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Context. Data collected during software engineering experiments might contain quality problems, leading to wrong 
experimental conclusions. Objective. We present a data quality (DQ) model and a methodology specific to software 
engineering experiments, which provides a systematic approach in order to analyze and improve data quality in this domain. 
Method. Our proposal considers a multifaceted view of data quality suitable for this context, which enables the discovery of 
DQ problems that are not generally addressed. We successfully applied the model (DQMoS) and methodology (DQMeS) in 
four controlled experiments, detecting different quality problems that could impact the experimental results. We present, 
through a running example, how we applied the DQMoS and DQMeS to one of the four experimental data. Results. We found 
that between 55% and 75% of the DQ metrics applied showed the presence of a DQ problem in all four experiments.  In all 
cases, the experimental results had already been obtained before the DQMeS application. This means that the DQ problems 
we found, were not discovered by the experimenters during or before making their experiment’s analysis. Results yield data 
quality problems that experimenters did not detect on their own analysis, and that affect the experimental response variables. 
Our proposal shows a formalized framework that measures and improves the quality of software engineering experimental 
data. The results of a survey distributed to the experiments’ responsibles show that they value the improvements introduced 
by the model and methodology, and that they intend to apply them again in future experiences. Conclusions. DQMoS and 
DQMeS are useful to increase the confidence in the quality of data used in software engineering experiments, and improve 
the trust in experimental results. 

Additional Keywords and Phrases: data quality, data quality model, data quality methodology, software 
engineering experiments. 

1 INTRODUCTION 

During Software Engineering Experiments (SEE) data are collected and used to obtain experimental results. 
The research community and professionals in SE use these results to improve and adjust their own research 
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projects and professional practices [27, 62]. Data collected in experiments may contain different Data Quality 
(DQ) problems, which may impact on the experimental results. In particular, in SEE where human subjects are 
responsible for recording the data, DQ becomes an even more relevant issue and should be carefully 
considered [5, 31].  

DQ research area has focused on defining different DQ aspects and on proposing techniques, methods and 
methodologies for measuring and dealing with DQ problems [1, 9, 53, 57]. DQ concepts have been applied to 
different kinds of data belonging to different domains, such as financial, business and organizational [22, 40, 
63], web portals [17], bio-medicine [24] and sensors [37], psychology and medical research [64, 65, 66] among 
others. In these domains, data producers and consumers have recognized DQ problems as an important matter 
that needs to be considered and attended [38, 46, 47].  

Inappropriate levels of quality in scientific data can seriously affect the results obtained. If data contain DQ 
problems, the decisions made by researchers and professionals (based on this data) might be wrong and lead 
to inaccurate actions. Some works state the importance of assessing and improving the quality of the data used 
in Empirical Software Engineering [14, 33, 49, 55]. However, the quality of the data used in SEE is seldom 
questioned or analyzed, as DQ problems have not received the attention it deserves in this area [15, 34, 36, 
52]. In the few cases DQ is considered, the analysis of the quality of the data is normally ad-hoc; i.e. neither a 
systematic nor a repeatable method is used [31, 49]. 

Besides, there is a need for defining and using standardized concepts and methods, due to a lack of clear 
and consistent terminology regarding DQ in SEE domain. Bachmann [3] suggests the development of unified 
DQ methodologies for the empirical software engineering community, since none of the works found propose 
or apply one. Rosli et. al. [49, 51] suggest, after conducting a mapping study, there is a need to construct a 
formal definition and to use a standard terminology for DQ issues. They state that DQ terms are used 
inconsistently, especially regarding the identification of DQ problems. The research community needs to define 
common terms in order to better understand and communicate DQ problems. Other authors [56] claim that 
there is no industrial standard practice to evaluate DQ in this context, only guidelines for improving the selection 
of datasets during the data collection process. 

Liebchen and Shepperd [34] after reviewing the findings of their study in 2008 [33] and revisiting the works 
of eight years, state that there is still a need to develop systematic mechanisms and protocols to assess DQ 
problems. Even though there seems to be a greater concern in this topic, the community still does not deal with 
it and would benefit from the usage of unified protocols and approaches to manage DQ.  

In this work we present the DQ Methodology and DQ Model that we developed in order to analyze and 
improve DQ in the SEE domain. Our proposal aims to evaluate the quality of the reported (raw) data that is 
used to obtain the experimental results. We aim to check that analysed data has enough quality, ensuring that 
experimental results are properly reported. Other quality features related with the overall quality of the 
experiment, such as quality related with the experimental design, to mitigate as many threats to validity as 
possible, or in the process to train subjects; are out of scope of this paper. 

The DQ Methodology (DQMeS) uses the DQ Model and provides a systematic approach to enhance DQ. 
The DQ Model (DQMoS) represents the main DQ concepts that are used and applied to improve data quality 
in this domain. The aim of the DQMoS and DQMeS application is to analyze and improve the quality of the data 
resulting from the execution of SEE that involve humans as subjects. It is out of the scope of this work the 
analysis of computational experiments or any other type of experiments different from SEE with humans, as 
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this will probably result in a different DQMoS than the one proposed in this article. As we did not prove our DQ 
model and methodology in other SEE that did not involve human as subjects, we cannot assure neither refuse 
whether our proposal could be applied to other domains. 

The DQ concepts used in DQMoS are represented through DQ dimensions, factors and metrics. Dimensions 
and factors are selected from the DQ research area [9, 57, 60, 61] and are generic, as they are not specific for 
SEE and could be applied to other domains. Meanwhile, DQ metrics proposed in DQMoS are specific for the 
SEE domain, since they specify concrete ways for measuring quality to specific types of data objects. The model 
consists of 6 dimensions, 14 factors and 21 metrics, each metric including: a description, a definition, a 
measurement result unit and a granularity. As this model (and methodology) includes generic and domain-
specific parts, we cannot say a priori whether it is also adequate and can be adapted to other domains or not.  

In this work we assume the experiment datasets as conforming to tabular format, i.e., structured in columns 
and rows, where each row corresponds to an element of interest and each column corresponds to a property 
of the elements. For example, in a certain dataset, each row may contain information about an execution of the 
experiment by certain subject, and the columns may be start time, end time, etc. We use the term attribute for 
a column of the table, following relational databases terminology. During data quality evaluation, the DQ metrics 
are instantiated to attributes or to sets of attributes of the specific SEE experiment dataset. DQ problems found 
by the application of these metrics are classified as data errors, questionable values or improvement 
opportunities. 

The DQMeS provides guidelines in order to systematically analyze and improve the quality of experimental 
data of any SEE. We define three roles: Data Quality Analyst, Experimenter, and DQMoS and DQMeS 
Responsible Person. The Data Quality Analyst is responsible for conducting the data quality analysis, 
performing all the steps of the methodology. The Experimenter is the person involved with the SEE and the 
person who validates the data quality actions. DQMoS and DQMeS Responsible Person is the role accountable 
for the model and methodology development and maintenance. The DQMeS is composed of four steps: 1) Elicit 
knowledge about the Experiment, 2) Instantiate DQMeS, 3) Assess Data Quality, and 4) Execute corrective 
actions. These steps provide help in using the DQMoS correctly. 

We built and improved the DQMoS and DQMeS incrementally, through its successive applications to 
different SEE. We applied the first version of the DQMoS and DQMeS to one SEE data, and as a result, we 
adjusted our model including new DQ metrics identified. We repeated this procedure with four SEE data until 
we had our initial DQMoS and DQMeS that are presented here. The applications of our approach to 
experimental data were done in order to: find support for applying the model and methodology in the SE domain, 
measure and improve the quality of experimental data, and define metrics that could be generalized to any 
SEE. In these four cases, our approach contributed in finding and cleaning several DQ problems providing more 
reliable experimental analysis and results. During the applications we verified the validity of the model and 
methodology proposed, and improved and extended the metrics applied in each case.  

In all four cases, the experimental results had already been obtained before the DQMeS application. This 
means that the DQ problems we found, were not discovered by the experimenters during or before making their 
experiment’s analysis. The ad hoc approach the researchers followed to assess the experimental data, was 
less effective than applying the DQMoS. This shows how there is an improvement to the experimental DQ by 
applying DQMeS, as we discovered data errors that the researchers had not found before.  
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In a previous work [59], we presented how we applied the first draft version of the DQ model to two of the 
four experiments, showing the definition and application of one DQ metric as example. In this paper we present 
the complete DQMoS and DQMeS, including all 21 metrics and its application in the four experiments.  

The paper is structured as follows. Section 2 presents our proposal, including the DQ concepts as the 
conceptual base for the DQMoS, as well as the definition of the DQMoS and the DQMeS. We also use a running 
example in order to clarify the proposal and the concepts presented. Section 3 shows the results of applying 
the DQMoS and DQMeS to four SEE. Finally, section 4 compares related work and section 5 presents the 
conclusions. 

2 RELATED WORK 

The importance of the quality of data used by empirical studies has been acknowledged in the last years [5, 6, 
13, 14, 15, 18, 29, 31, 33, 34, 36, 49, 51, 52, 55] mostly due to the impact that it may have on the decisions 
made. Some papers explicitly emphasize the importance of DQ in empirical software engineering datasets, as 
data imperfections can have unwanted impact on the data analysis and might lead to false conclusions [31, 35, 
36, 49, 51, 52].  

Four literature reviews were carried out in this particular topic, showing interest and concern about how 
researchers are dealing with DQ problems [3, 12, 31, 49]. They all conclude that empirical software engineering 
community should pay more attention to this issue, which has been long neglected according to the results. 
Results of the systematic literature review carried out by Liebchen and Shepperd [31, 33] show that only 1% of 
analyzed papers explicitly consider noise or DQ as an issue, not necessarily proposing solutions. Even though 
the majority of the publications in this review recognize its importance, considering DQ to be a threat to the 
analysis of empirical data (138 out of 161), little work has been done to deal with DQ problems. This results in 
questionable experiments conclusions, as they are obtained based on poor DQ. Liebchen [33] concludes “DQ 
is somewhat neglected in a domain where the most important input is data”.  

Bosu and MacDonell [14] carried out a targeted systematic literature review in order to identify evidence of: 
data collection reporting, data pre-processing and DQ issue identification in ESE studies. The results show that 
DQ is not a systematic practice in ESE, as just 11% of the 282 papers reviewed indicate some level of 
consideration in the three perspectives. Only 44% of the studies report consideration in any of the DQ 
perspectives, confirming the Liebchen and Shepperd [33] findings. The 56% of the reviewed studies (157 of 
282) do not report on the quality of the datasets being used. The most frequently identified data quality issues 
are incompleteness (38%) and outliers (28%), even though causes are not addressed. Bachmann [3] finds as 
a result of a literature review that only a few publications cover the quality aspects of software engineering 
process data. Finally, Rosli et. al. [49, 51] performed a systematic mapping study in order to investigate how 
DQ issues are approached in SE research and to which extent researchers examine DQ issues that might affect 
their results. As a result, they find 64 papers that address DQ issues in this domain, but only 31 give serious 
consideration about how DQ impact on their results. They suggest “researchers should give more attention to 
the quality of datasets in order to produce trustworthy data for reliable empirical research”. The results of the 
mapping study also show that many definitions and reporting of DQ issues are unclear because of the 
inconsistent terminology used, which can lead to interpret data in many different ways [51]. Thus, they suggest 
there is a need to construct a formal definition of DQ issues, using a standard terminology to specify the quality 
of data sets.  
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Eight years after its publication [33], Liebchen and Shepperd [34] review their findings in order to assess 
how DQ issues are being considered, and which techniques are being used in the ESE community. The original 
study [33] found only 23 papers explicitly considering DQ. The updated review found 283 articles, even though 
this still represents only the 1% of the total ESE literature. This shows that the community is starting to become 
more concerned about DQ issues. However, there is still little systematic work and guidance for researchers in 
order to assess the quality of datasets used for their works. They conclude “researchers need to have concern 
for data quality”. Neither researchers nor practitioners can continue working with suspect data. Bachmann and 
Bernstein [4, 5] analyze DQ characteristics of closed and opened software projects source, finding that all 
projects contain DQ issues. These issues may have a major impact on empirical software engineering research 
results. Bachmann defines a DQ framework and metrics to evaluate and analyze DQ software projects, but he 
does not state that it could be applied to experimental data. The proposal does not include any method in order 
to assess DQ in a systematic and structured way. The defined metrics do not consider DQ concepts from the 
DQ discipline, narrowing the DQ multifaceted vision. Metrics are defined as ratios, and could be associated with 
the DQ dimensions accuracy and completeness.  

Bosu and MacDonell [13] proposes a taxonomy of DQ issues for ESE which considers different dimensions, 
and are classified in three main classes: Accuracy, Relevance and Provenance. He does not find any study that 
evaluates all the aspects of the taxonomy, indicating that the treatment of DQ is not a holistic endeavor in ESE. 
This work succeeds in considering a broaden concept of DQ for ESE that includes all relevant dimensions. 
However, the proposal does not present DQ metrics or a repeatable method in order to analyze and improve 
DQ in this domain. In a recent study, Bosu and MacDonell [15] apply the taxonomy proposed in [13] and assess 
the quality of 13 datasets that are extensively used in research on software effort estimation. They propose a 
template for dataset collection and submission including 11 DQ challenges, as well as parameters and 
information for each challenge. The challenges presented can be comparable to the DQ dimensions we propose 
in our work. The purpose of the template is to ensure that “datasets are collected, submitted, and used in an 
informed and consistent manner by ESE researchers and practitioners”. They aim to provide “a means through 
which the nature and origin of an ESE dataset will be more transparent to its users”. Both the approach we 
propose in this article and template presented in Bosu and MacDonell [15], encourage DQ assessment in ESE 
data following a structured and formal way, and considering a widen view of DQ. However, Bosu does not 
propose how to improve the DQ issues detected in order to improve the quality of the datasets used by 
researchers, as well as the results obtained. 

Another research conducted by Rosli [51, 52], “aims to provide a standard way to better understand and 
interpret data sets” and to identify DQ issues. She proposes a framework that includes a metamodel in order to 
help researchers to apply a common interpretation of the data sets, as well as a quality assessment process to 
evaluate its quality. The framework will allow researchers to understand the quality of data and identify any 
potential problems that may be present in a data set. Rosli et. al. [52] propose a quality assessment process in 
four steps: 1) assessing the datasets model; 2) identifying the data quality issues; 3) evaluating the metadata; 
4) preparing the assessment report. One of her findings is that after applying the quality assessment process 
to 92 data repositories, she finds most DQ issues (such as duplicate, incorrect and missing data) are common. 
In her work, Rosli does not propose a DQ model nor DQ metrics that could be applied in a structured and 
systematic way to the data she analyzed. 
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Some works analyze the quality in software engineering historic datasets [4, 7, 18, 32, 48]. Normally, in these 
types of works, software process and product data are collected, stored, and then used to analyze strategies 
and methodologies, construct heuristics or prediction models, or apply statistical techniques. These works also 
agree on the great significance of assessing the quality of the data used, as they have an impact on the obtained 
results. Other works [2, 10, 11, 30, 54] analyze software engineering data quality such as bugs and changes 
reports from one particular view. 

Most of the works consider noise and missing values as the main DQ problem to be addressed, but they do 
not apply the holistic perspective of DQ. Systematic reviews of Liebchen and Shepperd [33] and Rosli et. al. 
[49] considered a narrowed view of DQ, focusing on the accuracy of data (absence of noise or incorrect data), 
and excluding other important issues such as incompleteness, redundancy and inconsistency. Rosli et. al. [50] 
proposed a metric for analyzing only consistency conflicts within Software Engineering datasets. Bosu [12], on 
the other hand, adopts a more general approach including DQ dimensions. While our work proposes a multi-
dimensional approach considering six different DQ dimensions, the framework proposed by Rosli [51, 52] aims 
to identify DQ issues focusing in the interpretation of data as the main dimension, and considering other four 
common DQ dimensions (accuracy, completeness, consistency, redundancy) as secondary. For this work, they 
considered our initial DQ Model [59] adapting the definition of the DQ dimensions we proposed. Other difference 
between our proposal and Rosli [51, 52] is that while they analyze DQ from public data repositories, our focus 
is on SEE data.  

As we presented in this section, we found works that discuss DQ for Empirical Software Engineering, and 
some proposals about how to analyze DQ in this domain. However, we did not find in the literature any 
systematic and disciplined approach for analyzing and improving the quality of the data whose source is a 
controlled experiment in Software Engineering, as we present in this work. 

3 DQMOS AND DQMES: DATA QUALITY MODEL AND METHODOLOGY FOR SEE 

In this section we present the main DQ concepts defined in the area of Information Systems (IS), as SEE data 
are always stored in some kind of IS (such as databases or spreadsheets). Then, we describe the DQMoS: our 
proposal for a Data Quality Model for Software Engineering Experiments. Finally, we present the DQ 
Methodology (DQMeS) that defines steps and guidelines to analyze and improve data collected through the 
execution of SEE, and uses the DQMoS.  

The proposed DQ model is intended to be applied to the data obtained from the experiments, i.e. generated 
by the subjects, in order to improve its quality before it is used for analysis. The model is not intended to be 
used for evaluating quality aspects of the experiment itself, such as those related with the experimental design, 
those related to mitigate as many threats to validity as possible, quality in the recruitment process, quality in the 
process to train subjects, etc. Poor experimental design can also lead to DQ problems since the raw measure 
does not adequately represent what it is claimed. Our DQ model does not consider these aspects. However, 
we recognize that these kind of quality problems are frequently the causes of quality problems in the generated 
data. For this reason, we believe that a good strategy is to manage DQ through our proposed DQ model and 
methodology, but also to identify and eliminate the causes of DQ problems that are related to the quality of the 
experiment. The application of DQMoS and DQMeS, as a side effect, may shed light on quality problems of the 
experiment.  
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3.1 Data Quality Concepts 

DQ is generally defined as “fitness for use” [20, 26, 33]; that is, if data are suitable for its use or purpose. As the 
use of the data depends on each context, its quality will be evaluated in function of its specific purpose [57]. DQ 
can be defined by “the degree of benefit (or value) perceived by a user using certain data in a certain context” 
[57, 35]. Good quality data “fit for their intended purpose in operations, decision-making, and planning” [5, 14].  

DQ is a multifaceted concept, as it is defined in function of the dimensions it describes. The quality of the 
data is defined by the set of dimensions or characteristics that are appropriate for a specific context [43]. The 
subjective view of DQ motivates the selection of DQ dimensions in order to assess the quality of the data in a 
specific context. Each dimension represents a different aspect (or facet) of DQ [46, 53, 57].  

Our approach is based on a DQ meta-model [9] that defines the following concepts. A DQ dimension is a 
concept that captures one facet of DQ; a DQ factor represents a particular aspect of a DQ dimension. A 
dimension can be seen as a set of different factors addressing the same kind of problem.  

There exist a huge set of DQ dimensions and factors defined in the literature [9, 46, 60, 61]. In this work, we 
consider the DQ dimensions presented in [9]. They are based on well-known concepts about which there is 
general consensus.  

We selected the DQ dimensions and factors that are suitable for SEE. There are other DQ dimensions and 
factors that, after analysis, we understand they are not applicable to this domain. An example of this are the 
time-related dimensions, such as currency, volatility and timeliness, which focus on time when data are created 
or updated. Since data resulting from the execution of SEE will not be modified, they can always be considered 
fresh and current. 

For each considered DQ dimension, we present its definition and its corresponding DQ factors. 
Accuracy. Specifies how accurate and valid the data are. It indicates if there exist a correct association 

between the IS states and the real world objects. Three DQ factors are defined. Semantic accuracy refers to 
how close a data value is to the real world object it represents. Syntactic accuracy indicates if a value belongs 
to a valid domain. Precision refers to the level of detail of the data. 

Completeness. Specifies if the IS contains all the important data, with the required scope and depth. It 
indicates the IS capacity to represent all the significant states of the reality through two DQ factors. Coverage 
refers to the portion of real world objects that are represented in the IS, while density refers to the amount of 
missing data items.  

Consistency. Specifies if a set of semantic rules are satisfied in the IS. Three DQ factors are defined to 
represent the different kinds of restrictions. Domain integrity refers to rules about the attributes values and their 
belonging to the corresponding domain. Intra-relation constraints refer to rules that must be satisfied by one or 
more attributes in the same relation, while in the inter-relation constraints the attributes entailed are from 
different relations. 

Uniqueness. Specifies the duplication level of the data through two DQ factors. Duplication occurs when 
the same entity is duplicated exactly, while contradiction occurs when the entity is duplicated with contradictions. 

Representation. Considers the consistent and concise representation of the data in the IS, and the extent 
in which data are always represented in the same format and structure. We consider the DQ factors data format 
and data structure. 

Interpretability. Refers to the documentation and metadata available in order to correctly interpret the 
meaning and properties of the IS. We consider two DQ factors, ease of understanding and metadata. 
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In order to obtain concrete values for DQ, these DQ dimensions and factors need to be quantified by DQ 
metrics [8, 9, 16]. A DQ metric is a quantifiable instrument that defines the way a DQ factor is measured, and 
indicates the presence or absence of a DQ problem. In this paper we have identified a set of DQ metrics that 
can be applied to experiments of SEE. Finally, a measurement method is a process that implements a metric. 
As the same factor can be measured with different metrics, the same metric can be implemented with different 
methods. The measurement method has to specify the attribute being measured and the procedure to apply [9, 
43]. Measurement methods are specific for each experiment. Even though we define some of them in this paper, 
they should be adapted and instantiated to each experimental data, and could be different to the ones used in 
the four experiments analyzed in this paper. 

Consider for instance a database that records data about clients. In particular, the addresses need to be 
standardized according to a particular referential of streets and locations. In this case, we can apply the DQ 
dimension Accuracy and DQ factor Syntactic Accuracy, and define a DQ metric Out of Referential Value. Both 
DQ dimension and factor are generic and taken from DQ discipline. The DQ metric is defined for a specific 
domain, so that it could be applied to databases in the same context. The Out of Referential Value metric would 
be applied to address data in order to find all values that are not recorded following the defined referential. The 
measurement method that implements the metric could be a SQL query that returns the values that are out of 
the referential. Both the metric instantiation to specific (address) data as well as the SQL defined are specific 
to this client database, as it depends on its structure and characteristics. 

A DQ model establishes and formalizes the different DQ aspects that will be considered for a particular 
domain, as well as the metrics that will be applied for DQ assessment. During the definition of a DQ model, 
quality aspects and data items must be selected following some prioritization criterion, since all aspects cannot 
be measured for all data items. Therefore, the most relevant data items should be selected and for each one, 
the most relevant quality aspects should be chosen. 

3.2 DQMoS: Data Quality Model for SEE 

The DQMoS contains a set of DQ metrics that are suitable for SEE data, and that are based on the DQ 
dimensions and factors presented in Section 3.1. The model proposed includes the definition of each DQ metric 
as well as the DQ metadata. This model provides a framework for the analysis and assessment of DQ. 

Figure 1 shows how the DQMoS is defined from the general DQ concepts presented in Section 3.1. 
Considering the DQ dimensions and factors proposed by the DQ discipline, we defined DQ metrics that are 
specific to the SEE domain. The DQ metrics are then instantiated to particular data (i.e. attributes, tables) when 
applied to an experimental data repository. 

As part of the model that we developed, we defined the following characteristics for each DQ metric of 
DQMoS. 

• Semantic: metric’s description. 
• Definition: how the metric returns a value when applied to attributes or set of attributes of the experimental 

data under consideration. Data collected during the experiments are stored in data repositories. Even 
though these repositories are not always relational databases, we use relational databases terminology 
in all the cases, as the concepts for any type of data repository are analogous. 

• Measurement result unit: how the result is represented (Boolean value, grade, enumeration). 
• Measurement method: the process that implements a metric (SQL query, programming, manual). 



9 

• Granularity: the level at which the metric is applied (cell-attribute value for a given tuple, column, table or 
even database). 

 

 
Figure 1: DQMoS and Application example 

 
When the model is applied, that is when a researcher uses the model in order to evaluate and correct data 

quality issues in a SEE, the DQ metrics defined in the DQMoS are instantiated to particular attributes or set of 
attributes in the experimental data. DQ problems found as a result of the application of the model are classified 
as follows. 

• Data Errors (DE): correspond to errors in the data that (whenever possible) need correction.  
• Questionable Value (QV): in this case it is not possible to assure if the DQ problem corresponds to a real 

data error (examples of these are outliers). It is necessary to compare data and reality in order to know if 
a data error exists. 

• Improvement Opportunities (IO): correspond to suggestions of aspects that could be improved in order to 
prevent the occurrence of a DQ problem in the future. 

Note that the DQ Model aims to identify DQ problems, no matter its cause. 
Consider for instance a database that records data about software defects, and that may contain missing 

values. The Completeness DQ dimension and the Density DQ factor (both form DQ discipline) contemplate this 
DQ aspect. In this case, we apply the DQ metric Missing Value in order to identify the values that are missing 
but need to have a non-empty value. Which values need to be not missing will depend on each application. For 
example, this metric could be instantiated to defect detection time data in order to find time records that contain 
missing values. 

The measurement method that implements the metric could be a SQL query that returns the missing values 
that are present in the data. The metric instantiation and measurement method are specific and depend on the 
particular database. 
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As the measurement result unit is Boolean, we assign ‘1’ for each defect detection time containing a missing 
(null) value, and ‘0’ otherwise. Then, we calculate the DQ Value by counting the proportion of missing data 
(amount of ‘1’) over the total data measured. 

3.2.1 DQ Model Definition and DQ Metadata 

In Table 1 we present the DQ dimensions, factors and metrics that define the DQMoS. The DQ metrics are 
presented in detail in Table 2, where we present the semantics, the definition and the result units of each metric. 
These units may be Boolean, Grade or Enumeration. When the result unit is Boolean, we assign ‘1’ if the DQ 
metric is satisfied in the data measured, ‘0’ otherwise. When the result unit is Grade, we assign a value between 
0 and 1, representing the closeness between the registered value and the real value. When the result unit is 
Enumeration, we assign a “Low” value if any of the conditions measured are not satisfied, “Acceptable” if they 
are partially satisfied and “Good” if they are fully satisfied. For space reasons, metrics’ granularity and 
measurement method are not included in Table 2. We define DQ metadata in order to record the measurement 
results. This metadata shows: which DQ metrics were applied, which data were measured, and if each 
measured data item contains a DQ problem. We can also calculate an aggregated data quality value from these 
metadata. For each application we define the metadata structure, as it depends on the data model and 
repository used. For example, if data are stored in a relational database, new tables can be created to store the 
DQ metadata. 

Note that it is possible that the same DQ problem could be found applying different DQ metrics. In this case, 
the DQ problem is only considered once.   

The DQ metrics M18 to M21 are related to the quality of the data representation, interpretability and 
documentation, which are by definition subjective aspects. This is the reason why human involvement and 
experience in the specific domain under assessment, is essential in the application of these DQ metrics [46]. 
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Table 2: DQ Metrics defined in DQMoS  

Id DQ Metric Semantics DQ Metric Definition Measurement 
result unit 

M1 

Define a range of values (minimum and maximum 
values possible) to which data must belong. The 
range can be defined statistically, from the 
researcher experience, or historic data. This 
includes numeric data (interval, ratio or absolute 
scales). 

Verify if the corresponding data values are out of 
the range defined as valid. 

Boolean or 
Grade 

M2 
Define the standard format in which values must be 
stored. This can include the format itself, units, data 
types, etc. 

Verify if the corresponding data values are not 
recorded in the specified format. Boolean 

M3 

Free texts can contain some embedded values that 
need to be obtained separately, in order to analyze 
them individually. If possible, the constraints could 
be specified as regular expressions. 

Verify the existence of embedded data values in 
free texts. Boolean 

M4 

Records represent a real world object. However, 
there might exist records in the database which 
corresponding object does not exist in reality. 
Verify whether the values registered are the true 
values. 

Verify the existence of records in the data that 
are not associated to any real world object. Boolean 

M5 

Records can represent an incorrect real world 
object. This means that the record associated with 
the object has incorrect values: although there are 
syntactically correct, they do not belong to that 
particular object (this includes measurement 
errors). 

Verify the existence of records in the data whose 
values are not correct. 

Boolean or 
Grade 

M6 

Define a set of values (referential) to which some 
data values must belong. The referential can be 
defined by the researcher, by a list of pre-defined 
values, or be specified as part of the experimental 
design.  This includes nominal and ordinal data, by 
defining the possible set of values, such as 
categories, rankings, scaling; and its 
corresponding order if applies. 

Verify if the corresponding data values do not 
belong to the set of values (referential) defined 
as valid. 

Boolean 

M7 

Define the detailed or precision level required for 
the values, necessary to make the corresponding 
calculations. For example, if a number must be 
registered with two decimals (not rounded) in order 
to achieve better precision in the results 
calculations. 

Verify if the corresponding data values are not 
recorded with the required precision. Boolean 

M8 

Define which single data should have been 
recorded with a non-empty value. A missing value 
could represent data that do not exist in the real 
world or it was not possible to find out. We are 
interested in data that exist in reality but its entry 
was missing. 

Verify if data values that exist in the real world 
are not stored in the database. Boolean 

M9 

Define which set of values or information of a 
particular object was omitted, but should have been 
recorded with non-empty values. While M8 is 
applied to a single value, M9 is applied to a set of 
values. For example, if the start and end session 

Verify if the information (set of values) for a 
particular object exists in the real world, but it is 
not stored in the database. 

Boolean 
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times are not null, so the total session time must be 
calculated and not null. 

M10 
Some records may have been omitted. This means 
there exist real world objects that are not 
represented in the database. 

Verify the existence of records which entry was 
omitted. Boolean 

M11 

Define the domain of values to which some data 
must belong. In this metric the domain defined is 
well known, while in “Out of Range Value” the 
values could be defined arbitrarily. 

Verify if the corresponding data values are out of 
the domain defined as valid. Boolean 

M12 
Define rules involving attributes that belong to the 
same relation that must be satisfied in the 
database. 

Verify if the defined rules are not satisfied in the 
data. Boolean 

M13 Define which data should have been recorded with 
a unique value. 

Verify if data which values must be unique, 
contain a repeated value. Boolean 

M14 
Define rules involving attributes that belong to 
different relations, and that must be satisfied in the 
database. 

Verify if the defined rules are not satisfied in the 
data. Boolean 

M15 
There could exist references to records from within 
the collected data that are not stored in the 
database, so they result in invalid references. 

Verify the existence of references to records that 
are not in the database. Boolean 

M16 

Records could have been stored twice in the 
database. Duplication could happen: if two or more 
records have the same value in their identifiers and 
other data items; or if two or more records have 
different identifiers but reference to the same real 
world object. A duplication criterion must be 
established in order to identify duplicated records. 

Verify the existence of duplicate records, 
according to the duplication criteria defined. Boolean 

M17 

Records could have been stored more than once 
but in a contradictory way. They represent the 
same real world object, but contain different values 
in their identifiers and/or other data. 

Verify the existence of contradictory records, 
according to the contradiction criteria defined. Boolean 

M18 Data must be represented in an appropriate way, 
considering the reality and context under study. 

If the data are stored in a DBMS, verify the lack 
of definition of integrity rules and restrictions. 
Regardless of the data storage, also verify if the 
data representation is not concise and 
consistent, or appropriate to the reality 
represented. Assign a value “Low” if any of these 
conditions are not satisfied, “Acceptable” if they 
are partially satisfied and “Good” if they are 
satisfied. 

Enumeration 

M19 
Data must be represented in a consistent format, 
so as the same data must always be represented 
in the same way. 

Verify if different formats are used to represent 
the same data. Assign a value “Low”, 
“Acceptable” or “Good”, according to the quantity 
of cases where this condition is not satisfied. 

Enumeration 

M20 
Data must be appropriate for each class of 
stakeholder who might make use of them (apart 
from the researcher). 

Verify if data are not clear and with ambiguities 
in its meaning and use. Also verify the degree in 
which the information can be understood and 
interpreted, the scope and comprehensibility of 
the data. Assign a value “Low” if any of these 
conditions are not satisfied, “Acceptable” if they 

Enumeration 
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3.3 DQMeS: Data Quality Methodology for SEE  

We propose a DQ Methodology (DQMeS) that defines steps and guidelines to apply the DQMoS to the data 
collected through the execution of SEE. During each application to SEE, we found that we followed a systematic 
and structured approach, and that this approach and guidelines could be repeated in other SEE. 

Figure 2 shows the steps to identify DQ problems and improve the quality of SEE data. Next, we describe 
each step including inputs, tasks and outputs, illustrated by a running example. As running example to illustrate 
our approach, we select a replication experiment conducted at the Technical University of Valencia (UPV), 
Spain [44]. The aim of this experiment is to compare the MDD paradigm with traditional software development 
methods. We consider this case to be representative, complete and enriching. By presenting a running example, 
we are able to show how we successfully applied the model and methodology to SE experimental data, as well 
as the results and benefits obtained. 

3.3.1 Roles 

The roles that participate in the DQMeS are: 

• Data Quality Analyst (DQA). She/he participates during all the steps, as she/he is responsible for carrying 
out the tasks described in each step. This role can be executed by anyone who is familiar with the DQ 
metrics and the DQMoS; even the Experimenter could assume this role. 

• Experimenter. She/he participates during the steps in which knowledge about the experiment is required. 
She/he is also responsible for the validation tasks, including the validation of DQ metrics identified and 
corrective actions proposed. 

• DQMoS and DQMeS Responsible Person (DQMR) is the role accountable for the model and methodology 
development and maintenance. This role is in charge of analyzing all change requests and improvement 
suggestions after each application. He also adjusts the DQMoS and DQMeS in case the proposed 
changes are approved. For example, if new metrics are identified, the DQMR analyzes their inclusion as 
part of the DQMoS.  

In the running example, the DQA and DQMR was the first author of this paper (and the proposal), and the 
Experimenter did not belong to the DQMoS and DQMeS research group. 

 

are partially satisfied and “Good” if they are 
satisfied. 

M21 

Documentation and metadata must be used in 
order to describe and define the data 
characteristics. This enhances the correct 
interpretation of the meaning and properties of the 
data and its sources. 

Verify the lack of definition of conceptual scheme 
(if applies), metadata, and historic information 
and traceability of data. If all these aspects are 
covered assign a value “Good”, if only some of 
them are given assign “Acceptable”, otherwise 
assign “Low”. 

Enumeration 
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Figure 2: DQMeS: Data Quality Methodology for SEE 

 

3.3.2 Steps 

In this section we describe in detail the steps proposed by the DQMeS, showed in Figure 2. During Step 1, the 
DQA understands the context and design of the experiment, focusing on data collected and stored. Next, in 
Step 2, the DQA identifies which DQ metrics (from the ones defined in the DQMoS) will be applied, and to which 
specific data. In Step 3 the DQA implements the measurement methods in order to assess the quality of 
experimental data. Finally in Step 4, the DQA defines and execute the corrective actions in order to correct the 
data errors that were previously identified. For each step, we present the inputs needed, the tasks executed 
and the results (outputs) produced. 

Step 1: Elicit knowledge about the Experiment  
The aim of this step is to understand the experimental context and design. In particular: which data are 

collected and how, who collects and uses the data, where data are stored, and if any tool is used to collect and 
store the data. The focus of this step is to identify the “significant data”: this is the data (raw or calculated) used 
to obtain the experimental results.  

For example, consider an experimental design where effort is defined as one response variable. Subjects 
will store data about “time” in the experimental database. This is considered as “significant data”. 
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The Experimenter participates actively during this step communicating in detail the experiment knowledge 
to the DQA.  

Inputs needed for Step 1: 

• Experimental material: documentation, conceptual models, and experimental context. 
• Data repository. 
• Tools, if used. 

Tasks executed in Step 1: 

• Working meetings between Experimenter and DQ Analyst. 
• Elicitation of experimental information and data. 
• Analysis of material (papers, models, etc.). 
• Analysis of tools and data repository. 

Outputs resulting of Step 1: 

• Experimental context known and studied: description, design, data, repositories, and tools. 
• Significant data identified. 

Step 1 – Running example 
We gather information about the experiment by having interviews with the experimenters, and studying 

reports and papers [23, 44, 45].  
The experiment aims to compare the Model-Driven Development (MDD) paradigm versus a traditional 

software development method.  
The subjects of the experiment are 20 master students from the UPV, and the experimenters who collect the 

data are three teachers. They have 2 sessions of 2 hours per development method (MDD and traditional) and 
2 problems (P1 and P2). In the replication, the problems are extended to increase the difficulty. This new version 
of the problems is divided into 3 exercises (parts) such a way the first exercise is the same problem used in the 
base experiment and exercise 2 and 3 are extensions.  

The following variables are defined:  

• Software Quality: percentage of success after applying test cases.  
• Effort: time spent to develop the system.  
• Productivity: quality-effort ratio. It is defined as the amount of software quality work done per effort. By 

software quality and effort we mean the variables defined previously. 
• Satisfaction: range of values from 1 to 5 (1: totally unsatisfied, 5: totally satisfied). It is defined as how at 

ease developers are as they develop a system. The instrument used to measure this variable was a 
satisfaction questionnaire. The experimenters evaluate satisfaction in terms of perceived usefulness (PU), 
perceived ease of use (PEOU), and intention to use (ITU) [41, 42].  

Figure 3 shows the UPV experimental process, and the data that is registered in each step. The experiment 
starts with a demographic questionnaire that subjects have to fill in on paper to identify their background. 
Traditional development treatment is applied first to all the subjects. The beginning and end of each session 
are automatically registered since subjects must upload the problem to a repository at the end of each session. 
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Next, the experimenters add the time spent in both sessions to get the time of the whole development. Once 
the session is finished, each subject must fill in a satisfaction questionnaire.  

Finally, the experimenters check the quality of the systems developed by each subject through test cases 
and write down the results. Each test case is defined as a sequence of items. A test case is considered fulfilled 
when every item is passed. The test cases as well as the items result have two possible values: success (1) or 
failure (0). All the data collected during the experiment is recorded in spreadsheets by the experimenters. The 
same process is repeated to apply the MDD treatment. 

 

 
Figure 3: UPV Replication Experimental Process 

 
Step 2: Instantiate DQMoS 
The DQMoS defines, for each DQ dimension and factor, DQ metrics that could be applied to experimental 

data in SE. 
In this step, the DQA identifies which DQ metrics (from the ones defined in the DQMoS) will be applied to 

the data. For this task, three possible strategies are defined that could be applied complementarily to the 
different data items and DQ aspects. 

Strategy I: Bottom-up, from collected data 
Considering the experimental data used for the experiment results (significant data), the DQA identifies 

possible DQ problems that could occur during the collection and recording of the data. Then the DQA maps 
these problems to the corresponding DQ metrics.  

For example, if time data are collected, then a time value less than 0 would show the presence of a DQ 
problem. This can be measured applying the DQ metric Domain Integrity Rule that is defined in the DQMoS. 

Strategy II: Top-down, from DQ metrics defined 
For each DQ metric in the DQMoS, the DQA identifies possible DQ problems that could occur to the 

significant data. 
For example, considering the DQ metric Duplicate Record, a possible DQ problem would be if the same 

subject registered the same defect more than once. 
Strategy III: From the tools used (if any) 
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The DQA examines the tools used to collect and store the data, and which validations are included. The 
DQA identifies possible DQ problems that could arise when using the tool. 

Then, the DQA joins the results obtained after applying the strategies, verifying if all the metrics identified 
are possible and worthy to apply. For example, if the tool used validates the insertion of missing values, then 
the Missing Value metric will not be worth to apply. 

Finally, the DQA identifies all the data to which each DQ metric will be applied. Remember that each metric 
can be instantiated more than once, on different data. The Experimenter is responsible for validating the DQ 
metrics identified and the data to which they will be applied.  

Inputs needed for Step 2: 

• DQMoS. 
• Data schema. 
• Rules and restrictions defined in the data. 
• Experimental context documentation, including tools to collect data.  
• Significant data. 

Tasks executed in Step 2: 

• Identification of DQ metrics by applying the three strategies. 
• Work sessions to validate metrics. 
• Instantiation of DQ metrics. 

Outputs resulting of Step 2: 

• DQMoS instantiated (selection of DQ metrics). 
• DQ metrics instantiated and validated (definition of the data to which each DQ metric would be applied). 

 

Step 2 – Running example 
Based on the experimental response variables and other contextual information related to these variables, 

we examine the experimental data and identify which DQ metrics (defined in Table 2) could be instantiated to 
the corresponding attributes.  

Table 3 presents the DQ Dimensions, Factors and Metrics applied to each experimental data (raw and 
calculated). Due to space restrictions, we show the information for the response variables Software Quality and 
Effort as an example. This example shows how each response variable component (raw or calculated data) is 
analyzed separately in order to select which DQ dimension, factor and metric assess its quality. The multi-
faceted view of DQ is clearly shown, as different DQ dimensions and factors are applicable to each response 
variable. 

Consider for instance the response variable Software Quality. We identify test_case_items as raw data 
recorded to calculate this variable. This data represents the result of each test case item. Following Strategy I 
(from data collected), we instantiate the DQ metrics presented next. 

• As the experimenters register this data manually, typing errors may occur, generating values that do not 
correspond to reality. We apply the DQ metric Incorrect Record to identify these values. 
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Table 3: DQ Metrics applied to MDD experimental data (UPV-Replication)  

Response 
Variable Calculation 

Components: Raw (R) 
and Calculated (C) 

data 
DQ Dimension / DQ Factor DQ Metric 

Software 
Quality 

success_test_cases_porc
entage=success_test_cas
es*100/total_test_cases 

 
success_test_cases=AND

(test_case_items) 

success_test_cases 
(R) 

Accuracy / Syntactic 
Accuracy Lack of Standardization 

Completeness / Density Missing Value 

Completeness / Coverage Omitted Record 

Consistency / Inter-relation 
Integrity 

Inter-relation Integrity 
Rule (R1) 

sucess_test_cases_por
centage (C) 

Accuracy / Precision Lack of Precision 

Completeness / Density Missing Value 

Consistency / Domain 
Integrity Domain Integrity Rule 

test_case_items (R) 

Accuracy / Syntactic 
Accuracy Lack of Standardization 

Accuracy / Semantic 
Accuracy Incorrect Record 

Completeness / Density Missing Value 

Consistency / Inter-relation 
Integrity 

Inter-relation Integrity 
Rule (R1) 

Effort 

total_time=session1_time
+session2_time 

* session1_time (R) 
* session2_time (R) 

Accuracy / Syntactic 
Accuracy Out of Range Value 

Accuracy / Syntactic 
Accuracy Lack of Standardization 

Accuracy / Semantic 
Accuracy Incorrect Record 

Completeness / Density Missing Value 

Completeness / Density Omitted Information 

Consistency / Intra-relation 
Integrity 

Intra-relation Integrity 
Rule 

Consistency / Inter-relation 
Integrity 

Inter-relation Integrity 
Rule (R2) 

total_time<=exercise_tim
e 

* total_time (C) 
* exercise_time 

Accuracy / Syntactic 
Accuracy Out of Range Value 

Accuracy / Syntactic 
Accuracy Lack of Standardization 

Completeness / Density Missing Value 

Consistency / Inter-relation 
Integrity 

Inter-relation Integrity 
Rule (R2,R3) 
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• As test_case_items is used to manually calculate the success_test_cases value, an inter-relation integrity 
rule is defined in order to verify this calculation. Thus, we apply the DQ metric Inter-relation Integrity Rules. 

Following Strategy II, for each DQ metric in the DQMoS, the DQA identifies possible DQ problems that could 
occur in data used to calculate Software Quality response variable. We instantiate the following DQ metrics: 

• Missing Value: as all test case items have to be executed, we apply this metric to verify if values are not 
empty. 

• Lack of Standardization: as test case items are Boolean values, it must always be 0 (failure) or 1 
(success). We apply this metric to verify no other value was registered. 

In this case, as no tool was used, Strategy III is not considered. 
We can observe that some DQ metrics do not apply to all types of data. For instance, for Boolean data we 

would not measure Lack of Precision or Duplicate Record. DQ metrics are selected based on the data nature 
(format, structure), aim of use (why data is registered) and user requirements (what benefits do users expect to 
obtain from data). 

In order to show a complete example of how a DQ metric is instantiated to experimental data, we choose 
Inter-relation Integrity rules definition (M14) as it corresponds to a DQ aspect that is not generally addressed in 
SE experimental data.  

This metric, when instantiated to our example, produces eight instantiated metrics: three related to time, two 
related to test cases, and three related to demographic questionnaire responses. Here we present three of them 
as an example. As we can observe, in this case the instantiated metrics correspond to data integrity rules. 

• R1. Test case result will be 1 (success) if and only if each of its items result is 1. Otherwise, the test case 
result will be 0.  

• R2. Total execution time is the sum of the time spent in the two working sessions.  
• R3. Time spent in making the first exercise has to be less or equal than the total execution time (only for 

the replication). 

Step 3: Assess Data Quality 
In this step, the DQA defines and implements the measurement methods and the DQ-metadata database in 

order to apply each instantiated DQ metric and register the results. The measurement methods used depends 
on the data repository characteristics, and can be manual or automatic. 

For instance, if data are stored in a relational database, then SQL queries can be defined to implement the 
measurement methods. However, during this step the DQA may identify measures that cannot be executed 
(i.e., for their cost of implementation). 

As a result of executing the measurement methods, DQ problems are identified in the data. The DQA 
classifies them as: data errors, questionable value and improvement opportunity (as presented in Section 2.2). 
Finally, the DQ problems are validated with the Experimenter. 

The DQA records the measurement results in the DQ-metadata. This allows the identification of data with 
DQ problems, as well as the calculation of DQ values. The DQ value presents (by a numerical calculation) the 
presence or absence of a DQ problem. 
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Table 4: DQ Metrics Results (UPV-Replication)  

DQ Metric DQ Metric instantiation DQ Problem 
DQ 

measurement 
result 

Corrective Actions proposed 

M8: Missing Value 
Test case items and 

exercise times with 
missing values 

Data Error 6 test case items 
3 exercise times 

No actions were taken as real values 
cannot be known. 

M9: Omitted 
Information 

Second session times 
calculations omitted Data Error 

4 sessions 
times 

calculations 
omitted 

Calculate second session times (as 
the difference between end and 

start time). 
Update total execution time. 

M10: Omitted 
Record Test case results missing Data Error 4 test case 

results 

No actions were taken. Requirements 
were not implemented, so they were 

not tested. 

M14: Inter-
relation Integrity 

Rule 

Consistency rules not 
satisfied in test cases 

results (R1) 
Data Error 

2 test case 
results where 
the test case 

items are 
missing 

Replace test cases results with ‘0’. 
Update success test cases 

percentages. 

Consistency rules not 
satisfied in total 

execution time (R3) 
Data Error 

6 total execution 
times where 

exercise time is 
longer 

Same corrections applied for M9. 
Update exercise time with total 

execution time. 

Consistency rules not 
satisfied in demographic 
questionnaire responses 

Data Error 
5 demographic 
questionnaire 

responses 

No actions were taken. 
Manual depuration is proposed, as 

automatic manipulation of 
demographic information is not 

possible. 

M1: Out of Range 
Value 

First and second session 
times out of range value 

Questionable 
Value 

2 session times 
registers 

No actions were taken as the time 
exceeded is lower than 15 minutes, 

which is considered acceptable. 

M12: Intra-relation 
Integrity Rule 

Consistency rules not 
satisfied in session times 

Questionable 
Value 

3 session times 
registers 

No actions were taken as the time 
exceeded is lower than 15 minutes. 

M18: Data 
Structure 

Adjustment of 
spreadsheets 

Improvement 
Opportunities 

Database 
structure to be 

improved 

Definition and implementation of 
database schema, rules and 

restrictions. 

M20: Ease of 
understanding 

Adjustment of 
spreadsheets 

Improvement 
Opportunities 

Database 
understanding to 

be improved 

Use references to ease the 
understanding of data. 

M21: Metadata Adjustment of 
spreadsheets 

Improvement 
Opportunities 

Database 
metadata to be 

improved 

Record the origin, responsible and way 
of collecting the data. 

 

Inputs needed for Step 3: 

• DQMoS and metrics instantiated. 
• Data repository. 
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Tasks executed in Step 3: 

• Implementation and execution of measurement methods. 
• Recording of DQ-metadata. 
• Work sessions and validation. 
• Calculation of DQ aggregated values. 

Outputs resulting of Step 3: 

• DQ problems identified. 
• DQ-metadata recorded. 
• DQ values calculated. 

 

Step 3 – Running example 
The assessment of data quality consists in, whenever possible, defining and executing formulas in the 

spreadsheets where data were registered. This allows the implementation of the measurement methods.  
Continuing with the example of the DQ metric Inter-relation Integrity rules definition (M14), we measure the 

rules (R1 to R3) satisfaction through formulas implemented in the spreadsheets. The result unit is a Boolean 
value, indicating if the object measured presents a DQ problem (0) or not (1). Its granularity is at cell level. 

Table 3 shows (in bold and italics) which are the response variables, components, DQ dimensions, factors 
and metrics implied in R1 to R3.  

As a result, we can observe that: 

• R1 was not satisfied. We found 2 test case records whose items results did not exist, but the test case 
result had a value (1 or 0). Both cases correspond to data errors. The subjects had not implemented the 
functionality being tested, so the test case result should have been ‘0’. This DQ problem impacts on the 
experimental results obtained (regarding the variable software quality). 

• R2 was satisfied in the experimental data. 
• R3 was not satisfied. We found 6 records where the time spent in making the first exercise was longer 

than the total execution time. In 4 cases, the second session time values did not exist. Note that these 
cases were also found by the metric “Omitted Information”. Thus, the total execution time only considered 
the time of the first session, making the exercise time longer. This data error has to be corrected because 
it impacts on the results obtained (regarding the variable effort). In the remaining cases, the difference 
was lower than 3 minutes. 

The DQ problems found as a result of executing the measurement methods are presented in Table 4. We 
can observe how the instantiation of M14 in R1 and R3 result in data errors; R2 is not included as it did not 
show the presence of any DQ problem. 

 
Step 4: Execute corrective actions 
In this step, the DQA defines data cleaning actions in order to correct the identified data errors. The 

questionable values are analyzed with the Experimenter in order to identify if they correspond to real data errors.  
The cleaning can be automatic, semi-automatic or manual, depending on each error characteristics. 
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For example, if a missing time value is found, a corrective action could consist in asking to the responsible of 
recording the data which is the real value, and updating that value in the database (manual correction). If the 
data responsible does not know the real value, it would not be possible to correct the DQ problem. 
If the data model contains errors, a new schema can be defined in order to correct the errors and migrate the 
data. 

Finally, the DQA identifies DQ prevention actions and improvement opportunities in order to prevent data 
errors from occurring in future replications of the experiment. 

Inputs needed for Step 4: 

• DQ problems. 
• Data cleaning techniques. 
• Data repository with DQ-metadata. 

Tasks executed in Step 4: 

• Selection of data cleaning techniques. 
• Implementation of data cleaning tasks. 
• Definition of new data schema (if applies). 
• Migration of data (if applies). 
• Identification of preventive actions 

Outputs resulting of Step 4: 

• “Clean” data repository (errors corrected) 
• Preventive actions identified 

Step 4 – Running example 
We showed in the previous step that the execution of the measurement processes shows the presence of 

DQ problems. For M14 Inter-relation Integrity Rule, only data errors were found and corrected. We did not 
identify any questionable value or improvement opportunity.  

The following corrective actions were taken. 

• For R1, we replace the values in two test case results with ‘0’, and execute the calculations again. We 
found that in one case the test case result differs before and after the correction. 

• For R3, we applied two different corrective actions. The first one is related to M9 Omitted Information. 
Applying the corrective actions for the data errors found for this DQ Metric, we were also correcting the 
errors related to R3. For this, we made the calculations for second session and total time that were 
omitted. We found that for 4 cases the results differ before and after the corrections. Besides, in 3 cases 
we replaced the time for the first exercise with the value of the total time.  

Corrections applied for UPV-Replication Experiment 
Table 4 shows all DQ problems found in this experience, and its corresponding classification. It also includes 

the amount of objects found containing DQ problems as a result of the measurement, and the corrective actions 
proposed for each case.  

Note that in this case, three corrective actions were executed successfully involving M14 and M9, as 
described above (showed in bold and italics in Table 4). In the remaining cases (M8 Missing Value and M10 
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Omitted Record) it was not possible to apply corrections as missing values could not be known. After analyzing 
the DQ problem regarding the demographic questionnaire responses with the experimenters, they understand 
they will not have an impact in the experimental results.  

We found questionable (unusual) values for 2 of the metrics (M1 Out of Range Value and M12 Intra-relation 
Integrity Rule). After validation with the experimenter, we did not identify any corrective actions as they did not 
correspond to real data errors. For instance, we found time values that are not in the defined range. It was not 
possible to assure if this corresponds to an error in data registration, or if students used that time to complete 
the exercises. Besides, the time is exceeded by less than 15 minutes, which is considered acceptable as 
sessions’ duration was 240 minutes. 

We propose specific improvement opportunities for 4 metrics, referred to: M18 Data Structure (i.e., how data 
is stored), M19 Data Format (i.e., how data is represented), M20 Ease of Understanding (i.e., if data can be 
understood for making the analysis) and M21 Metadata (i.e., if metadata is stored). We suggest, for example, 
the definition of a database schema and integrity rules, the standardization in the registration of the same kind 
of data and the identification of the sources of information, among others. 

 
Impact of corrections in response variables for UPV-Replication Experiment 
Once we applied all the corrections proposed to UPV-Replication experiment, we repeated all the statistical 

tests that were conducted with the raw data to analyze the impact of such changes.  
Table 5 shows the p-values obtained through the Mixed Model and the Effect Size before and after applying 
the corrections. Note that we only show the variables affected by the changes after applying the DQMoS and 
DQMeS. These results conclude that even though there are small variations in the p-values, the results of the 
statistical test have not changed. For all variables, the level of significance remains stable: Productivity, Time 
and Accuracy with 3 exercises are significant; while Accuracy with 1 exercise is not significant. Regarding 
Productivity and Time, we notice that both variables have a considerable better value for Effect Size, which 
implies that the differences between treatments were more important than suspected before the corrections. 
Effect Sizes for both Accuracies does not involve important changes. 

Table 5: P-values and Effect Sizes of variables affected by the corrections 

Response Variable 
Significance Effect Size 

Before After Before After 

Productivity 0.008 0.030 1.25 1.68 

Time 0.023 0.001 1.35 2.49 

Accuracy (1 exercise) 0.946 0.900 1.13 1.09 

Accuracy (3 exercises) 0.022 0.027 1.76 1.76 

 
Analyzing more in detail the impact of the corrections, we have also conducted a comparison of descriptive 

data through Box and Whiskers plots. Figure 4 shows the plots for Productivity before and after corrections 
respectively. Note that differences between treatments are more evident after corrections since there is no 
overlapping among first and third quartiles (including medians). 
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Figure 4: Box and Whiskers plot for Productivity before and after corrections 

Figure 5 shows the plots for Time before and after corrections respectively. Medians, first and third quartiles 
do not present any overlapping between treatments, which means that differences between treatments are 
more evident after the correction. This difference, for example, clearly shows the importance of a 
comprehensive DQ analysis before statistical analysis of the experiments.  

Figure 6 shows the Box and Whiskers plot for Accuracy of Exercise 1 before and after applying corrections. 
We see that the overlapping of first quartile, median and third quartile is exactly the same in both treatments. 
The only difference is the lower extreme, that reaches to 0 after the correction. The Box and Whiskers plot for 
Accuracy considering all 3 exercises show the same difference as Figure 5 before and after applying 
corrections. 
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Figure 5: Box and Whiskers plot for Time before and after corrections  

  

Figure 6: Box and Whiskers plot for Accuracy considering only Exercise 1 before and after corrections 

After analyzing the comparison of results before and after applying corrections resulting from the DQMoS and 
DQMeS, we can conclude that there is an impact because of such corrections. Significances of response 
variables do not change but we found changes in the descriptive data. All in all we can state that the use of the 
DQMoS and DQMeS provides a seal of quality to raw data that provide confidence to the experimenter. Note 
that this example is based on a sample size of 10 experimental units, so the probability of finding errors is low. 
In spite of the small size of the sample, we have found errors that involved differences in descriptive data. This 
may lead us to think that in experiments with a larger sample size, where the amount of possible errors can be 
considerable, the impact of the corrections could involve important changes in the statistical results. Note that 
all identified errors have been detected with a post-hoc analysis of the data. In spite of their best efforts, original 
experimenters were unable to detect them and the results of the experiment (with the DQ problems) were 
published [44]. So, the use of a systematic method and a model shows improvements in finding DQ problems. 

4 DQMOS AND DQMES APPLICATIONS 

We applied the DQMoS and DQMeS to four SEE in order to measure and improve the quality of their data. In 
all the cases, the DQMeS was applied after the experiment execution and analysis. Thus, it was not possible 
to identify corrective actions in order to avoid DQ problems before the experiment execution or even before its 
analysis and publication of results.  

The first experiment which DQ was analyzed was conducted at Universidad de la República (UdelaR), 
Uruguay, by the Software Engineering Research Group (GrIS) [25, 58]. Its aim was to know and compare the 
effectiveness of verification techniques and defect types detected. The second experiment was executed by 
the Empirical Software Engineering Research Group (GrISE) [28] at Universidad Politécnica de Madrid (UPM), 
Spain, following the same aim. Finally, we analyzed the data resulting from two experiments (base and 
replication) conducted by the Research Center on Software Production Methods (PROS) from Universidad 
Politècnica de València (UPV), Spain, aiming to compare the MDD paradigm with traditional software 
development methods [44]. The running example presented in the previous section corresponds to the UPV-
Replication experiment (the last experiment studied).  
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Table 6 presents the general characteristics and results of each application of our method. We use the term 
“attribute” to refer to the set of data to which the metric is applied. 

Table 6 SEE characteristics and results 

Characteristics and results 
Experiment 

UdelaR UPV-Base UPV-Replication UPM 

Data repository Relational 
Database Spread-sheets Spread-sheets Spread-sheets 

Data collection Web tool Manual (paper), 
web form Manual (paper) Manual (paper) 

#Subjects 14 26 19 32 

#DQ metrics applied 15 16 16 16 

#DQ metrics instantiated in attributes 51 47 59 71 

#Measurements executed Auto: 38 
Manual: 9 

Auto: 32 
Manual: 12 

Auto: 44 
Manual: 13 

Auto: 58 
Manual: 10 

#DQ problems identified 11 9 10 9 

#Attributes and data with DQ problems Att: 20 
Data: 7,379 

Att: 13 
Data: 55 

Att: 17 
Data: 43 

Att: 37 
Data: 219 

#Attributes and data corrected Obj: 19 
Data: 7,353 0 Obj: 3 

Data: 12 0 

4.1 DQ Metrics instantiation in the experimental data 

All 21 DQ metrics included in the DQMoS were applied to at least one of the four experimental data. Considering 
both UPV experiments, we observed that the same 16 DQ metrics were applied. We strongly believed this is 
due to the similarity in the experimental design and data registered. On the other hand, the UPM experiment 
had 15 DQ metrics in common with UPV, and only 11 with UdelaR. Although the experimental designs were 
analogous in UPM and UdelaR, we observe that there exist other factors (such as data collection procedures 
and tools, storage procedures and repositories used) that impact on the DQ metrics instantiation. 

Both UPM and UPV experiments used spreadsheets to store data. This means that the data collection and 
storage processes impact on the DQ analysis of SEE data, as other authors also suggest [14, 21, 39]. In 
particular, Bosu [12] found as a result of a targeted systematic literature review, that both data collection 
reporting and data pre-processing activities were associated with the identification of DQ issues. Liebchen [31] 
claimed that the majority of papers analyzed during a systematic literature review, suggested to apply DQ 
improvement actions during the collection phase. 

We conclude, as we had already supposed, that the DQMoS instantiation is context-dependent, taking into 
account experimental design and process, data collection and storage procedures, and the experimenter DQ 
requirements. The selection of which DQ metrics should be applied and to which specific data will vary with 
each experiment.  

These results show that the DQMoS and DQMeS allowed finding DQ problems in four SEE conducted by 
three different research groups. These findings evidence the importance of using a systematic and disciplined 
method in order to analyze and improve DQ in SEE. 
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4.2 Corrective actions applied 

We applied corrective actions in two of the four experiments. If some actions had a high implementation cost 
(i.e., it can only be implemented manually, or its automation is too complex) and a low benefit (i.e., the data 
affected is not critical for the experimental analysis), the cleaning was not executed. 

In the UdelaR case we executed 99.6% of the corrections identified. In this case, a tool was used for 
collecting the data, and a relational database for its storage. Thus, corrective actions could be implemented 
automatically, cleaning a big amount of data at once. In the other experiments, the collection was manual and 
the storage was in spreadsheets, increasing the effort of implementing massive cleaning actions.  

In UPV-Replication, we executed 27% of the corrections. For the remaining DQ issues we did not identify 
possible corrective actions to apply. For example, missing values could not be corrected, as the real values 
were not known. The corrections applied in this case as well as the impact in the experimental results were 
presented in Section 2 (along with the running example).  

We estimated the cost of implementing corrective actions in UPV-Base and UPM and, even though this 
estimations were not registered, we can say it was higher than in the other experiments and very time-
consuming as they required a manual validation from the experimenters.  

4.3 Analysis of DQMoS applications results 

Table 7 shows the DQ values obtained after instantiating the DQMoS to the four SEE data. The results show 
the presence of DQ problems in the data. This table also shows which DQ metrics were applied in each 
experiment. The term “N/A” means that the DQ metric was not applicable in that case, and “N/E” means that it 
could not be implemented. The DQ value for M1 to M17 is calculated as: # attributes without DQ problems / # 
attributes measured. For these measures, a DQ value less than 1.000 shows the presence of (at least one) DQ 
problem. For M18 to M21, whose granularities are the whole database, the DQ value could be: low, good or 
acceptable; according to the satisfaction criteria defined for each metric. A DQ value “low” shows the presence 
of (at least one) DQ problem. 

Between 15 and 16 DQ metrics (from the 21 included in the DQMoS) were applied in each experiment. All 
metrics were applied at least once throughout the four experiments, and 10 of them were applied in the four 
cases. Besides, the DQ metrics applied considered all different DQ dimensions and factors of the DQMoS. 

Considering the four cases, 11 DQ metrics showed the presence of DQ problems. In particular, 3 DQ 
problems appeared in the four cases: Out of range value, Intra-relation integrity rule and Data structure. They 
all belong to different DQ dimensions, showing once again the benefits of using our multifaceted approach. 
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Table 7: DQ Values obtained for each DQ metric 

DQ Metric 
DQ Value 

UdelaR UPV-Base UPV-Replication UPM 

#M1 0.979 0.968 0.988 0.912 

#M2 1.000 0.941 1.000 0.968 

#M3 N/A 0.692 1.000 N/A 

#M4 0.979 N/A N/A N/A 

#M5 N/E 1.000 1.000 N/E 

#M6 0.874 N/A N/A 1.000 

#M7 N/A 1.000 1.00 1.000 

#M8 0.973 1.000 0.959 0.913 

#M9 0.999 1.000 0.800 0.896 

#M10 N/A 0.996 0.933 1.000 

#M11 0.981 1.000 1.000 1.000 

#M12 0.978 0.971 0.963 0.955 

#M13 1.000 N/A N/A N/A 

#M14 N/A 0.857 0.926 1.000 

#M15 0.950 N/A N/A N/A 

#M16 0.947 1.000 1.000 1.000 

#M17 0.980 N/A N/A N/A 

#M18 Low Low Low Low 

#M19 N/A Good Low Low 

#M20 N/A Low Low Low 

#M21 Acceptable Low Low Low 

4.4 Experimenters experience 

We asked the experimenters from UdelaR, UPV and UPM if, after applying the DQMoS and DQMeS, they felt 
satisfied with the results achieved, the benefits obtained and the costs incurred. We developed a questionnaire 
based on the framework proposed by Moody [41, 42]. This framework assesses model quality in terms of three 
satisfaction variables. Perceived Usefulness (PU): the degree to which the experimenters believed that the 
DQMoS and DQMeS will be effective in achieving its intended objectives; Perceived Ease Of Use (PEOU): the 
degree to which the experimenters believed that using the DQMoS and DQMeS would be free of effort; and 
Intention To Use (ITU): the degree to which the experimenters intended to use the DQMoS and DQMeS in the 
future. 

We defined 16 questions: 8 for PU, 6 for PEOU and 2 for ITU. The possible responses are values between 
1 (totally disagree) and 5 (totally agree). 

As example, we present one question for each variable. 
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• PU: “I think that applying the DQ Metrics increases the probability of finding DQ problems in my 
experimental data, that would be more difficult to identify other way.” 

• PEOU: “The DQ metrics proposed are simple and easy to apply to my experimental data.” 
• ITU: “The DQMoS is easily understandable, could be instantiated and applied to my experimental data.” 

Table 8 shows the result obtained for each satisfaction variable (for UPV and UdelaR experimenters). The 
values, calculated as the mode and median of the responses obtained, reflect a positive feedback for the three 
variables. Unfortunately, after some insistence, it was not possible to obtain the UPM experimenter’s response. 

The obtained results reveal that the experimenters understand the value and improvements introduced to 
the quality of the experimental data by applying the DQMoS and DQMeS, they intend to use them in future 
experiments, and agree that the method is simple to apply. 

Table 8: Experimenters survey results 

Experimenter 
Satisfaction variable (mode) Satisfaction variable (median) 

PU PU PEOU ITU PEOU ITU 

UdelaR 5 5 5 4.5 5 5 

UPV 4 4 4 4 4.5 4 

 

4.5 Threats to validity 

We have classified the threats that the application of our approach may be open to according to the 
classification provided by Wohlin [62]. For each threat we specify if it is avoided, incurred or mitigated. 

• Conclusion validity. This threat is concerned with issues that affect the ability to draw the correct 
conclusions about relationships between the treatment and the outcome. Threats of this type are: (1) Low 
statistical power: this appears when the sample size is low. Note that all experiments used in the 
application of our framework have less than 30 subjects (except for the experiment conducted in UPM). 
This is mitigated replicating the application of our proposal in 4 different experiments. (2) Random 
heterogeneity of subjects: this appears when subjects are highly heterogeneous. We avoided this threat 
since subjects of all experiments used in our framework application have a similar background. All of them 
are students of computer science.  

• Internal validity. This threat is concerned with influences that may affect the dependent variable with 
respect to a causality which the researchers are unaware of. Threats of this type that may appear are: (1) 
History: this appears when the experiments that compose our suite are conducted at different times, since 
the context may affect the results. We mitigated this threat using the same Data Quality Analyst in the 
framework application of all the experiments. (2) Instrumentation: this appears when errors on instruments 
used in each experiment may affect the results. Our framework application suffers this threat since we 
did not have access to instruments definition, we evaluated the data quality using instruments defined in 
each experiment by other persons. (3) Suitability of subjects for experimental tasks: this appears when 
subjects play a role in the experiment in which they are not experts.  
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• Construct validity. This threat is concerned with generalizing the results of the experiment to the 
concept, or theory, behind the experiment. (1) Inadequate pre-operational explanation of constructs: this 
appears when the theory being analysed is not clear. We avoided this threat since the framework was 
applied for a single Data Quality Analyst that is expert at the framework. This ensures that the framework 
was applied in the same way in all the experiments. (2) Experimenter expectancies: this appears when 
experimenters can bias the results based on what they expect. We have mitigated this threat since all 
defects detected after applying our framework have been corroborated with the experimenters of each 
experiment to check its validity.  

• External validity. This threat is concerned with conditions that limit our ability to generalize the results of 
our experiments to industrial practice. (1) Interaction of selection and treatment: this appears when data 
of the experiments used in our framework are not representative of the population we want to generalize. 
We avoid this threat since all experiments focus on the software engineering topic. (2) Restricted 
generalizability: this appears when results can only be generalizable to a specific context. We suffer this 
threat because the validation has been done retrospectively, once experiments had been conducted. We 
have mitigated this threat using source data from 4 experiments conducted in 2 different contexts: model-
driven and testing. 
 

4.6 Applications conclusions 

Our approach was useful in finding and cleaning DQ problems in the four experiments we applied it. We found 
that between 55% and 75% of the DQ metrics applied showed the presence of a DQ problem. This implies that 
DQ is a critical issue, which must be attended in the Empirical Software Engineering domain.  

As we already mentioned, the DQMoS and DQMeS were applied after the experiments’ results were 
published. This presents a problem to SEE, as experimenters did not detect the DQ problems during the 
collection or analysis of their data; and also shows that applying our proposal during the experimental process 
will increase the probability of finding and correcting more DQ problems. 

After analyzing the comparison of results before and after applying corrections in UPV-Replication, we found 
DQ errors that involved differences in experimental data. Note that even when the results concerning 
hypotheses tests did not change, the DQ problems presented in the data had an impact on the experimental 
results after applying the corrections. Therefore, the fact that the hypotheses tests did not show different results 
is something specific to this experiment. Besides, there is an important novelty after applying the DQMeS: we 
can trust better the results once we apply the framework. The contribution of using the DQMeS is that together 
with the results, we can increase the probability that such results have been calculated with correct data. Even 
though experimenters can make their own manual corrections to improve the quality of the data, this does not 
assure that DQ problems would be found, as they do not follow a systematic approach like the one we propose 
in this paper. 

Even though accuracy is the DQ dimension that is most considered and analyzed among the authors in the 
ESE area, is the one with less DQ errors found in these applications. The problems we found belonged to 
different DQ dimensions, showing the importance of using a multi-faceted quality approach. 
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 In view of these results and the experimenters’ opinions, we believe that our approach helps in finding DQ 
problems and cleaning experimental data, and could be used in order to obtain more reliable experimental 
analysis and results. 

5 CONCLUSIONS 

In this work we present an initial DQ Model (DQMoS) and a DQ Methodology (DQMeS) that can be applied to 
SEE data. The DQMoS defines DQ metrics as the instrument to measure the quality of the data and identify 
DQ problems. The DQMeS provides a systematic approach in order to analyze and improve DQ in this domain. 

The results of applying the DQMoS and DQMeS to four SEE show that experimental data may contain 
different DQ problems, and that these problems are difficult to be identified in advance. This is the reason why 
we believe it is important to apply a structured and disciplined framework that allows the improvement of data 
quality. Researchers normally apply an ad-hoc approach to assess experimental data before obtaining its 
results, but this, in the four cases we applied our model and methodology, seems not to be enough. By following 
a systematic approach, we detected DQ problems that experimenters could not find and that impact on the 
experimental results. 

The comparison of the experiment’s results before and after applying the corrections to one of the 
experiments we analyzed, showed that in spite of the small amount of data, we found errors that involved 
differences in descriptive data, p-values and size effect. So, we identified important DQ problems that the 
experimenters did not discover on their own. By applying the proposed framework, we increased the confidence 
in the quality of data used, and we can trust that the experimental results are calculated based on better data 
quality. 

We believe that the multifaceted approach proposed in this work contributes to identify and correct DQ 
problems that are not usually addressed in SEE; as we showed in four experiments.  The positive feedback 
obtained from the experimenters’ surveys showed they value the improvements introduced to the quality of the 
experimental data by applying the DQMoS and DQMeS. Moreover, they intend to apply it again in future 
experiences. We also believe that the DQMoS and DQMeS contribute to both DQ and ESE communities. The 
introduction of a systematic and thorough DQ analysis of SEE data motivates the consideration of DQ aspects 
that are not normally addressed by researchers in Software Engineering and could otherwise be neglected. We 
hope this will be a step towards the standardization in the assessment of DQ in the ESE domain. For the DQ 
community, we introduce a new field of application, by defining a DQ model for a domain that, to the best of our 
knowledge, has not been explored before. 

As future work we will apply our approach to other SEE data from the beginning of the experimental process, 
and to other empirical studies such as case studies. We propose to apply our DQ model and methodology in 
SEE that have not been executed yet, in order to evaluate the results of applying our framework during the 
experimental conception and design. This will allow us to understand if the experimenters, together with the 
Data Quality Analyst, can carry out activities that help improving the quality of the data during the first phases 
of the experiment, preventing from finding DQ problems after obtaining the experimental results. We also intend 
to apply our framework to some of the popular datasets used in the software engineering domain. As a long 
term goal, we also intend to extend our proposal to the analysis of the data resulting of the execution of other 
SEE that do not involve humans (such as computational experiments), as well as of the execution of Software 
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Development Processes. Finally, we plan to analyse and review related works as how DQ is applied in other 
areas of interest, such as psychology and medical research. 
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