
Capturing Interaction Requirements in a Model
Transformation Technology Based on MDA

Jose Ignacio Panach, Sergio España, Inés Pederiva, Óscar Pastor
(Department of Information Systems and Computation,

Technical University of Valencia, Spain
{jpanach, sergio.espana, ipederiva, opastor}@dsic.upv.es)

Abstract: Currently, many models are used to capture functional software requirements.
However, the Software Engineering community has faded interaction requirements into the
background, dealing with interface mainly in design time. A sound MDA-compliant software
development methodology, called OO-Method, is extended in this work to bridge this gap. The
issue is to define a methodology for capturing interaction requirements. For this purpose, the
formal notation ConcurTaskTrees (CTT) is used. This notation is a technique that is well-
known in the Human Computer Interaction community. A set of interaction patterns has been
defined to build CTT models. These patterns are defined with a very precise syntax and
semantics. Moreover, transformation rules are defined to transform the Task Model into the
OO-Method Presentation Model, which specifies the user interface in an abstract and platform-
independent way. However, since editing the CTT models is hard work, this paper proposes
superimposing a layer to the CTT diagram in order to capture interaction requirements using
sketches. CTT models will be synchronously generated from these sketches. Because this
transformation is 'transparent' to the analyst, he only needs to draw the sketches during the
interaction requirements elicitation. The approach presented in this paper is instantiated for the
environment of the OLIVANOVA technology. This environment makes it possible to obtain a
final software product from its corresponding Conceptual Model through a Model Compilation
process, where interaction modeling is properly embedded with the most conventional data and
process modeling.

Keywords: Model transformation, automatic code generation, sketches, interaction
requirements, usability, Model Compiler, automatic code generation.

Categories: H.5.2, I.6.5

1 Introduction
The Software Engineering (SE) community has historically relegated interaction
aspects to the design step. Therefore, there are no extensively known models to
capture interaction requirements and to model them in the analysis step. In contrast,
the Human-Computer Interaction (HCI) community uses several techniques to
capture interaction requirements with the user. This paper proposes a method to bring
the two communities closer together, because interaction is currently a critical aspect
in developed systems.

The goal of this paper is to include techniques from the HCI community in a
MDA [MDA] environment to enrich it with the capture of interaction requirements.
The MDA paradigm argues that a system can be viewed at different abstraction
levels: A high level of abstraction, which corresponds to the problem space

(Conceptual Model), and a lower level of abstraction, which corresponds to the
solution space (system code). Therefore, following the MDA paradigm, interaction
requirements can become generated code after several automatic transformations.

This paper is focused on the MDA environment called OO-Method [Pastor 01].
OO-Method includes a Conceptual Model to represent the problem space, which is
equivalent to the Platform-Independent Model in MDA. In short, this Conceptual
Model is composed by the following model views: the Object Model, which specifies
the object structure and its static interactions; the Dynamic Model, which represents
the control, the valid sequences of events, and the interaction between the objects; the
Functional Model, which specifies how events change the object states; the
Presentation Model, which is a model for the abstract specification of user interfaces.

OO-Method has an equivalent to the Platform-Specific Model of MDA called
Model Compiler. By applying the Model Compiler, the code that implements the
system can be automatically generated from the Conceptual Model, building the
softwapre product at the solution space (called Code Model in MDA). The OO-
Method methodology is supported by an industrial tool called OLIVANOVA
[CARE].

Figure 1 shows the OO-Method methodology from the requirements step to the
source code generated using the Model Compiler. Currently, OO-Method has a set of
models to capture functional requirements: Mission Statement, Functional
Refinement tree, and Use Cases. As [Insfran 02] explains, these models have a
mapping with some models of the Conceptual Model: Object Model, Dynamic
Model, and Functional Model. Therefore, parts of these models can be obtained by
transformation rules from the capture requirements step. However, OO-Method lacks
a model to capture the set of interaction requirements that can be used to derive the
Presentation Model. In order to solve this problem, this paper proposes a
methodology in order to capture interaction requirements to complement the
functional requirements specification step.

Figure 1: OO-Method methodology

To represent the interaction requirements we have chosen the ConcurTaskTree
notation (CTT) [Paternò 97]. This is a notation based on tasks that is well-known in
the HCI community. The main reason for using this notation is because it is a formal
language, which provides a formal semantics, makes the model verifiable, and avoids
ambiguity in the specification.

This paper proposes a set of well-defined rules to use the CTTs to build structural
task patterns. These structural task patterns represent a primitive of the OO-Method
Presentation Model. Each Presentation Model primitive is represented by only one
structural task pattern. Once all the structural task patterns that represent the
interaction have been built, the Presentation Model can be obtained automatically
using transformation rules. Therefore, all the analyst's efforts devoted to interaction
are focused on building the structural task patterns.

However, the construction of the structural task patterns is hard. The CTTs are
unreadable for small systems and they are hard to build even though the analyst uses a
tool to draw them. For this reason, the proposed interaction requirements model adds
a more abstract level. This new level is based on another technique used in the HCI
community: the sketch.

Sketches are another instrument to capture interaction requirements in the initial
steps of the software development process. They provide some advantages over the
structural task patterns. They are easier to build (by the analyst) and easier to interpret
(by the user). Therefore, a set of primitives should be defined to provide syntax and
semantics to the sketches. Since each sketch primitive represents one of the structural
task patterns, there is a correspondence between the sketch primitives and the
structural task pattern. The structural task patterns are built as the sketches are drawn.
This transformation is hidden for the analyst. This mechanism has the benefit of both
notations. On the one hand, sketches are easy to use; and on the other hand, the
structural task patterns provide a formal notation. Once the structural task patterns
have been built from the sketches, the Presentation Model can be obtained from the
structural task patterns by applying the corresponding transformation rules.

The paper is structured as follows. Section 2 presents a review of works related to
the capture of interaction requirements. Section 3 explains the details of the OO-
Method Presentation Model. Section 4 details how to obtain the Presentation Model
from structural task patterns. Section 5 describes the layer that is superimposed on the
structural task pattern based on sketches. Section 6 details some aspects related to the
task-tree notation used in this paper. Section 7 presents a case study with the proposed
method. Finally section 8 presents the conclusions.

2 State of the Art
From a software engineering point of view, interaction modeling is not a key issue
when requirements and conceptual modeling is dealt with a software production
process. Nevertheless some approaches from the HCI world have been presented in
recent years. Many of them, such as DiaTask [Reichart 04], UI Pilot [Puerta 05],
UsiXML [Vanderdonckt 04], and KBS [Liborio 05], propose the task model as an
abstract interaction model to derive the abstract interface model.

Diatask uses a dialog graph, derived from a task model, to generate an initial
abstract interface prototype. This prototype mainly reflects the navigation structure of

the user interface. A GUI editor was designed in such a way it allows specifying
interface elements in the prototype built. UI Pilot is similar to Diatask. UI Pilot uses
Wireframes. They are a simple annotated description of the elements that must be
implemented for an interface. Thanks to Wireframes, the user should not have to
know the representation of the interface model, since he/she only uses Wireframes.
The other method based on the task model is UsiXML. UsiXML defines an abstract
interaction model from task models. This abstract model is refined in a concrete
interaction model, where the analyst specifies the way in which widgets will be
shown. UsiXML has been used in other methods of interaction modeling as KBS. In
this method, the UsiXML language is used to generate abstract interface objects.
From these objetcs, interfaces are generated. Each element of interfaces generated
with KBS are accompanied by the explanation of why and how it was inserted onto
the interface.

The CTT notation is used in some of these methods, as UsiXML or KBS [Liborio
05], and in other methods as Wisdom [Nunes 00] and SUIDT [Baron 02] among
others. These three methods use CTT to validate the interaction with the user. The last
two methods define extensions for the notation. UsiXML also uses CTT as a tool for
detecting interaction patterns and relates the Abstract Interface Model with the
Domain Model (manually or automatically). However, all these proposals lack a full
software development process. These tools only generate interfaces, not functional
systems. Other methods use a notation more formal than CTT. In this group is
Thimbleby's work [Thimbleby 04], which is based on lineal algebra. In this method,
matrix operations model actions that occur when user and system synchronize in what
they are doing.

All methods mentioned above are not easy understanding by the user. They use a
too complex notation, as Thimbleby's work, or the abstraction level is not enough for
the user, as KBS or UI Pilot. However, sketches are a notation closer to the end user.
With regard to sketching, many works and tools have been presented: SILK [Landay,
01]; JavaSketchIt [Caetano 02]; and SketchiXML [Coyette 05], which allows the user
to electronically sketch interfaces that generate end user interfaces. SILK uses four
primitives (line, rectangle, straight line and ellipse), which can be combined to
prototype the interface that is later transformed into Visual Basic or Common Lisp.
JavaSketchIt generates the Java code of the designed interface. SketchiXML is the
only method that allows prototyping with sketches in a multiplatform because it
transforms the sketches into UsiXML specifications. Although there are many
approaches in the literature, not all of them are focused on the early capture of
interaction requirements in a software development process. Those that do attempt
this do not support a software production process or the automatic generation of the
complete application.

In general these methods do not support interface building from defined
interaction patterns. Therefore a restrictive task model is not needed. This leads to a
lack of closed transformation, which makes it impossible to generate a complete user
interface with a fully functional system.

3 OO-Method Presentation Model
This section presents a detailed explanation of the model that represents the
interaction in the OO-Method Conceptual Model. As Figure 1 shows, the Presentation
Model (PM) is one of three models related to the OO-Method Conceptual Model.
Presentation Model specifies the configuration of a set of sixteen patterns called Just-
UI [Molina 03]. These patterns are structured in three layers of abstraction

1. Level 1: Hierarchical Action Tree. The Hierarchical Action Tree, or HAT, is
a pattern that helps the designer abstractly define how the end user can
access the system's functionality.

2. Level 2: Interaction Unit. An Interaction Unit (IU) models the way in which
the end user will interact with the system. The IU is closely related to
domain objects, and how they are visualized and manipulated. Four
Interaction Units can be defined:

• Instance Interaction Unit (IIU): This abstractly models the presentation of
a particular instance from an object class.

• Population Interaction Unit (PIU): This abstractly models the presentation
of a set of different instances of the same class.

• Service Interaction Unit (SIU): This abstractly models a presentation
dialog in which the end user can launch a service. The user can insert
parameters for the service in this IU.

• Master / Detail Interaction Unit (MDIU): this is a model that is a
 combination of IIU and PIU related with each other.

3. Level 3: Elementary Patterns. Level 3 defines those patterns that make up
and restrict the Interaction Units. There are 11 Elementary patterns, but this
paper only uses those related to Population IU:

• Display Set Pattern: this pattern specifies which attributes of an object can
 be shown. It is associated to a PIU or to a IIU.

• Action Pattern: the pattern specifies which services can be launched when
 an instance of an object is selected.

• Navigation Pattern: the pattern specifies which related objects can be
 accessed when an instance of an object is selected.

• Filter Pattern: by specifying this pattern, different values can be entered in
 order to list a group of objects with some common criteria.

• Order Criteria Pattern: whenever this pattern applies to a list of objects,
 the user can list them using different criteria and order.

4 Correspondence between CTT and the Presentation Model
As Figure 1 shows, interaction requirements are captured by means of sketching
methodology. The results obtained using this methodology are supported by a Task
Model with CTT [Paternò 97] notation in a way that is transparent to the analyst.

The grammar used in the structural task pattern has the following components:
• Lexical: it is provided by the CTT notation (interaction tasks, system tasks,

 and abstract tasks).

• Syntactic: it is made up of structural task patterns that are structures of tasks
 related with each other by means of temporal operators.

• Semantic: it is provided by the correspondence between task patterns and
 Model Presentation patterns of OO-Method.

Structural task patterns have been defined in a generic way. Therefore, they offer
arguments that are instantiated when patterns are used to model a specific interface. In
the following figures, these arguments are shown in cursive format, indicating that
their names should be instantiated. Arguments with variable cardinality are
represented with ellipses (i.e., 1...N). This paper presents the structural task patterns
corresponding to the following patterns of the Presentation Model: The Population IU
and the Elementary Patterns related to it.

• Filter and Order criteria:
Figure 2a shows the structural task pattern for the Filter Elementary Pattern. The
proposed CTT pattern presents several arguments: the filter name and the fields that
define the filter (Figure 2a). In Figure 2b, each interaction task, which is a leaf
represents each of the order criteria.

Figure 2: Filter with CTT notation (a), Order criteria with CTT notation (b)

• Actions and display set:
As Figure 3a shows, the interaction task in the CTT models the selection of the
instance in which the actions are applied. These actions are business rules that depend
on each unusual case: that is the reason why they are arguments. The system tasks
shown in Figure 3b represent the fields that will be displayed. These arguments are
instantiated depending on the requirements of the system queries.

Figure 3:Action with CTT notation (a), Display set with CTT notation (b)

• Navigation:
The interaction tasks in Figure 4 are used to represent the selection of the instance
where the navigation is applied. The information related to the selected instance will
be shown by means of this navigation. The set of possible destinations builds the
arguments of this pattern. Finally, the system task does the navigation.

Figure 4: Navigation with CTT notation

Once the correspondences between the structural task patterns and the third level
of the Presentation Model patterns are defined, the next step is to do the same with the
second level of the Presentation Model patterns.

 Figure 5: Population with CTT notation

As Figure 5 shows, the CTT that represents the population pattern includes
interaction tasks that are in charge of filtering (Filter) and arranging (Order) the
instances. The brackets represent grammatical-composition rules. In other words, they
are points to hook the leaves to other structural task patterns. A system task is then in
charge of showing the instances of the objects (Display) that are filtered and ordered
by the selected criteria on the screen. Finally, the user can carry out Action and
Navigation operations with these instances, which are represented in the diagram by

means of abstract tasks. The numbering system indicates the different structural task
patterns that represent elements of the OO-Method Presentation Model in the third
level. All of these structural task patterns make up a single structural task pattern that
represents the primitive of the second level called Population IU.

Once the CTT has been built using the defined structural task patterns,
transformation rules are applied to obtain the OO-Method Presentation Model. By
adding the rest of the OO-Method models (Object Model, Dynamic Model and
Functional Model) and applying the Model Compilation, the final interface and the
system functionality are automatically generated (Figure 1).

5 Construction of Structural Task Patterns from Sketches
The preceding section has shown how to represent primitives of the OO-Method
Presentation Model by means of structural task patterns in the requirements-capture
step. However, the manual construction of these structural task patterns is very hard,
even though there is a tool to support their drawing. Moreover, for small applications,
the structural task patterns become illegible due to the huge number of CTTs that are
created. This paper proposes a higher abstraction level to represent the interface by
means of sketches. The analyst with the help of the user draws sketches that represent
the final interfaces. As the skecthes are drawn, the structural task patterns are built
automatically in a way that is hidden for the analyst.

In order to define a new model based on sketches, the first step is to establish a
set of basic builders. In other words, the primitives for building a sketch to represent
the interface should be defined. Due to the graphical characteristics of the sketch, the
shape of these primitives is very similar to their visual representation.

The proposal methodology builds sketches and CTT simultaneously. Therefore a
biunivocal relationship between sketch primitives and structural task patterns should
be defined. In other words, for each structural task pattern, a sketch primitive should
be defined. For reasons of space, this work is based on the structural task patterns
related to the list of instances.

• Filter:

Figure 6: Graphical primitive and structural task pattern for Filter

Filter primitives for sketches specify a filter criterion for the listed instances in
the population. The analyst must place a symbol above the columns that the user

wants to use in the filter. These marked columns instantiate the arguments of the
corresponding structural task pattern.

• Order criteria:

 Figure 7: Graphical primitive and structural task pattern for Order criteria

• Actions:
The Actions represent operations that can be made with the selected instance in the
population list. Some actions are very common (i.e., create a new instance, modify it,
or delete it); others are specific to the system that is being sketched. Actions that are
drawn instantiate the arguments of the structural task pattern.

Figure 8: Graphical primitive and structural task pattern for Actions

• Navigations:

Figure 9: Graphical primitive and structural task pattern for Navigation

The user can access other interfaces in the system throughout the navigation. In other
words, the navigation permits access to system interfaces that implement queries or
editions on objects related to the object source. For example, starting from an invoice
line list, the user can navigate to the client data. Navigations that are inserted in the
sketch instantiate the arguments in the structural task pattern.

• Display set:

Figure 10: Graphical primitive and structural task pattern for Display set

Display set primitive specifies the columns of the population instances that will be
shown graphically. This primitive is a set of columns that the analyst can assign a
name to. In the analysis step, (when the Object Model is derived) the columns defined
in the sketch are linked with class attributes. The names of the columns inserted in the
sketch provide the values of the structural task pattern arguments.

• Population:

Figure 11: Graphical primitive for Population

This primitive presents a list of instances from a business object class to the user (i.e.,
a list of customers). As Figure 11 shows, it may include all the primitives that
represent elements of the third level in the OO-Method Presentation Model through
structural task patterns. Figure 5, presents the structural task pattern that the primitive

shown in Figure 11 represents. The numbering system of Figure 5 represents the
different primitives drawn in Figure 11.

6 Further Comments on using Task-Tree Notation
Task analysis is a widely accepted practice in Human-Computer Interaction and is at
the core of many of the software development methods proposed by this community.
Limbourg and Vanderdonckt [Limbourg 03] identify three related poles involved in
task analysis: task models, task analysis methods, and support tools. In the following,
we will discuss how our proposal deals with these three poles.

In the first pole of task analysis, models are descriptions of the world that capture
some facets of a problem. ConcurTaskTrees (CTT) is a modeling language developed
by Paternò [Paternò 97]. CTT models are used to describe how people perform the
tasks they undertake. The tasks are hierarchically decomposed to the level of basic
tasks, which are defined as tasks that should not be further decomposed. The second
pole appears in this stage because a stepwise approach is required. Several questions
arise at this point of the method.

What is the correct granularity for tasks? Since the criterion for starting and
stopping task decomposition is sometimes fuzzy, we have taken some arbitrary but
useful decisions. A task tree is built for each use case that appears in the functional
requirements elicitation; therefore, the granularity of the root task of our task models
is a use case. The use cases are built before the interaction requirements are captured.

Is a hierarchical decomposition appropriate for dealing with tasks? As Diaper
acknowledges in [Diaper 03], it is often argued that much of the natural world is not
truly hierarchical and would be better modeled as a heterarchy, allowing a more
flexible mereology. This concern is better understood if one asks the following
question: Do task trees model the interface or the interaction? These are not the same;
the first one identifies interface components in order to make a description of the
interface, and the second one identifies a path through the interface so as to describe a
particular interaction with that interface.

Figure 12: Two inappropriate ways of dealing with navigation in CTT models

Interfaces can be effectively described in terms of a component tree whereas
navigation needs cyclic graphs. Task trees are closer to interaction modeling,
although temporal operators offer the possibility of simultaneously describing many
of the possible paths through an interface (i.e., using the [] operator). A problem
appears when trying to specify navigation in CTT models. Suppose two tasks
(Interaction A and Interaction B) that have access to each other. Figure 12 shows two
solutions that describe this requirement. Figure 12.a includes Interaction B as a
subtask of Interaction A and then closes a loop by drawing an explicit link between
Interaction B and Interaction A; this diagram violates the notation because it is not a
tree anymore. Figure 12.b recursively includes each task inside the other one;
although this solution complies with the notation, it produces trees of infinite depth.

To overcome this problem, we have defined an implicit semantics for those tasks
dealing with navigation. Figure 13 shows a solution to the above mentioned
requirement of navigation between Interaction A and Interaction B by creating two
task trees and using implicit navigational semantics (the dashed arrows which show
the destiny of the navigation are merely informative and would not be part of the
model).

Even if navigation is properly addressed, two more questions arise: Are the
resulting task trees manageable in big projects? Can task trees be reused? The
structural pattern approach is a stepwise approach to task modeling and offers an
additional advantage: it allows the reuse of the structural task patterns by defining
connection points. Note that each structural task pattern defines a male-plug
connection point of the form <pattern type> (see the figures in Section 4). Some of
the structural task patterns include socket-like connection points of the form
<<pattern type>> (see Figure 5); structural task patterns of the appropriate type can be
attached to these connection points (those that define the corresponding male-plug
connection point). For example, an Actions structural task pattern (see Figure 3a)
would be attached to the <<Actions>> abstract task of a Population structural task
pattern (see Figure 5). This composition mechanism is our extension to the CTT
syntactic layer. It allows structural task patterns to be reused.

 Figure 13: Navigation modeled by implicit semantics

In the third pole of task analysis there should be a task model repository that
stores and reuses structural task patterns. This repository should contain the primitives

described in section 5 related to interaction modeling based on sketches. If task
models are transparent to the analyst, they are definitely manageable.

7 Case Study

An application for managing the water supply has been selected to apply the proposed
method. To simplify the case study, the example is focused on the List meters task.

This task obtains a list with all the meters of the system.

Figure 14: Sketch for List meters

Figure 15: CTT for List meters

The sketch shown in Figure 14 represents a Population IU for the List meters
task. The list of meters has two filters and one order criterion. The Filter (F) and
Order (O) primitives have been used in this example. Each column that has the letter
F above it represents a filter argument. The same criterion is used for the Order

primitive, but in this case the letter O is placed above the column. The sketch also
contains a set of buttons for Actions (the right side of the sketch) and Navigations (the
lower portion of the sketch). The column names represent the Display set primitive.
The CTT model is built automatically when the analyst draws the sketch (Figure 15).

Figure 16: Interface for List meters

The transformation rules explained in section 4 can be applied to the CTT shown

in Figure 15 to derive the Presentation Model. The system is automatically generated
by applying the Model Compiler to the Presentation Model together with the rest of
models that make up the Conceptual Model. Figure 16 shows this system.

8 Conclusions
In this work, an interaction requirement specification methodology has been
presented. This methodology is based on the construction of a task model. An
interesting contribution of this paper is the definition of structural task patterns that
aid in the specification of the interaction by offering a systematic way of building the
task model. The structural task patterns are patterns of tasks that represent common
interactions between the user and the information system. These patterns are formally
defined as an extension of the syntactical and semantical layers of the CTT notation.

Furthermore, we have demonstrated that an abstract interface model can be
automatically derived from the task model using our approach. We have instantiated
this transformation for the OO-Method by defining a set of transformation rules
between structural task patterns and the primitives of the view of the OO-Method
Conceptual Model that is devoted to interface modeling; that is, the Presentation
Model. A Model Compiler can then take the Conceptual Model (which includes the
Presentation Model) and generate the source code of the application.

However, experience has shown that CTT diagrams grow to be almost
unmanageable. To overcome this difficulty, we have proposed leaving the task
models at the background of interaction modeling. A layer of sketches has been
superimposed on top of the task model. The task model is now transparent to the
analyst. The sketches and the task models are synchronously built. This is achieved
by defining a set of correspondences between the sketching primitives and the
structural task patterns. The task-model construction rules influence the drawing of
the sketches. However, even though the tight coupling between sketches and task
models reduces the degree of freedom that the analyst has to create the sketches, it
allows the process to benefit from the formal properties of CTT-based models.

Future work includes the implementation of a tool that supports the proposed
methodology: OO-Sketch. The tool should have a shape recognition engine to identify
the interface components drawn with an electronic pen. Moreover, the tool should
have defined a set of patterns with all the sketches primitives, so that the analyst can
drag them instead of drawing. At the same time, the corresponding task trees should
be built by applying the correspondence rules defined in this paper. This functionality,
together with the transformation of the task model to the Presentation Model, will
offer technological support for automatically generating application interfaces
efficiently and will allow early feedback from the user.

Another advantage of using a formal language like CTT as an underlying stratus
is the possibility of validating the sketches to which the task trees are bound.
Therefore, we intend to implement a syntactic validator for task trees so that only the
construction of well-formed CTT trees (and sketches) is permitted.

Last, but not least, we plan to carry out an empirical study of our proposal. A
series of experiments will be conducted on the OO-Sketch tool to verify the
methodological improvements offered by our technique.

9 Acknowledgements
This work has been developed with the support of MEC under the project DESTINO
TIN2004-03534 and cofinanced by FEDER.

References

[Baron 02] Baron M., G. P. "SUIDT: A task model based GUI-Builder." Task MO-dels and
DIAgrams for user interface design (TAMODIA) (Romania 2002).: 64-71.

[Caetano 02] Caetano, A., Goulart, N., Fonseca, M., Jorge, J. JavaSketchIt: Issues in Sketching
the Look of User Interfaces. AAAI Spring Symposium - Sketch understanding.AAAI
Press. (2002). pp. 9-14.

[CARE] Care Technologies: http://www.care-t.com Last visit: April-2007.

[Coyette 05] Coyette, A., Vanderdonckt, J. A Sketching Tool for Designing Anyuser,
Anyplatform, Anywhere User Interfaces. INTERACT 2005, LNCS 3585. (2005). pp. 550-564.

[Diaper 03] Diaper, D. The Handbook of Task Analysis for Human-Computer Interaction,
Lawrence Erlbaum Associates. (2003).

[Insfran 02] Insfrán E., Pastor O. and Wieringa R. Requirements Engineering-Based
Conceptual Modelling. Requirements Engineering 7 (2) (2002): 61-72.

[Landay 01] Landay, J., Myers, B.A. Sketching Interfaces: Toward More Human Interface
Design. IEEE Computer 34. (2001). pp. 56-64.

[Liborio 05] Libório, A., Furtado, E., Rocha, I., Furtado, V. Interface design through
knowledge-based systems: an approach centered on explanations from problem-solving
models. Workshop on Task models and diagrams, ACM Press. (2005). pp. 127-134.

[Limbourg 03] Limbourg, Q., Vanderdonckt J. Comparing Task Models for User Interface
Design. The Handbook of Task Analysis for Human-Computer Interaction. Mahwah,
Lawrence Erlbaum Associates. (2003).

[MDA] MDA "Model Driven Architecture" http://www.omg.org/mda Las Visit: April-2007.

[Molina 03] Molina, P., User interface specification: from requirements to automatic
generation, PhD Thesis, DSIC, Universidad Politécnica de Valencia, March 2003 (in
Spanish).

[Nunes 00] Nunes, N. J. y J. F. e. Cunha "Wisdom: a software engineering method for small
software development companies." Software, IEEE 17(5) (2000): 113-119.

[Pastor 01] Pastor, O., Gómez, J., Insfrán, E. Pelechano, V. The OO-Method Approach for
Information Systems Modelling: From Object-Oriented Conceptual Modeling to Automated
Programming. Information Systems, 26(7) (2001): 507-534.

[Paterno 97] Paternò, F., C. Mancini, et al. (1997). ConcurTaskTrees: A Diagrammatic
Notation for Specifying Task Models. Proceedings of the IFIP TC13 International Conference
on Human-Computer Interaction, Chapman & Hall, Ltd.: 362-369.

[Puerta 05] Puerta, A., Micheletti, M., Mak, A. The UI pilot: a model-based tool to guide early
interface design, San Diego, California, USA, ACM Press. (2005). pp. 215-222.

[Reichart 04] Reichart, D., Forbrig, P., Dittmar, A. Task models as basis for
requirements engineering and software execution. Conference on Task models and diagrams,
Prague, Czech Republic, ACM Press. (2004): pp. 51-58.

[Thimbleby 04] Thimbleby, H. "User interface design with matrix algebra." ACM Transactions
on Computer-Human Interaction (TOCHI 11(2) (2004): 181-236.

[Vanderdonckt 04] Vanderdonckt, J., Q. Limbourg, et al. USIXML: a User Interface
Description Language for Specifying Multimodal User Interfaces. Proceedings of W3C
Workshop on Multimodal Interaction WMI'2004, Sophia Antipolis, Greece. (2004).

