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Abstract

The controllability and observability Gramians of time-
invariant linear systems are given by the solutions of
two coupled Lyapunov equations. These Gramians play
an essential role in many areas of control theory such
as computing Hankel singular values, system balaning,
and related model reduction algorithms. We investi-
gate the numerical solution of coupled Lyapunov equa-
tions by iterations for the matrix sign function, and
demonstrate by numerical examples the efficiency of
the resulting algorithm on modern computer architec-
tures. As the Cholesky factors of the Gramians are
often required rather than the Gramians themselves,
special emphasis is given on the direct computation of
these factors without forming the Gramians explicitly.

Key words: numerical methods, coupled Lyapu-
nov equations, controllability Gramian, observability
Gramian, matrix sign function.

1 Introduction

Let a stable realization of a linear time-invariant system
be given in generalized state-space form, i.e.,

Ax(t) + Bu(t), z(0)=2°,
Cx(t), @

Ei(t) =
y(t)
where A, E € R"*", B e R"*™, C € R?*", E is non-

singular, and A — AFE is a stable matrix pencil. Note
that these assumptions imply the nonsingularity of A.
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In linear control problems governed by first-order or-
dinary differential equations (ODE), usually E = I,,,
where I, denotes the identity of order n. The case
E # I, appears if the control problem is governed by
a second-order ODE (e.g., [8]) or a descriptor system
(e.g., [17]), or if the underlying first-order ODE comes
from a finite-element discretization of a partial differ-
ential equation (PDE) (e.g., [3, 21]).

In principle, (1) can be transformed to standard
state-space form by inverting E and working with the
system defined by (E~'A,E~1B,C). Nevertheless,
this may introduce large rounding errors in case E
is ill-conditioned. Moreover, in many of the above-
mentioned applications, E is a sparse matrix while its
inverse may be full. As we show in Section 2, the ad-
ditional cost for our algorithms caused by using the
generalized rather than the standard state-space form,
basically comes from matrix multiplications with E.
This additional cost is negligible if E has only a small
number of nonzero entries.

The controllability and observability Gramians, W,
and W,, respectively, are given via the solutions X and
Y of the generalized Lyapunov equations

AXET + ExAT + BBT = 0, (2)
ATYE+ ET'vA+CTCc = o, (3)

and the relations
W, =X, W, = ETYE. (4)

An immediate consequence of Lyapunov stability the-
ory (see, e.g., [14, Section 13.1]) is that, under the given
assumptions, W, and W, are both positive semidefi-
nite. Moreover, if (E~1A, E~!'B) is controllable, then
W, is nonsingular and hence definite; if (E~1A4,C) is
observable, the same holds for W,.



2 Solving Lyapunov Equations
via Sign Function Iterations

The sign function of a matrix Z € R™*"™ can be defined
as follows. Let o (Z) N«R = 0, where o (Z) denotes
the spectrum of Z and 1 := v/—1. Denote the Jordan
decomposition of Z by

_ J- 0 -1
P P PR
where o (J-) C €, o (Jt) C C'. Here, € denotes

the open left, C' the open right half complex plane.
If J- € R®™F and J+ € RMMX(=K) "then

sign (Z) := s[ _OIk In(ik ]5—1. (6)

Note that sign(Z) is unique and independent of the
order of the eigenvalues in the Jordan decomposition of
Z (see, e.g., [13, Section 22.1]). Many other equivalent
definitions for sign (Z) can be given; see, e.g., [12].

A generalization of the matrix sign function for a ma-
trix pencil Z — AY was given by Gardiner and Laub [7]
in case Z and Y are both nonsingular. They consider
the iteration

ZO =Z.
FOR £k =0,1,2,... until convergence

1 -
Zt1 < o (Zr+ Y Z;'Y),

(7)

where the scalar ¢ is chosen in order to accelerate the
convergence of the iteration. It can be proved that
limg o0 Z, =: Zoo exists and sign (Y1Z) = Y1 Z;
see [7].

Now consider a generalized Lyapunov equation of the
form

ATXE+ETXA+Q = o, (8)

where A,E,Q, X € RV, Q = Q7, and X = X7 is
the sought-after solution. Assuming A — A\E is stable
and A, E are nonsingular, we can apply iteration (7) to
the matrix pencil

Z—-)\Y = [A 0

E 0
Q —AT:|_/\|:0 ET:|' (9)
It can be shown that in this case,

-F 0

and the solution X of (8) can be obtained from Z, by
solving two linear systems of equations; see [3, 4, 7, 20].

Remark 2.1 In case E = I,, the solution X can be
read off directly from the lower left n x n block of Z
and (7) reduces to the standard Newton iteration for the
computation of the matrix sign function as introduced
in [20].

In [3, 4] (and in [20] for the case E = I,,) it is ob-
served that the iteration (7) greatly simplifies when
applied to Z — AY from (9). Rather than one iteration
with 2n X 2n matrices Zj, it is sufficient to consider
two iterations with n x n matrices:

Ao =4, Qo:=Q.

FOR k =0,1,2,... until convergence

1 2 —1
A1 < %er (A + GEALE), (11)

1 _ _
Qri1 e (Q +c§ETAkTQkAk1E).

Denoting the limits of this iteration by

Ay = lim Ay, Qoo = lim Q,
k— oo k—o00
we obtain 4
. 0

and hence, X = E-TQ E~1/2. In [4] these ideas were
used to design and investigate numerical algorithms for
the solution of generalized Lyapunov equations of the
form (8).

The iteration (7) can be applied to (3) directly by
setting Qo := CTC in order to obtain the observabil-
ity Gramian as W, = Q«/2. (Recall that from (4),
W, = ETYE if Y is the solution of (3).) That is, for
computing the observability Gramian, we do not need
to invert E.

For (2), we have to replace A by AT and E by ET
while setting Qo := BBT. Rewriting the above itera-
tion accordingly, we obtain

Ay:= AT, P, := BBT.
FOR k =0,1,2,... until convergence

1 1 1 2T 7—1 T
A & o (A + GETAET), (13)

Ppy1 + % (Pk + cﬁEfI,;TPkA;IET).

such that the controllability Gramian is given by
W, = E'P,E~T/2. Here, we have to solve two
matrix equations which can be achieved by only one
factorization (e.g., LU or QR) of E. Note that the ac-
curacy of the computed controllability Gramian will be
affected by the conditioning of E; for more details, see
[4]. It is easy to see that for the iterates in (13) we have



A; = AT if the A; denote the iterates of (11). Hence,
W, and W, can be computed simultaneously by

Ag:=A, Py:=BBT, Qy:=C"C.
FOR k£ =0,1,2,... until convergence

1 2 -1
Ak+]_ <~ E (Ak +CkEAk E),

1 9 1 R (14)
Pk+1 (—E(Pk'i‘ckEAk PkAk E ),
1 . _ _
Qry1 2, (Qk + R ET A TQLA'E),
and setting
1 4 _r 1

The choice of the scaling factor ¢ and the stopping
criterion are discussed in Section 3.

Of course, if the solutions of the coupled Lyapunov
equations (2) and (3) are required rather than the
Gramians, then we still have to solve ETYE = Q.
for Y. This can be achieved by using the factorization
of E already computed when solving EXET = P...

One step of Iteration (14) requires an LU factoriza-
tion of Ay, solving two linear systems, and several ma-
trix multiplications. This matrix-multiplication rich-
ness makes the method attractive for computer archi-
tectures that can take advantage of block-partitioned
algorithms, and specially for parallel distributed archi-
tectures. Note that if E is a sparse matrix, this can
be employed when implementing the matrix products
with E in order to reduce the cost of the iteration.
Moreover, if A and E commute, then A and E com-
mute, too. In that case, we can save one linear system
solve since E’A,:1 = A,;IE. This is sometimes the case,
e.g., if (1) comes from the discretization of distributed
parameter systems as in [3, 21].

Remark 2.2 For E = I,,, iteration (14) has been used
in [15] as the first step in a balanced model reduction
algorithm.

We have already noted in Section 1 that under the
given assumptions, the solutions X and Y of (2) and
(3), respectively, are positive semidefinite, and if the
underlying system is controllable and observable, then
both matrices are positive definite. Hence, there exist
full-rank factorizations X = X;X{ and ¥ = YTV,
where rank (X;) = rank (X) and rank (Y;) = rank (V).
In case X and Y are nonsingular and X1, ;T are chosen
lower triangular, these are the Cholesky factorizations
of X and Y, respectively. In the following, we will call
X1, Y7 Cholesky factors, regardless of their rank.

Often, the Cholesky factor is required rather than
the solution X itself, e.g., [9, 18, 22]. Hammarling’s
method for solving Lyapunov equations [10, 23, 19] of
the form (3) computes this factor without forming the
product CTC and the solution X explicitly. The ad-
vantage of this approach is that the condition number
of X can be up to the square of that of its Cholesky fac-
tor X;. Hence, a significant increase in accuracy can be
observed using X; instead of X if X is ill-conditioned.

In particular, if the eigenvalues and eigenspaces of
the product W.W, are desired (as in Hankel singular
values computation, system balancing, and model re-
duction), they can be computed via the singular value
decomposition (SVD) of V,V., where W, = V. VT,
W, = V.I'V, are Cholesky factorizations [22]: if V,V, =
UXVT is the SVD of V,V, with ¥ = diag(o1,...,0n),
then o (W.W,) = {0%,...,02} and the right eigenspace
of W.W, is spanned by the columns of V. V. Moreover,
the SVD of V,V, can be computed without forming the
product explicitly [11], thereby avoiding all problems
caused by forming products of matrices and thus mul-
tiplying their condition numbers.

In [16] (for E = I,,) and [4] (for E # I,,), the iteration
(11) was modified to obtain the Cholesky factors rather
than the solutions themselves. The basic idea is that if
Q = CTC and Cy = C, the iterations for the symmetric
matrices @)y can be written in factored form as

T
Qrt1 = Cpp1Cha

_ 1 Cr ! Ci
o 2¢p CkaAlzlE CkaAlzlE ’

yielding
1 Ch
C — — _ . 16
i © Ui | aoidpe |09
Analogous, for Iteration (13) with By := B we obtain
1
B ——I[B EA 'B.]. 17

Using (16), (17), the work space required to store the
By’s, Cy’s is doubled in each iteration step. This can
be avoided by computing in each iteration step an LQ
factorization of By,; and a QR factorization of Cy1,

R
Biy1 = [Lp+10]Uk+1, Cry1 = Vk+1|: %H ]

As
T T T T
Bii1Bryy = LgpiLpyr, CogiChri = Ry Riqa,

it is sufficient to store the triangular factors in Bjyq,
Cry1- The orthogonal factors need not be accumu-
lated, but still the amount of work required in each it-
eration step is increased by these factorizations. In [4]



we therefore propose a compromise: first, fix the avail-
able workspace for the C}’s (here also for the By’s). A
reasonable amount is an 2n x n array (or n x 2n for
the By’s) as the rank of the required Cholesky factors
Y1 (and X;) cannot exceed n. Therefore, we may use
(16) and (17) as long as C € RP**" for p;, < n and
By € R™™* for my, < n, and then switch to working
with the triangular factors obtained by the factoriza-
n

tions. Hence, we perform k < log, ;- iterations with

(17) and I < log, % iterations with (16) before starting
to compute factorizations in each step and work only
with the triangular factors. If convergence is achieved
before the switch, we have to compute final factoriza-

tions to obtain the Cholesky factors.

3 Implementation Details and
Numerical Experiments

In order to accelerate the convergence, we employ in
our algorithms the determinantal scaling [6, 7], where
the scalar ¢, in iteration (7) is set to

cr « |det (Y71Z) 7Y (if Z,Y € R™¥")

From the definition of Z and Y in (9), we have for
iteration (14),

cr + |det (B71AR)|~Y/™.

Other choices of ¢ are possible; for a comparison see
[2].

From (10) and (12) we obtain A,, = —E. This sug-
gests the stopping criterion

lAx + E|| < tol-[E],

for a suitable norm and a user-defined tolerance tol.
This criterion is easy to check and does not require
additional computations or workspace. As suggested
in [3], in our implementations we employ the 1-norm
for ease of computation, and tol = 10-n-+/¢ (¢ denotes
the machine precision). This technique avoids possi-
ble stagnation of the iteration due to ill-conditioning
of the sign function matrix. Once the criterion is sat-
isfied, due to the quadratic convergence of the Newton
iteration, two additional iterations are usually enough
to reach the attainable accuracy.

The experiments reported here demonstrate the com-
putational performance of the investigated algorithms.
The accuracy of Lyapunov equation solvers based on
matrix sign function computations usually is as good
as can be expected from the conditioning of the prob-
lem; see [4] for details and numerical results regarding
accuracy.

All our numerical experiments were performed using
Fortran 77 and 1EEE double-precision arithmetic on an
1BM Sp3 platform (¢ ~ 2.2 x 1071%). This platform
consists of 80 RsS6000 nodes at 120 MHz and 256 RAM
MBytes per node. We made use of the vendor supplied
BLAS (essl) and LAPACK libraries [1]. In our tests one
node achieved around 200 Mflops (Millions of floating-
point arithmetic operations per second) for the matrix
product (routine DGEMM).

We construct both single-input single-output (SISO)
problems (m = p = 1), and multiple-input multiple-
output (MIMO) problems (with n = m = p). The ma-
trix pencils (A, E) are generated with random entries,
and eigenvalues uniformly distributed in [—10,0). The
right-hand side matrices B and C are generated with
random integer entries.

Our first experiment compares the performance of
the coupled Lyapunov equation solvers based on di-
rect methods (Bartels-Stewart’s method [19] and Ham-
marling’s algorithm [9]) and the methods based on the
Newton iteration for the sign function as proposed in
(14). We use the following notation for the solvers:

— xxBS: Bartels-Stewart’s method.

— xxHA: Hammarling’s algorithm.
— xxNE: Newton iteration for the explicit solutions.

— xxNC: Newton iteration for the Cholesky factors.
Characters (xx) specify whether the solver deals with
the standard (ST) or the generalized (GE) equation. In
all figures, we employ

— dashed lines for STBS (’+’) and GEBS (’x’);

— dotted lines for STHA (’+’) and GEHA (’x’);

— solid lines for STNE (’0’) and GENE ('+’);

— dashed/dotted lines for STNC (’0’) and GENC (’+’).
Figures 1 and 2 report, respectively, the execution
time of the standard and generalized coupled Lyapunov
solvers. The direct methods are slower than our iter-
ative solvers based on the matrix sign function by a
factor of up to 10. The number of iterations of the ma-
trix sign function iterations was 10-15 in all our exper-
iments. This is enough to achieve convergence in most
cases. The performance of the solvers that compute the
Cholesky factors strongly depends on the number of in-
puts/outputs of the system. For SISO systems, solvers
STNC and GENC are more efficient. The cost of these
solvers grows rapidly as m and p get larger. Note that
many discretization schemes for distributed parameter
systems yield SISO systems; see, e.g., [21].

We have also developed parallel codes, based on the
matrix sign function iterations, for the coupled Lya-
punov equations. Our solvers employ the ScaLAPACK
parallel matrix algebra library [5].
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Figure 1: Execution time of the standard coupled
Lyapunov equation solvers for SISO (left) and MIMO
(right) systems.
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Figure 2: Execution time of the generalized coupled
Lyapunov equation solvers for SISO (left) and MIMO
(right) systems.

We compare next the performance of the parallel
solvers based on the matrix sign function. We do not
include the direct methods in the comparison since the
current version of ScaLAPACK does not provide the
appropriate matrix kernels (e.g., the QZ algorithm).

In Figure 3 we report the execution time of the serial
solvers and the parallel solvers on a ¢ x q, ¢ = 2,3,4,
mesh of nodes. In the experiment, we fix the ratio
n/q = 750. The figure shows that, for SISO systems,
the solvers for the Cholesky factor are more efficient,
though they loose their efficiency in case the number
of inputs/outputs is large.

Our final experiment analyzes the degree of paral-
lelism of the solvers. For this purpose, we fix n/q = 750
(e.g., n = 3000 for ¢ = 4) and compute the Mflops per
node of the algorithms. We only report the results
for algorithms STNE and GENE (see Figure 4). This ra-
tio allows to measure the communication overhead of
the parallel algorithms; for instance, the efficiency of
algorithm GENE (compared to its serial version) is, re-

RS R TR S R T
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Figure 3: Execution time of the (parallel) coupled

Lyapunov equation solvers for SISO (left) and MIMO

(right) systems; n/q fixed at 750.
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Figure 4: Mflops per node of the coupled Lyapunov

equation solvers for MIMO systems; n/q fixed at 750.

spectively, 0.96, 0.78, and 0.66 on 4, 9, and 16 nodes.
Compared to the serial routine for the matrix product
(DGEMM), these solvers attain an efficiency of 0.86, 0.69,
and 0.59 on 4, 9, and 16 nodes.

4 Concluding Remarks

We have presented numerical methods for the solution
of coupled Lyapunov equations by means of matrix sign
function iterations. Our algorithms can be employed
to obtain explicit solutions of the coupled Lyapunov
equations, their Cholesky factors, or the Gramians of
an associated linear time-invariant system.

The numerical results show that the solvers based
on the matrix sign function outperform traditional di-
rect methods based on reduction to condensed forms
on serial architectures. Moreover, the experimental re-
sults on a parallel distributed architecture show the
efficiency of the algorithms and report this method as
an efficient approach for solving large-scale problems.
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