example, if the MDD method has a model to represent the
class structure, the primitives Attributes and Services are
already supported. Next section explains how the Usability
Model can be included in an existing MDD-based approach
without affecting the models. In a first step, we propose
extracting the information represented in existing
primitives by means of model-to-model transformations. In
a second step, the analyst models unsupported primitives in
the Usability Model.

THE USABILITY MODEL IN AN INDUSTRIAL MDD
METHOD: A LAB CASE
The Usability Model in a Holistic Method
This section explains how to integrate the Usability Model
into a holistic MDD method without changing its existing
conceptual model. As we commented above, by holistic we
mean that all the relevant systems views (static, dynamic,

interaction) are properly incorporated into the used
modelling strategy. Fig 7 represents graphically a summary
of the process. In the example, there are two existing
models in the conceptual model of the MDD method: one
model to represent the system persistency and another
model to represent the interaction. In this example, we have
depicted only two models, but the number of models that
the MDD method uses depends exclusively on the chosen
MDD method. Moreover, the existing MDD method can
support code generation from the conceptual model by
means of a model compiler. The level of automation of this
process also depends on the MDD method chosen. Some
methods are automatic (generate full functional systems),
and others semi-automatic (some manual implementation).
Our proposal to include the Usability Model in a holistic
MDD method consists of three steps:
1. Derivation of conceptual primitives defined in the

existing conceptual model: The notation of the
Usability Model includes functionality, persistency,
navigation and interaction elements that can be defined
in other models of the MDD method (depending on the
expressiveness of the MDD method chosen). For
example, in Fig 7, the classes, attributes, and services
needed in the Usability Model have been previously
defined in the Class Model. Elements that have been
previously defined in the existing conceptual model do
not need to be defined again in the Usability Model. In
this first step, we automatically extract primitives
defined in other models and include them in the
Usability Model (model-to-model transformations).
We propose performing these transformations with
ATL [3], which is a language to specify
transformations using a source metamodel and a target
metamodel. In the example of Fig 7, the source
metamodels are the metamodel of the Class Model and
the metamodel of the Task Model, while the target
metamodel is the metamodel of the Usability Model.

2. Modelling unsupported conceptual primitives: Once
supported primitives have been automatically derived,
the analyst must manually specify properties that are
not supported by existing models.

Fig. 7. An overview of the process to integrate the Usability Model in a holistic MDD method

3. Code generation: Once the Usability Model has been
fully defined, we can generate code from this model by
means of automatic Xpand transformations [28]
(model-to-code). The code generated from the
Usability Model can be combined with the code
generated by the model compiler, which generates
code from the existing conceptual model. In the end,
the final code includes all the elements specified in the
existing conceptual model and in the Usability Model.

It is important to mention that ATL and Xpand
transformations must be defined once only for a specific
MDD method since these transformations based on
metamodels are valid for developing any system.
Therefore, steps 1 and 3 can be executed automatically by
means of transformation templates.

 A Lab Case with OO-Method
In order to demonstrate that our proposal works for a real
software development process, we have used OO-Method
[19]. OO-Method has been successfully implemented in
industry with a tool called OLIVANOVA [5], which can
generate full functional systems automatically from a
conceptual model. This is the reason why we have chosen
OO-Method as proof of concept for our proposal. The OO-
Method conceptual model is composed of four
complementary models:
1. Object Model: Specifies the system structure in terms

of classes of objects and their relations. It is modelled
as an extended UML [26] class diagram.

2. Dynamic Model: Represents the valid sequence of
events for an object.

3. Functional Model: Specifies how events change object
states.

4. Presentation Model: Represents the interaction
between the system and the user [16]. This model
represents the interface by means of Interaction Units.
Moreover, this model represents Elementary Patterns
that will be displayed inside the interfaces, such as
masks, filters, or navigations, among others.

With regard to the system used in the lab case, we use the
system to manage a library. This example is simple enough
to facilitate the understanding of our proposal. Fig 8 shows
the OO-Method Object Model of the system.
The other three models that compose the conceptual model
of OO-Method (Dynamic, Functional and Presentation) are
not displayed for space reasons. Next, we explain how to
model UW_SSF1 (Inform about the success or the failure
of an execution), UW_SSF2 (Show the information stored
in the system) and UW_SSF3 (Show the state of relevant
actions) for developing the library management system in
OO-Method. The first step of our proposal consists of
extracting information from the existing primitives.

Fig. 8. Object Model of the system to manage a library
From the list of properties of the three Use Ways (Table 1),
we can extract from the OO-Method’s conceptual model
the followings:
• UW_SSF1: Service selection can be derived from the

Object Model.
• UW_SSF2: Static information of navigations can be

derived from the Presentation Model.
• UW_SSF3: Service selection and Condition to

disable can be derived from the services of the Object
Model and their preconditions. A precondition in the
Object Model is a condition that must be satisfied to
execute a service.

In order to derive these properties from existing OO-
Method models, we have used ATL transformations. The
source metamodels are the four metamodels that define the
four conceptual models of OO-Method (object, dynamic,
functional and presentation); and the target metamodel is
the metamodel of the Usability Model. Next, we show the
ATL transformation rule that generates a first version of
the Usability Model to represent UW_SSF1 when the
service execution finishes with a failure. From the two
properties, we can only derive Service selection from the
Object Model since OO-Method does not have any model
to represent Message visualization (the Presentation Model
does not have primitives to represent this property). The
ATL rule is simple in order to be as illustrative as possible
and avoid technical terms. We have defined similar rules to
extract supported primitives of UW_SSF2 and UW_SSF3.
rule Service2UWSSF1Failure{
 from
 b: Object!Service
 to
 e: Usability!Service (Name <- b.Name) }
Once we have extracted the properties supported by the
OO-Method’s conceptual model, the second step of our
proposal is to complete the Usability Model with

unsupported conceptual primitives. Next, we detail how to
complete each Use Way in the Usability Model. Primitives
that are automatically extracted from existing models are
drawn on grey background in the figures. Primitives added
manually are drawn on white background.
For UW_SSF1, the property Service selection has been
extracted from the Object Model automatically (in the first
step). If the users want to visualize failure messages for the
service Lend_book like Fig 1, we must model the property
Message visualization with the values shown in Table 2.
Fig 9 shows the Usability Model for representing
UW_SSF1. The property Service selection is represented
with the primitive Service and the property Message
visualization with the primitive Display. The primitives
Use Way and Interface are generated from scratch in the
ATL transformation.

Fig. 9. Model to represent UW_SSF1
The second usability feature that must be included in the
library system is to provide dynamic labels in navigation
buttons to display how many loans and penalties a selected
member has (UW_SSF2). As we have commented above,

navigations, their static aliases and interfaces can be
extracted from the OO-Method Presentation Model (in the
first step). In the second step, the analyst must specify the
properties Dynamic information and Message visualization
since these elements are not supported by the OO-Method
Presentation Model. Fig 10 shows the Usability Model for
UW_SSF2. The property Static information is represented
with the primitive Navigation and Interface, Dynamic
information is represented with the primitives Formula and
Attributes, and Message visualization is represented with
the primitive Display. The primitive Use Way is generated
from scratch in the ATL transformation.
The third usability feature to include is for disabling the
service Lend_book when the member currently has a
penalty (UW_SSF3). The properties Service selection and
Condition to disable have been extracted from
preconditions of the Object Model (in the first step). The
aim of the preconditions is to trigger an error if the user
tries to execute a service when a condition is not satisfied.
Therefore, the definition of these preconditions can be used
to know when to disable the service in order to avoid a user
mistake. In this second step, the analyst must only specify
the descriptive text that will be shown when the service is
disabled (property Descriptive text). Fig 11 shows the
model to disable Lend_book when the member currently
has a penalty. The property Service selection is represented
with the primitive Service, Condition to disable with the
primitives Formula and Attributes and Descriptive text with
the primitive Display.

UW_SSF2
<<USE WAY>>

Collection_date
Return_date

LOAN

STATIC ALIAS: Punishments
DYNAMIC ALIAS: Count (Punishment.Member=THIS)

MEMBER

PUNISHMENT

<<INTERFACE>>
List of members

<<INTERFACE>>

List of punished

List of lendings

<<INTERFACE>>

MESSAGE VISUALIZATION:
<outputText name="Navigation_labels”
textColor="#000000" textSize="10" textFont="Arial" isItalic="false"/>

STATIC ALIAS: Loans
DYNAMIC ALIAS: Count (Lending.Collection_date<=today
AND Lending.Return_date >=today AND
Lending.Member=THIS)

Fig. 10. Model to represent UW_SSF2

Fig. 11. Model to represent UW_SSF3 to disable Lend_book
Finally, in the third step, the Usability Model must be
transformed into code that implements all the
characteristics represented in it. This transformation is
performed with Xpand [28]. The code derived from the
Usability Model must be included in the code generated
with the OO-Method model compiler. Below, we show a
small chunk of Xpand code used in the transformation from
UW_SSF1 into Java code.

«DEFINE javaClass FOR Class»
 «FILE Class.name+".java"» public class «name»
{
 «FOREACH service1 AS s»
 DisplayOption show
 public void «s.name»(
 «FOREACH attribute1 AS a»
 «a.type» «a.name») }
 «ENDFOREACH»
 «IF s.uwSsf11 != null» If ("error")
show.display(«s.uwSsf11.modal», «s.uwSsf11.position»,
«s.uwSsf11.typeOfMessage»,
«s.uwSsf11.messageContent»);
 «ENDIF»
 «ENDFOREACH»}
 «ENDFILE» «ENDDEFINE»

Fig 1, Fig 3 and Fig 4 show screenshots of the system to
manage a library developed with OLIVANOVA after
including UW_SSF1, UW_SSF2 and UW_SSF3
respectively. Therefore, we can state that our proposal can
be successfully applied to an industrial MDD method.

CONCLUSIONS
The contribution of this paper is the definition of a
Usability Model to deal with usability features in a holistic
MDD method. We have defined conceptual primitives to
represent usability features defined by Juristo for
management information systems and we have gathered
them in a Usability Model. It is important to note that there
are many other non-functional usability features that are

out of scope of this paper, such as, understandability or
attractiveness. Moreover, systems of other areas such as
multimedia applications or virtual reality systems are out of
scope too. The main advantages of our proposal with
regard to existing proposals to deal with usability in MDD
are: (1) The Usability Model can represent most functional
usability features for a management information system
(we can ensure that it supports all the FUFs defined by
Juristo); (2) The notation used in the Usability Model has
an unambiguous syntax and semantics, which allows
transformations to be performed; (3) The Usability Model
can be used in any MDD method (we have used OO-
Method as example).
We have learned some lessons applying the proposal to
OO-Method: First, the difficulty of writing ATL and
Xpand transformations depends exclusively on the MDD
method chosen. OO-Method generates the whole system,
but MDD methods with less powerful model compilers
need more effort to define transformations. However, it is
important to mention that these transformations are defined
only once and can be used indefinitely in every software
development. Second, the existence of a Usability Model
does not ensure that generated systems are usable. The
analyst must follow usability guidelines to combine the
primitives properly. As future work, we plan to define
metrics to measure the usability of the system based on the
conceptual primitives of the Usability Model. Moreover,
we plan to measure the effort required to implement this
approach in an MDD method. This measure will be done
considering analysts who know previously FUFs and
analyst who do not know them yet.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the ITEA2 Call
3 UsiXML project (20080026) and financed by the MITYC
under the project TSI-020400-2011-20; the MICINN under
the project PROS-Req (TIN2010-19130-C02-02) co-
financed with ERDF; the Generalitat Valenciana under the
project ORCA (PROMETEO/2009/015).

REFERENCES
1. Acerbis, R., Bongio, A., Brambilla, M., Butti, S.:

WebRatio 5: An Eclipse-Based CASE Tool for
Engineering Web Applications. LNCS 4607 (2007)
501-505.

2. AndroMDA, http://www.andromda.org/.
3. ATL: http://www.eclipse.org/atl/
4. Brajnik, G.: Is the UML appropriate for Interaction

Design? Università di Udine (2010) 6.
5. CARE Technologies S.A. http://www.care-t.com
6. Davis, F.D.: User acceptance of information

technology: system characteristics, user perceptions and
behavioral impacts. Int. Journal Man-Machine Studies
38 (1993) 475-487.

7. Fernández, A., Abrahao, S., Insfran, E.: A Web
Usability Evaluation Process for Model-Driven Web
Development. 23rd International Conference on
Advanced Information Systems Engineering (CAiSE
2011). Springer, London (2011) 108-122

8. Folmer, E., Bosch, J.: Architecting for usability: A
Survey. Journal of Systems and Software, Vol. 70 (1)
(2004) 61-78.

9. Gull, H., Azam, F., Iqbal, S.Z.: Design of Novel
Usability Driven Software Process Model. (IJCSIS) Int.
Journal of Computer Science and Information Security
8 (2010) 46-53.

10. ISO/IEC 9126-1, Software engineering - Product
quality - 1: Quality model (2001).

11. Juristo, N., Moreno, A.M., Sánchez, M.I.: Analysing
the impact of usability on software design. Journal of
Systems and Software, Vol. 80 (2007) 1506-1516.

12. Lawrence, B., Wiegers, K., Ebert, C.: The top risk of
requirements engineering. IEEE Software, Vol. 18
(2001) 62-63.

13. Limbourg, Q., Vanderdonckt, J.: Usixml: A User
Interface Description Language Supporting Multiple
Levels Of Independence. Engineering Advanced Web
Applications. Rinton Press, Paramus, New Jersey
(2004).

14. List of Use Ways and Properties:
http://hci.dsic.upv.es/UsabilityModel/UseWaysList.html

15. Molina, F. and Toval, A. 2009. Integrating usability
requirements that can be evaluated in design time into
Model Driven Engineering of Web Information
Systems. Advances in Engineering Software. vol. 40,
1306-1317.

16. Molina, P.J., Meliá, S., Pastor, Ó. JUST-UI: A User
Interface Specification Model.: Proc of Computer Aided
Design of User Interfaces, CADUI'2002, Valenciennes,
Francia. (2002).

17. Olive, A.: Conceptual Schema-Centric Development: A
Grand Challenge for Information Systems Research.
Proc. of the 16th Conference on Advanced Information
Systems Engineering, LNCS 3520 , Springer-Verlag,
Porto, Portugal, (2005) 1-15.

18. Panach, J.I., España, S., Moreno, A., Pastor, Ó. Dealing
with Usability in Model Transformation Technologies.
ER 2008. Springer LNCS 5231, Barcelona (2008) 498-
511.

19. Pastor, O., Molina, J.: Model-Driven Architecture in
Practice. Springer, Valencia (2007).

20. Selic, B.: The Pragmatics of Model-Driven
Development. IEEE software 20 (2003) 19-25

21. Sendall, S., Kozaczynski, W.: Model Transformation:
The Heart and Soul of Model-Driven Software
Development. IEEE Software 20 (2003) 42-45.

22. Sottet, J.-S., Calvary, G., Coutaz, J., Favre, J.-M.: A
Model-Driven Engineering Approach for the Usability
of Plastic User Interfaces. In Proc. of Engineering
Interactive Systems (2007) 22-24.

23. Sousa, K., Mendonça, H., Vanderdonckt, J.: Towards
Method Engineering of Model-Driven User Interface
Development. TAMODIA, LNCS 4849. Springer,
Toulouse (France) (2007) 112-125.

24. Taleb, M., Seffah, A., Abran, A.: Investigating Model-
Driven Architecture for Web-based Interactive Systems.
e-Minds: Int. Journal on Human-Computer Interaction 2
(2010).

25. Tao, Y.: An Adaptive Approach to Obtaining Usability
Information for Early Usability Evaluation. IMECS
(2007) 1066-1070.

26. UML: http://www.uml.org/
27. Wang, X., Shi, Y.: UMDD: User Model Driven

Software Development. IEEE/IFIP Int. Conference on
Embedded and Ubiquitous Computing, Shanghai
(China) (2008).

28. XPAND:
http://www.eclipse.org/modeling/m2t/?project=xpand

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

