Parallel Processing Letters

@ World Scientific Publishing Company

SOLVING DISCRETE-TIME LYAPUNOV EQUATIONS
FOR THE CHOLESKY FACTOR
ON A SHARED MEMORY MULTIPROCESSOR*

JOSE M. CLAVERT
Dpto. de Informdtica, Universitat Jaume I, Aptdo. 242, 12071-Castelldn (SPAIN),

VICENTE HERNANDEZ and ENRIQUE S. QUINTANA1

Dpto. de Sistemas Informdticos y Computacién, Universidad Politécnica de Valencia,

Aptdo. 22012, 46071-Valencia (SPAIN).

Received (received date)
Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT

In this paper we study the parallel solution of the discrete-time Lyapunov equation.
Two parallel fine and medium grain algorithms for solving dense and large order equa-

tions AXAT — X + BBT = 0 on a shared memory multiprocessor are presented.
They are based on Hammarling’s method and directly obtain the Cholesky factor of the
solution. The parallel algorithms work following an antidiagonal wavefront. In order to
improve the performance, column-block-oriented and wrap-around algorithms are used.
Finally, combined fine and medium grain parallel algorithms are presented.

Keywords: Control theory, linear matrix equations, Lyapunov matrix equations, trian-
gular linear systems, Givens rotations, shared memory multiprocessors.

1. Introduction

Discrete-time Lyapunov equations are related to several problems in control the-
ory and signal processing such as balanced realizations [1, 2] and model reduction of
dynamic linear systems [3, 4]. The key to these computational problems is to obtain
the balanced transformation and the solution of the balanced realization problem.
In particular, in order to compute a balanced transformation, three problems need
to be solved. These are the solution of Lyapunov equations, the computation of the

* This research was partially supported by the ESPRIT III Basic Research Programme of the
EC under contract No. 9072 (Project GEPPCOM).

t Supported by the Fundacid Caiza-Castelld (No. A-35-IN).

{ Supported by the Conselleria de Educacid i Ciéncia de la Generalitat Valenciana.

Cholesky factor of the solution and the computation of the singular value decompo-
sition (SVD) of a product of matrices. Other applications of these equations are the
Hankel-norm approximation problem [5] and the frequency domain approximation
problem [7].

The discrete-time Lyapunov equations,

AXAT - X + BBT =0 and ATXA - X4+ CTC =0, (1)

appear in the computation of balanced transformations of discrete-time linear sys-
tems. Among the different algorithms for solving these equations (see [2, 6, 9])
Hammarling’s algorithm is specially appropriate, since in this method the Cholesky
factor of the solution is directly computed [10, 11]. In this paper we present par-
allel algorithms with different grain size of parallelism for solving (1) on a shared
memory multiprocessor (SMM). These algorithms are based on previous works de-
scribed in [12, 13]. In particular, parallel shared memory algorithms for solving the
continuous-time Lyapunov equation are presented in [13]. An adaptative technique
is also described in [13] to improve the performance of the algorithms. However,
numerical results of this technique are not given. Our algorithms are applied to the
discrete-time case of the Lyapunov equation and seem to be simpler than those.
Furthermore, a combination of fine and medium grain algorithms, which improves
the performance, is developed and numerical results are given in our paper and [15].

In section 2 Hammarling’s algorithm and its data dependency graph are pre-
sented. From this graph, an analysis of the parallelism of the method is carried
out. In sections 3 and 4, fine and medium grain parallel algorithms are described,
respectively. A theoretical time analysis of the proposed algorithms is carried out
in section 5. The experimental results obtained on a SMM are shown in section 6.
Finally, in section 7 the conclusions of this paper are presented.

2. Hammarling’s Method
We focus our study on the discrete-time Lyapunov equation
AXAT — X + BBT =0,)

where the coefficient matrix A € R?*" and B € R**™ with n < m. When m < n, it
is possible to apply the same algorithm as described in [10]. If the eigenvalues of the
coefficient matrix {A1, Az, ..., A} satisly |A;] < 1,7=1,2, ... n, then the solution
matrix X € R"%" exists and is unique and non-negative definite. Therefore, it is
possible to obtain its Cholesky decomposition X = LLT. However, equation (2)
can also be solved directly for the Cholesky factor L by Hammarling’s algorithm
[10, 11]. Below we summarize this algorithm.

First, the original equation (2) is transformed to a simpler form called reduced
Lyapunov equation. For this purpose, the real Schur decomposition

A=QsqQT

is computed. In this decomposition, ¢ € R"*" is an orthogonal matrix and S €
R**" is a block lower triangular matrix, with 1 x 1 or 2 x 2 diagonal blocks. Fach

1 x 1 block contains a real eigenvalue of the coefficient matrix, whereas each 2 x 2
block 1s associated with a pair of complex conjugate eigenvalues. Block algorithms
for computing the real Schur decomposition on high performance computers are
described in [16].

From this decomposition, the reduced equation is
sxst — X+ BB =0, (3)

where X = QT XQ and B = QT B. Next, the product BBT is reduced to a simpler
form by computing the L@ factorization of B,

B=(G 0)P,

where G € R"*" is lower triangular and P € 7™ is orthogonal. Therefore, from
the solution L of the final reduced Lyapunov equation,

S(Lrt)st — (L) + GGT =0, (4)
the Cholesky factor of the original equation (2) is computed as L= QL.

2.1. The Serial Algorithm

Now we will show how equation (4) is solved. Following Hammarling’s algorithm
we partition the matrices S, L and G as

{51 0 AT {9 O
(Va8 Y ()

where s11 1s either a scalar or a 2 x 2 block. In the first case, l1; and g¢1; are also
scalars and s, [and g are column vectors of n — 1 elements. In the second case, [y
and g11 will be 2 x 2 blocks and s, [and g will be (n — 2) x 2 blocks.

From now on, and for simplicity, we assume that all the eigenvalues of S are
real. We will call this the real case of the Lyapunov equation. When some of the
eigenvalues of S are complex the equation can be solved in a similar way by means
of a block generalization of the algorithms for the real case [11]. The sizes of the
blocks which appear in the complex case are 1 x 1,1 x 2,2 x 1 and 2 x 2.

From (4) and (5) the three following equations are obtained

liy = g11/\/1—5%1)
(81151 — In—1)! = —ag-—Bs and (6)
SULILD)ST = (LiLf) = -GGT = -GGl —wyy"

where
a=gii/li, B=suln, y=av+sng, v=51+sl
and I,_; stands for the identity matrix of order n — 1.

The diagonal element {17 is directly computed from the first equation in (6).
Then, the lower triangular linear system in the second equation can be solved by

forward substitution and the vector [is obtained. Finally, the last equation is a
discrete-time Lyapunov equation of order n — 1 where the matrix ¢ is of the form

GI(G1 y),

i.e., a block matrix composed of an n — 1 x n — 1 lower triangular matrix, G1, and a
n—1 column vector y. Therefore, it is possible to obtain the Cholesky decomposition
of the product GG using the LQ factorization

G=(G 0)P,

where P € R7*" is orthogonal and G € R(*~*(»~1) is lower triangular. Thus, the
new reduced Lyapunov equation

Si(L LTYST — (1, LTy + GGT =0, (7)

can be treated again in the same way until the problem is completely solved. An
algorithmic representation of Hammarling’s method is shown in Fig. 1.
Algorithm serial_solver:
do j=1,n
1. Compute the diagonal element
o= T=SG.% LG.d) =Gl e #=50.)LG.J)
2. Solve the lower triangular linear system for [
doi=j+4+1,n
Lij) = (—aG(,j) = A5G,) = Sike SGR)LGE, 1)SG.))
/(S3,)5(5,5) = 1)
end do
3. Compute the vector y (using G(:,j) for update)
doi=j+4+1,n
u()) = a (LGNS)+ Thayia SG kLK)) = SG GG)
end do
4. Compute the Cholesky factor of the matrix (G of order n—j
doi=j+4+1,n
4.1. Compute a Givens rotation (sinf;,cosf;) such that

LG w)]| Sl =1 o)
4.2 Apply the Givens rotation
do k=i+1,n
Gl o))= (G w1 00 o
end do
end do

end do
end serial_solver

Fig. 1. Hammarling’s serial algorithm.

2.2. Study of the Data Dependencies

Hammarling’s algorithm is column oriented. Consider the j-th column of L, it
is necessary to know the elements L(j : ¢ — 1,4) prior to computing the element
L(i,7). Consider now the computation of the (j + 1)-th column of L. The first
element that should be computed is L(j + 1,7 + 1) but, according to step 1 of the
serial algorithm, G(j + 1,j + 1) should be previously used in iteration j to nullify
the (j + 1)-th element of y. The next element to be computed is L(j + 2,5 + 1),
which requires the updated element G(j+2,j+1). Following this process, the data
dependency graph for solving a 4 x 4 discrete-time Lyapunov equation is shown
in Fig. 2. (In [13] the data dependency graph for the continuous-time Lyapunov
equation is shown).

b
CRCNE
b

@31 G L3 @ L33

-/

\

A

Lty —(Gazy—(Laz)—G)—~(Laa}—(Gasf—(Css

Fig. 2. Data dependency graph for a 4 x 4 Lyapunov equation.

From the analysis of the data dependencies, it is possible to observe that the
highest inherent parallelism is achieved when the elements on the same antidiagonal
of L are computed simultaneously (The same situation occurs in the continuous-
time Lyapunov equation [12]). The solving sequence is shown in Fig. 3.

] _
2 3
3 4 5
4 5 6 7
5 6 7 8 9
n—1 n n+l n+2 n+3 ... 2n—-3
| n n+l n+2 n4+3 n+4 ... 2n—-2 2n-1 |

Fig. 3. Resolution sequence by antidiagonal elements of L.

This idea was previously introduced in [8] where it was used to design triangu-
lar linear systems solvers on distributed memory multiprocessors. Here it 1s used
to compute simultaneously the solution of triangular linear systems and L@ de-
compositions. Two approaches can be followed from the idea of a wavefront of
antidiagonals. The first one is fine grain size oriented and leads to an algorithm

where the elements of a complete antidiagonal of I, are computed at each step. From
this approach, an algorithm is obtained which is appropriate for scalar parallel ar-
chitectures. The second one is medium grain size oriented. In this one, the columns
of the matrix L are partitioned in subvectors of length ¢ (fixed or variable) and the
computation is carried out so that an antidiagonal of these subvectors is computed
at each step. This algorithm is specially appropriate for vector multiprocessors.

3. Fine Grain Parallel Algorithms

From the analysis of the previous section we notice that the element L(%,j)
may be computed after the elements L(1 : 4,1 :j—1) and L(1 : ¢ — 1,7) have
been computed, and the elements G(j : 4,j) have been updated (note that the
elements above the diagonal are zero). Therefore, the algorithm sweeps the 2n — 1
antidiagonals of L and, using the procedure pfgle described in Fig. 4, computes in
parallel the elements L(¢,j) which belong to the same antidiagonal in each step.

Procedure pfygle(i,j): Compute L(i,j)
if ¢ =35 then
1. Compute the diagonal element
a() = VI=SG.0% Lii.d) = GG /el BG) = SGLG.)
else
2. Compute the subdiagonal element of [

L) = (=a()GG.5) = BG)SG5) = Tizh 1 S6 KLk, S0 J))
(83,)5(5,5) = 1)
3. Update (§
3.1. Compute the scalar § (using ((¢,j) for update)
§= o) (LGS + Chey SG R G)) = S(L3)GL)
3.2. Apply the previous rotations
do k=j4+1i—1

[Glik) 9]=[Gk 7] [

end do
3.3. Compute a Givens rotation (sin#;;,cosf;;) such that

[Glii) y] cosfly; sinfy;] _ [. 0]

—sinf;; cosf;;

coslr; sinfy;
—sinfy; cos by

end if
end pfyle(i,j)
Fig. 4. Procedure pfgle(i,j) for the fine grain algorithm.

This algorithm has the highest degree of parallelism if the number of processors
satisfies p > n/2. In this case, the number of steps required to compute the solution
is equal to the number of antidiagonals of L. However, in practice, p is much smaller
and more than one step is required to compute each antidiagonal. Furthermore, on
an architecture with a hierarchical structure of the memory, the locality of the data
for large matrices has to be considered. In order to avoid the problems in memory
access and taking into account the column orientation of Hammarling’s algorithm,

matrix L is partitioned by blocks of columns. Obviously, the best performance is ob-
tained when the number of columns in each block, ¢, is a multiple of p. Thus, given
a block A, the elements in the antidiagonal i = (h —1)e+1,...,n+ ¢ —1 of L, cor-
responding to this block are

Li ne—1)+1, Lic1 h(e=1)425 - - -5 Limt he—1-

In order to increase the performance the elements Lj; are “wrapped around”
the next column block when n < & < n + ¢ — 1. Thus, the loss of efficiency at the
end of each column block is reduced. An example of the execution sequence for a
10 x 10 Lyapunov equation is shown in Fig. 5.

1
2 3
3 4 5
4 5 6 11* &
5 6 7 12* 13
6 7 8 13 14 15
7 8 9 14 15 16 18 ()
& 9 10 15 16 17 19* 20 (%)
9 10 11 16 17 18 20 21 22 (¥
| 10 11 12 17 18 19 21 22 23 24 |

* Elements computed on wrap around.
(*) Zero elements; not computed on wrap around.
Fig. 5. Resolution sequence of L for the fine grain algorithm (n=10,c=3,p=3).
The accumulation of Givens rotations in this algorithm requires a larger compu-
tational and storage cost than other methods [13] though, in some cases, this larger
cost is justified [14]. The Givens rotations corresponding to a column block are
stored in 2n x ¢ words. Once a new block of L is completely computed and the rest
of matrix GG has been updated, the block of Givens rotations is no longer required.

4. Medium Grain Parallel Algorithms

Consider a partition of the columns of L in vectors of length ¢. To simplify,
we assume that the dimension of the matrix 18 a multiple of . Then, the j-
th column of L is partitioned in f = n/t vectors (vq;,vsj,...,vp;) where v;; =
(Li—1yit1,5s La—tyegag - - - Lit ;)T (note that Ly;, k < j, are zero).

The resolution sequence and the problems of locality in this case are the same
as explained in section 3 though now, the size of the grain is bigger. The procedure
pmgle which computes a vector vy ; of elements of L is shown in Fig. 6.

This algorithm is specially appropriate for vector processors (or SMM with vec-
tor units). In such case, a correct selection of the vector length ¢ is essential. In
order to obtain the best performances, £ must be a multiple of the dimension of
the vector register. In this way, the traffic between the main memory or the cache
memories and the vector registers is reduced and their use is optimized. As in the

fine grain case, the algorithm works by blocks of columns and the wrap around
technique is implemented in order to improve the performance. To simplify, we
chose the number of columns per block ¢ equal to t and multiple of the number of
processors, ¢ =t = k - p. Different combinations will be shown in section 6.
Procedure pmgle(i’,j): Compute v(i’j).
i={ —-1t+1
1. Compute the diagonal element
if ¢+ <j then
o) = VI=SGI7%: LG.3) = GG.iaG): 80) = SG,)LG.J)
t=j4+1
end if
tend =1+t—1
if n < tend then iend =n
2. Compute the subdiagonal elements of /

do [= 1,1end
L g) = (=a)GU) = B1)SWLI) = Ty, SRS, 5))
/(S DS, 5) —1)
end do
3. Compute vector y (using G(:,j) for update)
do [= 1,1end
s() = a() (LGNS) + They SURL(E,)) = S0,)G)
end do

4. Compute the partial Cholesky factor of G
4.1. Apply the previous rotations
do [=1, 1end
do k=j54+1,:-1
. . cosfly; sinfy;
Gk o) =[Gk v)|

end do
end do
4.2 Compute and apply new rotations
do [= 1,1end

4.2.1. Compute a Givens rotation (cosf;,sinf;) such that
cosfly; sinfy |
[G(LD wh)] —sinfy; cosby | [* 0]
4.2.1. Apply the Givens rotation
do k=1, iend

[Gk ot] =[6D o)]|
end do

end do
end pmgle

costly; sindy;
—sinfy; cos

Fig. 6. Procedure pmgle(v(i,j)) for the medium grain algorithm.

Unless n is a multiple of ¢, the medium grain algorithms loose some efficiency

when computing the last vector of each column. Some efficiency will also be lost
when computing the last blocks of columns of the equation since, in this case, the
parallelism is reduced. The larger ¢ is the greater will be the loss of efficiency. In
order to improve the performance, when computing the last column blocks of the
equation, an adaptative value ¢ can be choosen in each step of the process [13]. A
different approach consists of an algorithm which combines fine and medium grain
algorithms depending on the situation [15].

5. Time Analysis

In this section, the computational costs of Hammarling’s serial algorithm and
our parallel algorithms are analyzed. All the eigenvalues of the coefficient matrix A
are assumed to be real. Therefore, the real Schur form, S, only has 1 x 1 diagonal
blocks, i.e., it is lower triangular.

Hammarling’s serial algorithm (serial_solver), as shown in Fig. 1, is divided in
4 stages. The cost (in floating point operations) of each one of these stages is

Cy1 = 5n, Cyp =20+ 2% _ 2,
053:%—3—1—5721—2—% and C,yy = n3 4+ 3n? — 4n.
Thus, the total cost 1s Cp = % + O(n?). If a vector processor is available

and a pipeline is applied directly, the theoretical cost is: 11gn3 + (14+;’>0¢)”2 + O(n),
where « is the start up of the vector unit and 3 the time cost for each operation,
obviously with 5 < 1. This cost is obtained from the analysis of the loops and data
dependencies in each stage. The theoretical cost for a direct parallelization of these

algorithms on a SMM with p processors is %ZCJ’ + O(n?) for the scalar algorithm

and % + O(n?) for the pipelined algorithm.
The fine grain algorithm (fgle) has the same cost as the cost of the scalar se-

rial_solver. The cost of this algorithm using p processors is 1%;;3 +0(n?).
The costs (scalar, vector and parallel) obtained for the medium grain algorithm

(mgle) have the same expressions as those for the serial_solver.

6. Experimental Results

The parallel algorithms have been implemented on a shared memory multipro-
cessor, the Alliant FX/80, using Fortran 77 with language extensions. This parallel
computer has 8 processors and a three-leveled memory. The main memory has 8
banks of 8 Mbytes and is connected by a high-performance bus to two cache memo-
ries of 256K bytes each. Furthermore, each processor has its own cache instructions
and a set of vector registers which form the third level of the memory (32 registers
of 8 bytes each). The vector units are divided in 4 stages. All the algorithms were
compiled with the optimization flags —Og. The additional flags —v (vector) and
—c (concurrent) were used for the vector and parallel algorithms respectively and
both flags for the parallel vector algorithms.

All the computations were carried out in double precision and the results of the
parallel algorithms were compared to those obtained with Hammarling’s serial algo-

rithm. The data matrices were randomly generated. The Matrix S was generated
as a lower triangular matrix (only real eigenvalues). The block column sizes tested
were 8, 16, 32 and 64; The vector length varied among the same values. The size
of the problem, n varied from 20 to 500.

Fig. 7 shows the Speedup for the parallel fine grain algorithm with 8 processors.
The parallel algorithm is compared to the serial_solver executed in 1 processor. Only
scalar and concurrent optimizations were used in both algorithms. The Speedup for
any block column size is close to 6.5 for n > 300.

Speedup
7.0

6.0
5.0
4.0
3.0
2.0
1.0

00 1 1 1 1 1 1 1 1 1 1 1 n

20 60 100 140 180 220 260 300 340 380 420 460 500
Fig. 7. Speedup for the fine grain algorithm on 8 processors.

Fig. 8 shows the Speedup for the parallel medium grain algorithm with 8 proces-
sors. In this figure, the parallel algorithm is compared to the serial_solver executed
in 1 processor and vector and concurrent optimizations were used in both algo-

rithmes.
Speedup

5.0 I I I I I I I I I I I

4.0
3.0

2.0

1 1 1 1 1 1 1 1 1 1 1 n
20 60 100 140 180 220 260 300 340 380 420 460 500

Fig. 8. Speedup for the medium grain algorithm on 8 processors.

For parallel medium grain algorithms we obtain a non-uniform behavior unlike
the fine grain algorithms (see Fig. 8). The reason is that we chose ¢ to be equal to
the number of columns in each column block and the size of the number of columns
in a column block a multiple of p. Thus, when ¢ is less than the size of the vector

10

register, we have an inefficient use of the vector unit, though a higher locality in
the accesses to the memory. The opposite situation occurs when ¢ is greater than p.
Therefore, the best performances will be obtained when both factors are balanced.
In our tests this was achieved for t = 16 and 32.

We have tested the use of a tuned BLAS for the Alliant FX/80 in this algorithm,
but only BLAS-1 and BLAS-2 could be applied and no important improvement of
performance was obtained.

The speedup of the medium grain algorithm is lower for small size equations. In
this case, the parallelism of the algorithm is low and frequently the processors are
idle. The same situation occurs when computing the last columns of the solution
of a larger size equation though, in this case, the effects are not so visible.

Therefore, a combination of fine and medium grain algorithms has been devel-
oped. In this algorithm the first » columns of the solution are computed using the
medium grain algorithm and then, the fine grain algorithm is used in the last n —r
columns. The parameter r depends on size of the vector registers, the number of
processors and the value of ¢. The combination of fine and medium grain algorithms
achieves the best performances for any value of n. Fig. 9 shows these results for
t = 16 and 32. In this figure the combined fine and medium grain algorithm is
compared to the serial_solver. Vector and concurrent optimizations were used in

both algorithms.
Speedup

5.0 I I I I I I I I I I I

4.0
3.0

2.0

1.0 F -

1 1 1 1 1 1 1 1 1 1 1 n
20 60 100 140 180 220 260 300 340 380 420 460 500

Fig. 9. Speedup for the combined fine and medium grain algorithm on 8 processors.

7. Conclusions

We have presented two parallel approaches for the resolution of discrete-time
Lyapunov equations based on Hammarling’s algorithm. Our study has been focused
on large and dense discrete-time equations.

Fine grain algorithms, without vectorization, and using 8 processors, achieve an
efficiency of 0.84 for n = 500. The Speedup of the fine grain algorithms tends to
stabilize for large Lyapunov equations (around n = 300).

For medium grain algorithms and the sizes of the problems tested, the Speedup
increases linearly with n. When vectorization is used and n = 500, these algorithms

11

achieve an efficiency of 0.56 on 8 processors.

Furthermore, for almost any dimension of the problem, combined fine and

medium grain algorithms offer a better performance due to their higher degree

of parallelism when the size of the problem is small and in the last stages of the

algorithm.

References

1.

10.

11.

12.

13.

14.

15.

16.

B. C. Moore, Principal component analysis in linear systems: controllability, observ-
ability, and model reduction, IEEE Trans. AC-26, (1981) 100-105.

A. J.Laub, Computation of balancing transformations, Proc. of the Joint Automate

Control Conf. Vol. II, (1980)

. A.J. Laub; M. T. Heat, G. C. Paige, R. C. Ward, Computations of system balancing

transformations and other applications of simultanecous diagonalization algorithms,

IEEE Trans. AC-32, (1987) 115-122.

L. Pernebo and L. M. Silverman, Model reduction via balanced state space represen-
tations, IEEE Trans. AC-2, (1982) 382-387.

K. Glover, All optemal Hankel-norm approzimations of linear multivariable systems
and their L-error bounds, Int. Journal of Control 39, (1984) 1115-1193.

. R. H. Bartels and G. W. Stewart, Algorithm 432. Solution of the matriz equation

AX 4+ XB =C, Comm. of the ACM 15, (1972) 820-826.

T. Mullis and R. A. Roberts, Synthesis of minimum roundoff noise fixed point digital
filters, IEEE Trans. Circuits and Syst. 23, (1976) 551-562.

M. T. Heath and C. H. Romine, Parallel solution of triangular systems on
distributed-memory multiprocessors, SIAM J. Sci. Statist. Comput. 9, (1988) 558-
588.

. G. H. Golub, S. Nash and C. Van Loan, A Hessenberg-Schur method for the problem

AX + XB = C, IEEE Trans. AC-24, (1979) 909-913.

S. J. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov
equation, IMA J. of Numerical Analysis 2, (1982) 303-323.

S. J. Hammarling, Numerical solution of the discrete-time, convergent, non-negative
definite Lyapunov equation, Systems & Control Letters 17 (North Holland, 1991)
137-139.

D. P. O’leary and G. W. Stewart, Data-flow algorithms for parallel matrix compu-
tations, Comm. of the ACM 28, (1986) 840-853.

A. S. Hodel and K. Polla, Parallel solution of large Lyapunov equations, SIAM J.
Matrix Anal. Appl. 18, (1992) 1189-1203.

C. Bishof and C. Van Loan, The WY representation for products of Householder
matrices, STAM J. Sci. Statist. Comput. 8, (1987) s2-s13.

J. M. Claver, Algoritmos paralelos de grano fino y medio para resolver la ecuacion
de Lyapunov en un multiprocesador con memoria compartida, TR 08/11/94, Uni-
versitat Jaume I, (1994).

7. Bai and J. Demmel, On a block implementation of Hessenberg multishift QR
iteration, Int. Journal of High Speed Computing 1, (1989), 97-112.

12

