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ABSTRACT

In this paper we study the parallel solution of the discrete�time Lyapunov equation�
Two parallel �ne and medium grain algorithms for solving dense and large order equa�

tions �A �X �AT � �X � �B �BT � � on a shared memory multiprocessor are presented�
They are based on Hammarling�s method and directly obtain the Cholesky factor of the
solution� The parallel algorithms work following an antidiagonal wavefront� In order to
improve the performance� column�block�oriented and wrap�around algorithms are used�
Finally� combined �ne and medium grain parallel algorithms are presented�

Keywords� Control theory� linear matrix equations� Lyapunov matrix equations� trian�
gular linear systems� Givens rotations� shared memory multiprocessors�

�� Introduction

Discrete�time Lyapunov equations are related to several problems in control the�

ory and signal processing such as balanced realizations ��� �	 and model reduction of

dynamic linear systems �
� �	� The key to these computational problems is to obtain

the balanced transformation and the solution of the balanced realization problem�

In particular� in order to compute a balanced transformation� three problems need

to be solved� These are the solution of Lyapunov equations� the computation of the
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Cholesky factor of the solution and the computation of the singular value decompo�

sition SVD� of a product of matrices� Other applications of these equations are the

Hankel�norm approximation problem ��	 and the frequency domain approximation

problem ��	�

The discrete�time Lyapunov equations�

�A �X �AT � �X � �B �BT � � and �AT �X �A� �X � �CT �C � �� ��

appear in the computation of balanced transformations of discrete�time linear sys�

tems� Among the di�erent algorithms for solving these equations see ��� �� �	�

Hammarling�s algorithm is specially appropriate� since in this method the Cholesky

factor of the solution is directly computed ���� ��	� In this paper we present par�

allel algorithms with di�erent grain size of parallelism for solving �� on a shared

memory multiprocessor SMM�� These algorithms are based on previous works de�

scribed in ���� �
	� In particular� parallel shared memory algorithms for solving the

continuous�time Lyapunov equation are presented in ��
	� An adaptative technique

is also described in ��
	 to improve the performance of the algorithms� However�

numerical results of this technique are not given� Our algorithms are applied to the

discrete�time case of the Lyapunov equation and seem to be simpler than those�

Furthermore� a combination of �ne and medium grain algorithms� which improves

the performance� is developed and numerical results are given in our paper and ���	�

In section � Hammarling�s algorithm and its data dependency graph are pre�

sented� From this graph� an analysis of the parallelism of the method is carried

out� In sections 
 and �� �ne and medium grain parallel algorithms are described�

respectively� A theoretical time analysis of the proposed algorithms is carried out

in section �� The experimental results obtained on a SMM are shown in section ��

Finally� in section � the conclusions of this paper are presented�

�� Hammarling�s Method

We focus our study on the discrete�time Lyapunov equation

�A �X �AT � �X � �B �BT � �� ��

where the coe�cient matrix �A � �n�n and �B � �n�m with n � m� When m � n� it

is possible to apply the same algorithm as described in ���	� If the eigenvalues of the

coe�cient matrix f��� ��� � � � � �ng satisfy j�ij � �� i � �� �� � � �� n� then the solution

matrix �X � �n�n exists and is unique and non�negative de�nite� Therefore� it is

possible to obtain its Cholesky decomposition �X � �L�LT � However� equation ��

can also be solved directly for the Cholesky factor �L by Hammarling�s algorithm

���� ��	� Below we summarize this algorithm�

First� the original equation �� is transformed to a simpler form called reduced

Lyapunov equation� For this purpose� the real Schur decomposition

�A � QSQT

is computed� In this decomposition� Q � �n�n is an orthogonal matrix and S �

�n�n is a block lower triangular matrix� with �� � or �� � diagonal blocks� Each
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�� � block contains a real eigenvalue of the coe�cient matrix� whereas each � � �

block is associated with a pair of complex conjugate eigenvalues� Block algorithms

for computing the real Schur decomposition on high performance computers are

described in ���	�

From this decomposition� the reduced equation is

SXST �X � BBT � �� 
�

where X � QT �XQ and B � QT �B� Next� the product BBT is reduced to a simpler

form by computing the LQ factorization of B�

B �
�
G �

�
P�

where G � �n�n is lower triangular and P � �m�m is orthogonal� Therefore� from

the solution L of the �nal reduced Lyapunov equation�

SLLT �ST � LLT � � GGT � �� ��

the Cholesky factor of the original equation �� is computed as �L � QL�

���� The Serial Algorithm

Now we will show how equation �� is solved� Following Hammarling�s algorithm

we partition the matrices S� L and G as

S �

�
s�� �
s S�

�
� L �

�
l�� �
l L�

�
and G �

�
g�� �
g G�

�
��

where s�� is either a scalar or a � � � block� In the �rst case� l�� and g�� are also

scalars and s� l and g are column vectors of n� � elements� In the second case� l��
and g�� will be �� � blocks and s� l and g will be n� ��� � blocks�

From now on� and for simplicity� we assume that all the eigenvalues of S are

real� We will call this the real case of the Lyapunov equation� When some of the

eigenvalues of S are complex the equation can be solved in a similar way by means

of a block generalization of the algorithms for the real case ���	� The sizes of the

blocks which appear in the complex case are �� �� �� �� �� � and �� ��

From �� and �� the three following equations are obtained

l�� � g���
p
�� s��� �

s��S� � In���l � ��g � �s and
S�L�L

T
� �S

T
� � L�L

T
� � � �GGT � �G�G

T
� � yyT

��

where

� � g���l��� � � s��l��� y � �v � s��g� v � S�l � sl��

and In�� stands for the identity matrix of order n� ��

The diagonal element l�� is directly computed from the �rst equation in ���

Then� the lower triangular linear system in the second equation can be solved by






forward substitution and the vector l is obtained� Finally� the last equation is a

discrete�time Lyapunov equation of order n� � where the matrix G is of the form

G �
�
G� y

�
�

i�e�� a block matrix composed of an n���n�� lower triangular matrix� G�� and a

n�� column vector y� Therefore� it is possible to obtain the Cholesky decomposition

of the product GGT using the LQ factorization

G �
�

�G �
�
�P�

where �P � �n�n is orthogonal and �G � ��n�����n��� is lower triangular� Thus� the

new reduced Lyapunov equation

S�L�L
T
� �S

T
� � L�L

T
� � � �G �GT � �� ��

can be treated again in the same way until the problem is completely solved� An

algorithmic representation of Hammarling�s method is shown in Fig� ��

Algorithm serial solver�

do j � �� n

�� Compute the diagonal element

� �
p
�� Sj� j��� Lj� j� � Gj� j���� � � Sj� j�Lj� j�

�� Solve the lower triangular linear system for l

do i � j � �� n

Li� j� �
�
��Gi� j�� �Si� j� �

Pi��
k�j�� Si� k�Lk� j�Sj� j�

�
�Si� i�Sj� j� � ��

end do

�� Compute the vector y �using G�� j� for update�

do i � j � �� n

yi� � �
�
Lj� j�Si� j� �

Pi

k�j�� Si� k�Lk� j�
�
� Sj� j�Gi� j�

end do

�� Compute the Cholesky factor of the matrix G of order n� j

do i � j � �� n

���� Compute a Givens rotation sin �i� cos �i� such that�
Gi� i� yi�

� � cos �i sin �i
� sin �i cos �i

	
�
�
� �

�
��� Apply the Givens rotation

do k � i� �� n�
Gk� i� yk�

�
�
�
Gk� i� yk�

� � cos �i sin �i
� sin �i cos �i

	

end do

end do

end do

end serial solver

Fig� �� Hammarling�s serial algorithm�

�



���� Study of the Data Dependencies

Hammarling�s algorithm is column oriented� Consider the j�th column of L� it

is necessary to know the elements Lj � i � �� j� prior to computing the element

Li� j�� Consider now the computation of the j � ���th column of L� The �rst

element that should be computed is Lj � �� j � �� but� according to step � of the

serial algorithm� Gj � �� j � �� should be previously used in iteration j to nullify

the j � ���th element of y� The next element to be computed is Lj � �� j � ���

which requires the updated element Gj��� j���� Following this process� the data

dependency graph for solving a � � � discrete�time Lyapunov equation is shown

in Fig� �� In ��
	 the data dependency graph for the continuous�time Lyapunov

equation is shown��
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Fig� �� Data dependency graph for a �� � Lyapunov equation�

From the analysis of the data dependencies� it is possible to observe that the

highest inherent parallelism is achieved when the elements on the same antidiagonal

of L are computed simultaneously The same situation occurs in the continuous�

time Lyapunov equation ���	�� The solving sequence is shown in Fig� 
�
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Fig� 
� Resolution sequence by antidiagonal elements of L�

This idea was previously introduced in ��	 where it was used to design triangu�

lar linear systems solvers on distributed memory multiprocessors� Here it is used

to compute simultaneously the solution of triangular linear systems and LQ de�

compositions� Two approaches can be followed from the idea of a wavefront of

antidiagonals� The �rst one is �ne grain size oriented and leads to an algorithm
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where the elements of a complete antidiagonal of L are computed at each step� From

this approach� an algorithm is obtained which is appropriate for scalar parallel ar�

chitectures� The second one is medium grain size oriented� In this one� the columns

of the matrix L are partitioned in subvectors of length t �xed or variable� and the

computation is carried out so that an antidiagonal of these subvectors is computed

at each step� This algorithm is specially appropriate for vector multiprocessors�

�� Fine Grain Parallel Algorithms

From the analysis of the previous section we notice that the element Li� j�

may be computed after the elements L� � i� � � j � �� and L� � i � �� j� have

been computed� and the elements Gj � i� j� have been updated note that the

elements above the diagonal are zero�� Therefore� the algorithm sweeps the �n� �

antidiagonals of L and� using the procedure pfgle described in Fig� �� computes in

parallel the elements Li� j� which belong to the same antidiagonal in each step�

Procedure pfgle�i�j�� Compute Li� j�

if i � j then

�� Compute the diagonal element

�j� �
p
�� Sj� j��� Lj� j� � Gj� j���j�� �j� � Sj� j�Lj� j�

else

�� Compute the subdiagonal element of l

Li� j� �
�
��j�Gi� j� � �j�Si� j� �

Pi��
k�j�� Si� k�Lk� j�Sj� j�

�
�Si� i�Sj� j� � ��

�� Update G

���� Compute the scalar �y �using Gi� j� for update�

�y � �j�
�
Lj� j�Si� j� �

Pi

k�j�� Si� k�Lk� j�
�
� Sj� j�Gi� j�

���� Apply the previous rotations

do k � j � �� i� ��
Gi� k� �y

�
�
�
Gi� k� �y

� � cos �kj sin �kj
� sin �kj cos �kj

	

end do

���� Compute a Givens rotation sin �ij � cos �ij� such that�
Gi� i� y

� � cos �ij sin �ij
� sin �ij cos �ij

	
�
�
� �

�
end if

end pfgle�i�j�

Fig� �� Procedure pfgle�i�j� for the �ne grain algorithm�

This algorithm has the highest degree of parallelism if the number of processors

satis�es p � n��� In this case� the number of steps required to compute the solution

is equal to the number of antidiagonals of L� However� in practice� p is much smaller

and more than one step is required to compute each antidiagonal� Furthermore� on

an architecture with a hierarchical structure of the memory� the locality of the data

for large matrices has to be considered� In order to avoid the problems in memory

access and taking into account the column orientation of Hammarling�s algorithm�
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matrix L is partitioned by blocks of columns� Obviously� the best performance is ob�

tained when the number of columns in each block� c� is a multiple of p� Thus� given

a block h� the elements in the antidiagonal i � h � ��c� �� � � � � n� c � � of L� cor�

responding to this block are

Li�h�c������ Li���h�c������ � � � � Li�t�hc���

In order to increase the performance the elements Lkl are �wrapped around�

the next column block when n � k � n � c� �� Thus� the loss of e�ciency at the

end of each column block is reduced� An example of the execution sequence for a

��� �� Lyapunov equation is shown in Fig� ��



���������������

�
� 


 � �
� � � ��� ���

� � � ��� �

� � � �
 �� ��
� � � �� �� �� ��� ���

� � �� �� �� �� ��� �� ���

� �� �� �� �� �� �� �� �� ���

�� �� �� �� �� �� �� �� �
 ��


���������������

� Elements computed on wrap around�
��� Zero elements� not computed on wrap around�

Fig� �� Resolution sequence of L for the �ne grain algorithm �n��	�c�
�p�
��

The accumulation of Givens rotations in this algorithm requires a larger compu�

tational and storage cost than other methods ��
	 though� in some cases� this larger

cost is justi�ed ���	� The Givens rotations corresponding to a column block are

stored in �n� c words� Once a new block of L is completely computed and the rest

of matrix G has been updated� the block of Givens rotations is no longer required�

�� Medium Grain Parallel Algorithms

Consider a partition of the columns of L in vectors of length t� To simplify�

we assume that the dimension of the matrix is a multiple of t� Then� the j�

th column of L is partitioned in f � n�t vectors v�j � v�j� � � � � vfj� where vij �

L�i���t���j� L�i���t���j� � � � � Lit�j�
T note that Lkj� k � j� are zero��

The resolution sequence and the problems of locality in this case are the same

as explained in section 
 though now� the size of the grain is bigger� The procedure

pmgle which computes a vector vi��j of elements of L is shown in Fig� ��

This algorithm is specially appropriate for vector processors or SMM with vec�

tor units�� In such case� a correct selection of the vector length t is essential� In

order to obtain the best performances� t must be a multiple of the dimension of

the vector register� In this way� the tra�c between the main memory or the cache

memories and the vector registers is reduced and their use is optimized� As in the
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�ne grain case� the algorithm works by blocks of columns and the wrap around

technique is implemented in order to improve the performance� To simplify� we

chose the number of columns per block c equal to t and multiple of the number of

processors� c � t � k � p� Di�erent combinations will be shown in section ��

Procedure pmglei�� j�� Compute v�i��j��

i � i� � ��t� �

�� Compute the diagonal element

if i � j then

�j� �
p
�� Sj� j��� Lj� j� � Gj� j���j�� �j� � Sj� j�Lj� j�

i � j � �

end if

iend � i� t� �

if n � iend then iend � n

�� Compute the subdiagonal elements of l

do l � i� iend

Ll� j� �
�
��j�Gl� j� � �j�Sl� j� �

Pl��
k�j�� Sl� k�Lk� j�Sj� j�

�
�Sl� l�Sj� j� � ��

end do

�� Compute vector y �using G�� j� for update�

do l � i� iend

yl� � �j�
�
Lj� j�Sl� j� �

Pl

k�j�� Sl� k�Lk� j�
�
� Sj� j�Gl� j�

end do

�� Compute the partial Cholesky factor of G

���� Apply the previous rotations

do l � i� iend

do k � j � �� i� ��
Gl� k� yl�

�
�
�
Gi� k� yl�

� � cos �kj sin �kj
� sin �kj cos �kj

	

end do

end do

��� Compute and apply new rotations

do l � i� iend

������ Compute a Givens rotation �cos �lj � sin �lj� such that�
Gl� l� yl�

� � cos �lj sin �lj
� sin �lj cos �lj

	
�
�
� �

�
������ Apply the Givens rotation

do k � l� iend�
Gk� l� yk�

�
�
�
Gk� l� yk�

� � cos �lj sin �lj
� sin �lj cos �lj

	

end do

end do

end pmgle

Fig� �� Procedure pmgle�vi � j �� for the medium grain algorithm�

Unless n is a multiple of t� the medium grain algorithms loose some e�ciency

�



when computing the last vector of each column� Some e�ciency will also be lost

when computing the last blocks of columns of the equation since� in this case� the

parallelism is reduced� The larger t is the greater will be the loss of e�ciency� In

order to improve the performance� when computing the last column blocks of the

equation� an adaptative value t can be choosen in each step of the process ��
	� A

di�erent approach consists of an algorithm which combines �ne and medium grain

algorithms depending on the situation ���	�

�� Time Analysis

In this section� the computational costs of Hammarling�s serial algorithm and

our parallel algorithms are analyzed� All the eigenvalues of the coe�cient matrix A

are assumed to be real� Therefore� the real Schur form� S� only has �� � diagonal

blocks� i�e�� it is lower triangular�

Hammarling�s serial algorithm serial solver�� as shown in Fig� �� is divided in

� stages� The cost in �oating point operations� of each one of these stages is

Cs� � �n� Cs� �
n�

� � �n�

� � �n�

Cs� �
n
�

� � �n�

� � �	n

 and Cs� � n� � 
n� � �n�

Thus� the total cost is CT � ��n�


 � On��� If a vector processor is available

and a pipeline is applied directly� the theoretical cost is� ���n�


 � �������n�

� �On��

where � is the start up of the vector unit and � the time cost for each operation�

obviously with � � � � This cost is obtained from the analysis of the loops and data

dependencies in each stage� The theoretical cost for a direct parallelization of these

algorithms on a SMM with p processors is ��n�


p � On�� for the scalar algorithm

and ���n�


p � On�� for the pipelined algorithm�

The �ne grain algorithm fgle� has the same cost as the cost of the scalar se�

rial solver� The cost of this algorithm using p processors is ��n�


p �On���

The costs scalar� vector and parallel� obtained for the medium grain algorithm

mgle� have the same expressions as those for the serial solver�

�� Experimental Results

The parallel algorithms have been implemented on a shared memory multipro�

cessor� the Alliant FX���� using Fortran �� with language extensions� This parallel

computer has � processors and a three�leveled memory� The main memory has �

banks of � Mbytes and is connected by a high�performance bus to two cache memo�

ries of ���K bytes each� Furthermore� each processor has its own cache instructions

and a set of vector registers which form the third level of the memory 
� registers

of � bytes each�� The vector units are divided in � stages� All the algorithms were

compiled with the optimization �ags �Og� The additional �ags �v vector� and

�c concurrent� were used for the vector and parallel algorithms respectively and

both �ags for the parallel vector algorithms�

All the computations were carried out in double precision and the results of the

parallel algorithms were compared to those obtained with Hammarling�s serial algo�
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rithm� The data matrices were randomly generated� The Matrix S was generated

as a lower triangular matrix only real eigenvalues�� The block column sizes tested

were �� ��� 
� and ��� The vector length varied among the same values� The size

of the problem� n varied from �� to ����

Fig� � shows the Speedup for the parallel �ne grain algorithm with � processors�

The parallel algorithm is compared to the serial solver executed in � processor� Only

scalar and concurrent optimizations were used in both algorithms� The Speedup for

any block column size is close to ��� for n � 
���

���

���

���
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���

���

���

���

�� �� ��� ��� ��� ��� ��� 
�� 
�� 
�� ��� ��� ���
n

Speedup

c��
c���
c�
�
c���

Fig� �� Speedup for the �ne grain algorithm on � processors�

Fig� � shows the Speedup for the parallel medium grain algorithm with � proces�

sors� In this �gure� the parallel algorithm is compared to the serial solver executed

in � processor and vector and concurrent optimizations were used in both algo�

rithms�

���

���


��

���

���

�� �� ��� ��� ��� ��� ��� 
�� 
�� 
�� ��� ��� ���
n

Speedup

t��
t���
t�
�
t���

Fig� �� Speedup for the medium grain algorithm on � processors�

For parallel medium grain algorithms we obtain a non�uniform behavior unlike

the �ne grain algorithms see Fig� ��� The reason is that we chose t to be equal to

the number of columns in each column block and the size of the number of columns

in a column block a multiple of p� Thus� when t is less than the size of the vector

��



register� we have an ine�cient use of the vector unit� though a higher locality in

the accesses to the memory� The opposite situation occurs when t is greater than p�

Therefore� the best performances will be obtained when both factors are balanced�

In our tests this was achieved for t � �� and 
��

We have tested the use of a tuned BLAS for the Alliant FX��� in this algorithm�

but only BLAS�� and BLAS�� could be applied and no important improvement of

performance was obtained�

The speedup of the medium grain algorithm is lower for small size equations� In

this case� the parallelism of the algorithm is low and frequently the processors are

idle� The same situation occurs when computing the last columns of the solution

of a larger size equation though� in this case� the e�ects are not so visible�

Therefore� a combination of �ne and medium grain algorithms has been devel�

oped� In this algorithm the �rst r columns of the solution are computed using the

medium grain algorithm and then� the �ne grain algorithm is used in the last n� r

columns� The parameter r depends on size of the vector registers� the number of

processors and the value of t� The combination of �ne and medium grain algorithms

achieves the best performances for any value of n� Fig� � shows these results for

t � �� and 
�� In this �gure the combined �ne and medium grain algorithm is

compared to the serial solver� Vector and concurrent optimizations were used in

both algorithms�

���

���


��

���

���

�� �� ��� ��� ��� ��� ��� 
�� 
�� 
�� ��� ��� ���
n

Speedup

t���
t�
�

Fig� �� Speedup for the combined �ne and medium grain algorithm on � processors�

	� Conclusions

We have presented two parallel approaches for the resolution of discrete�time

Lyapunov equations based on Hammarling�s algorithm� Our study has been focused

on large and dense discrete�time equations�

Fine grain algorithms� without vectorization� and using � processors� achieve an

e�ciency of ���� for n � ���� The Speedup of the �ne grain algorithms tends to

stabilize for large Lyapunov equations around n � 
����

For medium grain algorithms and the sizes of the problems tested� the Speedup

increases linearly with n� When vectorization is used and n � ���� these algorithms

��



achieve an e�ciency of ���� on � processors�

Furthermore� for almost any dimension of the problem� combined �ne and

medium grain algorithms o�er a better performance due to their higher degree

of parallelism when the size of the problem is small and in the last stages of the

algorithm�
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