
Learning Pros and Cons of Model-Driven Development in

a Practical Teaching Experience
*

Óscar Pastor
1
, Sergio España

2
, Jose Ignacio Panach

3

1Centro de Investigación en Métodos de Producción de Software - ProS

Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
opastor@pros.upv.es

2Department of Information and Computing Sciences, Utrecht University. The Netherlands
s.espana@uu.nl

3Escola Tècnica Superior d'Enginyeria, Departament d’Informàtica, Universitat de València

 Avenida de la Universidad, s/n, 46100 Burjassot, Valencia, Spain
joigpana@uv.es

Abstract. Current teaching guides on Software Engineering degree focus main-

ly on teaching programming languages from the first courses. Conceptual mod-

eling is a topic that is only taught in last courses, like master courses. At that

point, many students do not see the usefulness of conceptual modeling and most

of them have difficulty to reach the level of abstraction needed to work with

them. In order to make the learning of conceptual modeling more attractive, we

have conducted an experience where students compare a traditional develop-

ment versus a development using conceptual models through a Model-Driven

Development (MDD) method. This way, students can check on their own pros

and cons of working with MDD in a practical environment. Comparison has

been done in terms of Accuracy, Effort, Productivity and Satisfaction. The con-

tribution of this paper is twofold: the description of the teaching methodology

used throughout the whole course; and the presentation of results and discus-

sions of the comparison between MDD and a traditional development method.

Results show that Accuracy, Effort and Productivity are better for MDD when

the problem to solve is not easy. These results are shown to students to promote

a discussion in the classroom about the use of MDD. According to this discus-

sion, the most difficult part of using MDD is the learnability and the best part is

the automatic code generation.

Keywords: Model-Driven, Conceptual Modeling, Teaching Methodology

1 Introduction

We are three teachers of a subject in a master course from Universitat Politècnica de

València (Spain) called “Engineering of Information Systems”, which deals with the

topic of conceptual modelling within a Model-Driven Development (MDD) perspec-

* This work was developed with the support of Generalitat Valenciana-funded IDEO

project (PROMETEOII/2014/039)

mailto:opastor@pros.upv.es
mailto:s.espana@uu.nl
mailto:joigpana@uv.es

tive. The main goal of the master course is to teach how to abstractly represent system

information through conceptual models (CMs) and how this CMs can be used to ob-

tain the final application in a Conceptual-Schema software development context [1].

The subject has been prepared using an MDD tool (INTEGRANOVA [2]). This way,

students can focus all their efforts on building conceptual models, relegating the code

generation to automatic model to code transformation rules applied by the tool.

During several previous years we have noticed that, in general, the use of concep-

tual models as a way to represent all system features is new for students. All previous

subjects in the software engineering degree were focused on building UML models

that only represent data persistence and part of the system behaviour. These UML

models guide the manual implementation of the code at best. Most students build

UML models at first stages of the software development but once they start to imple-

ment the code, these models are forgotten and in most cases, they are not updated

with all the characteristics specified within the code. At the end, UML models are a

type of heavy-obsolete documentation that nobody (students and teachers) query,

focusing on the implementation and the developed system.

Within that context, the topic of conceptual modelling was not motivating for stu-

dents that are accustomed to focus on writing code and compiling it. In order to moti-

vate the students, we propose teaching conceptual modelling comparing MDD versus

a traditional software development method. This should help to wake up a critical

spirit in each student, drawing personal conclusions about the pros and cons of con-

ceptual modelling in practice. There are several works that have studied the advan-

tages and difficulties of MDD, such as [3-4], but we aim to check whether students,

which are not familiar with conceptual modelling, perceived the usefulness of MDD.

At the end of the course, apart from teaching the students conceptual modelling, we

have a set of empirical data that we can use to compare MDD regarding a traditional

development. The analysis is based on the study of 4 variables: Accuracy, Effort,

Productivity and Satisfaction. The results of analyzing those data statistically are

shown to the students as a starting point for a general discussion about the pros and

cons of MDD.

We have conducted this teaching experience during two years. The results of the

data extracted the first year have been published in [5]. Results showed that MDD

obtains better values than a traditional method only when the problem complexity of

the system to develop increases. Regarding Effort, Productivity and Satisfaction we

did not identify differences. In order to check the idea that the complexity of the prob-

lem can affect the results, we increased the complexity of the problems in the second

year.

The contribution of this paper is twofold: the description of the teaching methodol-

ogy used in both years and the summary of results and discussions obtained in the

second year. The description of the methodology aims to promote the adoption of

future replications in universities different from UPV. The methodology consists in

starting with the development of a web application using a traditional method. Next,

we have several classes dedicated to learn MDD. Next, students develop another sys-

tem through MDD. At the end of the course, we compare how much Accuracy, Effort,

Productivity and Satisfaction have been experienced by each subject in both treat-

ments, and we conduct a discussion in the classroom. Results of the second year show

that when problems to solve are complex, MDD obtains better results not only for

Accuracy but also for Effort and Productivity. During the discussion, students claimed

that the main cons for using MDD is the high learning curve, while the main pros is

the automatic code generation from conceptual models.

The paper is organised as follows. Section 2 discusses related works. Section 3 de-

scribes the teaching methodology used during both years. Section 4 shows the results

after analyzing data of the second year. Section 5 shows the results of the discussions

in the classroom after showing the results to students. Finally, Section 6 presents the

conclusions.

2 Related Works

The topic of techniques to teach conceptual modeling to students has been tackled by

several researchers. Muller [6] has elaborated a list of current challenges to teach

conceptual modeling. These challenges refer to including conceptual modeling in a

multi-disciplinary world to teach that: building systems is an engineering task; cus-

tomer context and system context is not the same; a system is dynamic; it is important

to quantify; systems are not always well-defined; analysts need part of psychology to

deal with customers; analysts need a critical attitude. All these challenges show that

there is still much work to do in order to better teach conceptual modeling.

Several works explain their experience teaching modeling through Entity-

Relationship (ER) schemas, such as Davis [7]. Davis describes that students learn ER

models with a combination of individual and team work, including instructor feed-

back as well as peer interaction. The teacher gives an ER schema and the students

must interpret the meaning of constructs used in it; and given a description of re-

quirements, students must design an ER schema. Other similar work has been done by

Keberle and Utkin [8], who present a system called “Chen Worlds” to teach ER mod-

eling. The proposal is based on the idea of gaming the environment to accelerate the

learning of conceptual models in a course of database information systems. Chen

Worlds is a software system for learning, building, visualizing and validating concep-

tual models in ER notation.

There are other works that have dealt with conceptual models different from ER,

such as i*. In this line, Paja et al. [9] have reported their experience teaching i* in a

master course. The work concludes that i* analysis allows the students to better un-

derstand the activities they perform. This helps to refine models until they are more

meaningful and more likely to fulfill their purpose. Other techniques are based on

constructivism, such as Zhuoyi et al. [10]. These authors propose a constructive teach-

ing model in a database course where students must learn conceptual modeling under

teachers’ guidance. Students explore and find knowledge, construct the meaning and

learn to cooperate and communicate with others. According to the authors, construc-

tivism arises enthusiasm of the students and improves the ability of solving problems.

Some works have compared two teaching techniques, such as Kung et al. [11] who

have compared top-down versus bottom-up approaches to build conceptual models.

Results show that with proper experience, students can do it better in a bottom-up

design. Sedrakyan et al. [12] define a proposal to build models and generate a proto-

type of application using those models. The proposal has been compared with other

traditional techniques that do not generate prototypes. The results show that the pro-

posal improves the understanding of students.

Some authors teach MDD in their courses, such as Akayama et al. [13], who teach

conceptual models through MDD. Akayama compared a development using MDD

versus another one without MDD. Results showed the effectiveness of MDD. Our

proposal is aligned with this idea, as next sections describe.

3 Teaching Methodology

This section describes the teaching methodology that combines MDD with a tradi-

tional development (Figure 1). Sessions took 2 hours and there was 1 session per

week, with a total of 14 sessions. The course has been designed in such a way that all

the students work in pairs for logistic reasons. The three teachers participated at the

same time during the course to teach MDD and to report data to analyze the compari-

son between both methods. Next, we describe each step of the methodology.

 In step 1, students fill in a demographic questionnaire to check the level of experi-

ence in a traditional development method and in MDD. The course presupposes that

most of the students already know how to develop a system through a traditional

method but they know nothing about MDD. We must check this idea with the demo-

graphic questionnaire. In step 2, we propose a training problem to develop a web

application as homework. This training aims to ensure that students are capable of

programming a system from scratch. The time to develop the system is 15 days, stu-

dents can use the development framework for web applications that they better know

and they can draw in a paper any conceptual model that they complementary need.

Half of the students drew a UML class diagram and the others used no model. During

these two weeks, the teacher teaches the basics of MDD. There is not time inside the

classroom to develop the system since we assume that every student has enough

knowledge to develop the system on his own. Once the period of the training is over,

the teacher evaluates the training through a set of test cases on the system. At this

point, we can ensure that all the students have enough knowledge to develop a system

with a traditional method. In step 3, students must develop another web application

from scratch in a period of 4 hours in the classroom under the teacher supervision. In

the same way as in the training, students can choose the programming language and

draw in a paper any conceptual model they need. We used two problems to avoid that

results were dependent on only one problem. Problems were assigned randomly to

pairs such a way they are balanced among groups. At the end of this step, the teacher

evaluates the developed problem and students fills in a satisfaction questionnaire

about the use of a traditional development method.

Next, in step 4, the teacher explains MDD during 12 hours using INTEGRANOVA

[2] as tool based on UML models that supports MDD. In step 5, we use a training

problem similar to the training problem used in step 2. The students have 15 days to

develop the problem as homework using INTEGRANOVA. We use 6 hours in the

classroom to support this development. At the end of this development, the teacher

evaluates the result running test cases. At this point, we can ensure that students have

enough knowledge to work with MDD. In step 6, students have to develop a system

from scratch using MDD without any help from the teacher. We swap the problems

used in step 3 such a way students do not develop the same problem they developed

manually. At the end, the teacher evaluates the system running test cases and students

fill in a satisfaction questionnaire about the use of MDD.

Finally, the teachers analyze statistically the data obtained throughout all sessions

and show the results to students. In the last session, there is a discussion in the class-

room where, taking as starting point the results of the analysis, each student gives an

opinion about pros and cons of MDD according to this practical experience.

Fig. 1. Schema of the teaching methodology

3.1 Design of the Practical Experience

Next, we describe the design used in the teaching methodology. In order to arise ideas

for and against MDD, we designed a practical experience based on four research

questions: (RQ1) Is software accuracy affected by MDD? ; (RQ2) Is developer effort

affected by MDD?; (RQ3) Is developer productivity affected by MDD?; (RQ4) Is

developer satisfaction affected by MDD?. All these questions have been extracted

from works that claim MDD benefits, such as [14-15]. The idea is that every student

checks all these claims on his own to extract conclusions about the use of MDD. The

teacher collects data throughout all the experience to answer the four research ques-

tions. At the end of the course, results are shown to discuss in the classroom the pros

and cons of MDD.

Research questions are written as null hypothesis that the teacher must check sta-

tistically: (H01) The software accuracy of a system built using MDD is similar to

software accuracy using a traditional method; (H02) The developer effort to build a

system using MDD is similar to effort using a traditional method; (H03) The developer

productivity using MDD to build a system is similar to productivity using a traditional

DEMOGRAPHIC

QUESTIONNAIRE
BASICS ON MDD

EVALUATE

TRAINING MANUAL

IMPLEMENTATION

IMPLEMENT A

WEB

APPLICATION

TRADITIONALLY

S
T

U
D

E
N

T
S

 I
N

C
L

A
S

S
R

O
O

M
T

E
A

C
H

E
R

S

E
V

A
L

U
A

T
IO

N

TRAINING

PROBLEM 0 FOR

TRADITIONAL

DEVELOPMENT

BASICS ON

INTEGRANOVA

TRAINING

PROBLEM 00 FOR

MDD

EXPERIMENTAL TASK WITH

MANUAL IMPLEMENTATION

MODEL A WEB

APPLICATION

WITH MDD

SATISFACTION

QUESTIONNAIRE

FOR MDD

EVALUATE

TRAINING WITH

MDD

EXPERIMENTAL

TASK WITH MDD

PROBLEM 1

PROBLEM 2

SATISFACTION

QUESTIONNAIRE

FOR TRADITIONAL

DEVELOPMENT

PROBLEM 2

PROBLEM 1

1

2

3

4 5 6

H
O

M
E

W
O

R
K

method; (H04) The developer satisfaction using MDD to build a system is similar to

satisfaction using a traditional method. We work with the factor Method, with two

levels: MDD and a traditional method; and 4 response variables: Accuracy, Effort,

Productivity and Satisfaction. The developed problem is a block variable since we are

not interested in studying its effect.

Next, we describe the metrics used to check the null hypotheses. We measure Ac-

curacy as the percentage of acceptance test cases that are successfully passed. We

used 4 different metrics for Accuracy, from more restrictive to less restrictive:

 All or nothing (AN): we consider that a test case is satisfied only if every item is

passed.

 Relaxed all or nothing (RAN): we consider that a test case is satisfied when at least

75% of items are passed.

 Weighted items (WI): we assign a weight to each test item depending on the com-

plexity of its functionality. When test cases are run, we add the weights of passed

items.

 Same weight for all items (SW): we assign the same weight to each item within a

test case (independently of complexity) in such a way that the addition of all the

weights of the items is 1 per test case. When test cases are run, we add the weights

of passed items.

Effort is measured as the time taken by each pair to develop the web applications

from scratch. Productivity is measured as the ratio Accuracy/Effort. Finally, satisfac-

tion is measured as the positive attitude towards the use of the development method

through a questionnaire based on a Likert scale. Metrics for Satisfaction are based on

Moody’s proposal: Perceived Usefulness (PU), Perceived Ease of Use (PEOU), and

Intention to Use (ITU) [16].

Problems used in the experience are a system to manage a company of electrical

appliance (Problem 1) and a system to manage a photography agency (Problem 2).

Complexity of both problems is similar, Problem 1 has 40 function points and Prob-

lem 2 has 35. Complexity of problems used in both training sessions is also similar to

complexity of Problem 1 and Problem 2. Since training problems were not analyzed

statistically, we do not describe them.

The design is a paired design blocked by problems, since we apply both treatments

(MDD and a traditional development) to each subject and we are not interested in

studying the effect of the problem in the response variables.

We have conducted this experience during two courses. The results of the first

course (the baseline experience) was published in [5]. Results of that preliminary

study showed that MDD gets better Accuracy the more complex the problem to solve

is. We did not identify differences between Effort, Productivity and Satisfaction com-

paring both methods. In order to study in depth the idea that MDD seems to be more

robust to higher complexities, we replicated the experience in a second course with

the same procedure, but in this case we used a more complex version of both prob-

lems (Problem 1 and Problem 2). Next sections focus on explaining the results ob-

tained after analyzing response variables and the discussion of students in the replica-

tion of the second course.

4 Results

This section describes the results from the data extracted through the experience. The-

se results were shared with the students to promote the critical thinking regarding

MDD. The teachers have used a Mixed Model [17] to check whether null hypotheses

can be rejected or not. In those cases where null hypotheses are rejected, we have

calculated the effect size to know the degree of differences between both treatments.

The effect size has been calculated through Cohen’s Delta [18]. More than 0.8 is a

large effect; between 0.79 and 0.5 is a moderate effect; between 0.49 and 0.2 is a

small effect.

Table 1 shows the p-values and the effect size of our response variables. Accuracy

obtains significant results for the four metrics (AN, RAN, WI and SW) since all p-

values are less than 0.05. Since effect sizes are around 0.6, we can state that differ-

ences between MDD and a traditional method are moderate. So, we can reject H01,

which means that software accuracy of a system built using MDD is not similar to

software accuracy using a traditional method. MDD obtains better averages in Accu-

racy than a traditional method independently of the used metric.

Efficiency obtains also significant results, since p-value is less than 0.05. Effect

size is 0.77, which means that differences between MDD and a traditional method are

moderate. So, we can reject H02, which means that the developer effort to build a sys-

tem using MDD is not similar to effort using a traditional method. MDD obtains bet-

ter averages in Efficiency than a traditional method

Productivity obtains significant results considering the four metrics for Accuracy

(AN, RAN, WI and SW), since all p-values are less than 0.05. Effect sizes are around

0.6, which means that differences between MDD and a traditional method are moder-

ate. So, we can reject H03, which means that the developer productivity using MDD to

build a system is not similar to productivity using a traditional method. MDD obtains

better averages in Productivity than a traditional method.

Satisfaction does not obtain significant results in any of the three metrics (PEOU,

PU, and ITU), since p-values are higher than 0.05. So, effect sizes have not been cal-

culated. We cannot reject H04, which means that the developer satisfaction using

MDD to build a system is similar to satisfaction using a traditional method.

Table 1. p-values and effect sizes.

 Accuracy Efficiency Productivity Satisfaction

AN RAN WI SW AN RAN WI SW PEOU PU ITU

p-value .00 .01 .00 .00 0.00 .00 .02 .01 .01 .56 .27 .85

Effect size .66 0.6 .62 .61 0.77 .64 .58 .6 .59 - - -

According to these results we can state that the problem complexity affects posi-

tively MDD. In the baseline experience, we only got significant results for Accuracy

when the problem to solve was complex. In this replication, where problem complexi-

ty has been increased regarding the baseline, we obtain better results for MDD in

Accuracy, Efficiency and Productivity. This leads to think that the higher complexity

we try to solve with MDD, the better results we got. Note that even though problems

were implemented significantly better with MDD, students did not feel a better satis-

faction. All these results were shown to the student in the classroom for discussion.

5 Discussion in the Classroom

The subsequent discussion performed in the classroom arose a set of significant as-

pects. Figure 2 shows a summary of all the discussed aspects of MDD and the number

of students who supported them. The main “pros” are the code generation and the

quick software development; while the main “cons” are the difficult deployment and

the learnability.

Fig. 2. Pros and Cons of MDD extracted from the discussion session

In the discussion there was a major agreement on a basic fact: the more complex a

problem is, the bigger MDD improvements become. Students understood that a “real”

conceptual-model compiler can provide a much more efficient and effective software

development environment, as capturing the problem complexity in a conceptual

(higher-level) model is easier than to do it at a pure (lower-level) programming level.

To make true that “the model is the code” instead of “the code is the model”, a con-

ceptual programming [19] environment must make possible to specify the full prob-

lem complexity in a conceptual model, and this conceptual model must be executable.

A main challenge for industrial MDD tools is then to make real this conceptual model

compiler goal. The tool used in our experiment –INTEGRANOVA- is a very appro-

priate example of such a kind of MDD tool.

Another interesting discussion thread was related to know why satisfaction did not

improve with MDD. It was again a major agreement in one relevant aspect: using

MDD is not at a simple task. It was somewhat assumed that modeling should be easi-

er than programming. The reality was that most of the students had serious problems

to switch to a conceptual modeling-based mental strategy to face the problem solu-

tion. Conceptual modeling capabilities need to be prepared and to be practiced. While

students clearly showed to have a good programming profile, largely practiced during

their undergraduate learning experience, their conceptual modeling profile was not at

PROS CONS

all so good. Current Computer Science degrees mainly focus on programming, not on

modeling. Since conceptualizing is an essential task for a software engineer, this lack

of conceptual modeling expertise in many curriculas can be seen as a serious handicap

to make MDD practices become widely and correctly used.

In any case, a final significant reflection was that after practicing programming for

years, practicing MDD only for a few weeks was enough to obtain even better results

in 3 of the 4 response variables, while for the fourth one the difference was not signif-

icant. A final aspect that we want to explore in future experiments is how personal

abilities of the student correlate with the results. We suspect that student that outper-

form with programing, also do it with modeling. Measuring what precise improve-

ment is achieved in these cases when using MDD will be part of our future analysis.

6 Conclusions

This paper proposes a teaching methodology to teach conceptual models comparing a

development from scratch using a traditional method versus a development from

scratch using MDD, which is based on conceptual modeling. This way, students can

experience on their own the pros and cons of working with MDD. Teachers report

data about Accuracy, Effort, Productivity and Satisfaction throughout all the classes.

Results conclude that Accuracy, Effort and Productivity are better working with

MDD when the problem to solve is complex. These results are shown to the students

and a discussion is done in the classroom. According to this discussion, the main

“pros” is the quick code generation, while the main “cons” of MDD is the learning

curve. These results agree with a previous baseline experience we conducted the pre-

vious year on the same subject.

Note importantly that there are some characteristics in our proposed teaching

method that might affect the results. First, the limitation of 4 hours to the develop-

ment of problems results in a maximum level for Effort. So, we do not know whether

differences in time would have been higher without that limitation. Second, we use

complex problems to analyze variables, but these problems are still toy problems.

Maybe, more differences between MDD and a traditional method might have arisen if

we had worked with real complex problems. Third, all the students knew to develop a

web application with a traditional method, but the level of knowledge was not the

same. Results might have been different if we had worked with professionals.

As future work, we plan to conduct more replications of the same teaching meth-

odology during several years. It would be interesting to get more replications from

different universities with other MDD tools.

7 References

1. Olive, A.: Conceptual Schema-Centric Development: A Grand Challenge for

Information Systems Research. In: Oscar Pastor, J.F.e.C. (ed.): Proceedings of the 16th

Conference on Advanced Information Systems Engineering, Lecture Notes in Computer

Science, Vol. 3520. Springer-Verlag, Porto, Portugal (2005) 1-15

2. INTEGRANOVA Technologies: http://www.integranova.com.

3. Selic, B.: The Pragmatics of Model-Driven Development. IEEE software 20 (2003)

19-25

4. Hailpern, B., Tarr, P.: Model-Driven Development: the Good, the Bad, and the Ugly.

IBM Syst. J. 45 (2006) 451-461

5. Panach, J.I., España, S., Dieste, Ó., Pastor, Ó., Juristo, N.: In search of evidence for

model-driven development claims: An experiment on quality, effort, productivity and

satisfaction. Information and Software Technology 62 (2015) 164-186

6. Muller, G.: Challenges in Teaching Conceptual Modeling for Systems Architecting.

In: Jeusfeld, A.M., Karlapalem, K. (eds.): Advances in Conceptual Modeling: ER 2015

Workshops AHA, CMS, EMoV, MoBID, MORE-BI, MReBA, QMMQ, and SCME,

Stockholm, Sweden, October 19-22, 2015, Proceedings. Springer International Publishing,

Cham (2015) 317-326

7. Davis, K.C.: Teaching Conceptual Design Capture. In: Parsons, J., Chiu, D. (eds.):

Advances in Conceptual Modeling: ER 2013 Workshops, LSAWM, MoBiD, RIGiM,

SeCoGIS, WISM, DaSeM, SCME, and PhD Symposium, Hong Kong, China, November 11-

13, 2013, Revised Selected Papers. Springer International Publishing, Cham (2014) 247-256

8. Keberle, N., Utkin:, I.V.: Teaching Conceptual Modeling in ER: Chen Worlds.

ICTERI (2012) 222-227

9. Paja, E., Horkoff, J., Mylopoulos, J.: The Importance of Teaching Systematic

Analysis for Conceptual Models: An Experience Report. In: Jeusfeld, A.M., Karlapalem, K.

(eds.): Advances in Conceptual Modeling: ER 2015 Workshops AHA, CMS, EMoV,

MoBID, MORE-BI, MReBA, QMMQ, and SCME, Stockholm, Sweden, October 19-22,

2015, Proceedings. Springer International Publishing, Cham (2015) 347-357

10. Zhuoyi, C., Na, L., Hongjie, Z.: Exploration of teaching model of the database course

based on constructivism learning theory. Consumer Electronics, Communications and

Networks (CECNet), 2012 2nd International Conference on (2012) 1808-1811

11. Kung, H.-J., Kung, L., Gardiner, A.: Comparing Top-down with Bottom-up

Approaches: Teaching Data Modeling. Information Systems Educators Conference,

Information Systems Educators Conference (2012)

12. Sedrakyan, G., Snoeck, M., Poelmans, S.: Assessing the effectiveness of feedback

enabled simulation in teaching conceptual modeling. Computers & Education 78 (2014)

367-382

13. Akayama, S., Hisazumi, K., Hiya, S., Fukuda, A.: Using Model-Driven Development

Tools for Object-Oriented Modeling Education. MODELS (2013)

14. Borland: Keeping your business relevant with model driven architecture (MODEL-

DRIVEN ARCHITECTURE). (2004)

15. Singh, Y., Sood, M.: Model Driven Architecture: A Perspective. Advance Computing

Conference, 2009. IACC 2009. IEEE International (2009) 1644-1652

16. Moody, D.L.: The method evaluation model: a theoretical model for validating

information systems design methods. In: Ciborra, C.U., Mercurio, R., Marco, M.d.,

Martinez, M., Carignani, A. (eds.): European Conference on Information Systems (ECIS

03), Naples, Italy (2003) 1327-1336

17. West, B.T., Welch, K.B., Galecki, A.T.: Linear mixed models: a practical guide using

statistical software. CRC Press (2014)

18. Cohen, L.: Statistical power analysis for the behavioral sciences. Lawrence Earlbaum

Associates (1988)

19. Embley, D.W., Liddle, S., Pastor, Ó.: Conceptual-Model Programming: A Manifesto.

Handbook of Conceptual Modeling. Springer (2011) 3-16

http://www.integranova.com/

